
Data Structures

Augustin Cosse.

Summer 2025

June 10, 2025

Recursive algorithms: English Ruler

• In the case of the factorial function there is no compelling
reason for preferring recursion over a direct iteration with a
loop

• As a third example of recursion, we consider the drawing of a
typical English ruler

• We denote the length of the tick designating a whole inch as
a major tick length

• Between the marks of whole inches, we add a series of minor
ticks corresponding to 1/2 inch, 1/4 inch and so on

Recursive algorithms: English Ruler

Recursive algorithms: English Ruler

• The English ruler is a simple example of fractal that is a shape
that has a self recursive structure at various levels of
magnification

• In general, an interval with central tick length L ≥ 1 is
composed of :

1. An interval with central tick length L− 1

2. A single tick of length L

3. An interval with central tick length L− 1

• Although it is possible to draw such the ruler using an
iterative process, the task is considerably easier to acomplish
with recursion

Recursive algorithms: File systems

• We first consider a main method drawRuler which manages
the construction of the entire ruler. Its argument specifies the
total number of inches in the ruler and the major tick length.

public static void drawRuler

(int nInches, int majorLength) {

drawLine(majorLength, 0); // draw inch 0 line

for (int j = 1; j <= nInches; j++) {

drawInterval(majorLength -1); // draw ticks

drawLine(majorLength, j); // draw inch j line

}}

Recursive algorithms: File systems
• The interesting work is done by the recursive drawInterval

method. This method draws the sequence of minor ticks
within some some interval based on the length of the interval
central tick.

• The method relies on a base case when L = 0 that draws
nothing.

• For L ≥ 1 the first and last steps are performed by recursively
calling drawInterval(L-1)

private static void drawInterval(int centralLength) {

if (centralLength >= 1) { // otherwise, do nothing

drawInterval(centralLength -1); // top interval

drawLine(centralLength); // draw center tick

drawInterval(centralLength -1); // bottom interval

}}

Recursive algorithms: File systems

• Each line is drawn using the drawLine method with or
without tick

private static void drawLine

(int tickLength, int tickLabel) {

for (int j = 0; j < tickLength; j++)

System.out.print("-");

if (tickLabel >= 0)

System.out.print(" " + tickLabel);

System.out.print("\n");}

private static void drawLine(int tickLength) {

drawLine(tickLength, -1);

}

Recursive algorithms: English Ruler

Recursive algorithms: File System

• Modern operating systems define file-system directories (also
called ”folders”) in a recursive way.

• A file system consists of a top-level directory and the content
of this directory consists of files and other directories which in
turn can contain files and other directories and so on

• The operating system allows directories to be nested
arbitrarily deeply although there will always be some base
directory that contains only files

Recursive algorithms: File System

Recursive algorithms: File System

• Given the recursive nature of the file-system representation, it
should not come as a surprise that many common behaviors
of an operating system such as copying or deleting a directory
are implemented with a recursive algorithm.

Recursive algorithms: File System
• For illustration, we display below the disk space being used by

all entries in our sample file system. We make the difference
between the immediate disk space used by each entry and the
cumulative disk space used by that entry and all the nested
features. For example cs016 directory uses only 2K of
immediate space but 249K of cumulative space.

Recursive algorithms: File systems

• The cumulative disk space can be computed with a simple
recursive algorithm. It is equal to the immediate disk space
used by the entry plus the sum of the cumulative disk space of
any entries that are stored directly within the entry

/* Input: A string designating a

path to a file-system entry */

/* Output: The cumulative disk space used by that

entry and any nested entries */

total = size(path)

if path represents a directory then

for each child entry stored within directory path do

total = total + DiskUsage(child) {recursive call}

return total

Recursive algorithms: File systems

• To implement a recursive algorithm to compute disk usage in
Java, we rely on the java.io.File class.

• An instance of that class represents an abstract path name in
the operating system and allows for properties of that
operating system entry to be queried

Recursive algorithms: File systems

• We will consider several methods from this class

• new File(pathString) or new File(parentFile, childString). A
new file instance can be constructed either by providing the
full path name as a string, or by providing an existing File
instance that represents a directory and a string that
designates the name of child entry within that directory

• file.length() returns the immediate disk usage for the OS entry
represented by file

• file.isDirectory() Returns true if the file instance represents a
directory and false otherwise

• file.list() returns an array of strings designating the names of
all entries within the given directory

Recursive algorithms: File systems

• With the use of the File class we can now provide a formal
implementation that return the disk usage

public static long diskUsage(File root) {

long total = root.length(); // direct disk usage

if (root.isDirectory()) { // if directory,

for (String childname : root.list()) {

File child = new File(root, childname);

total += diskUsage(child); // add child’s usage}

}

System.out.println(total + "\t" + root);

return total; // return the grand total

}

Recursive algorithms: File systems

• The last line prints the total amount of disk space used by a
particular directory and all content nested within

public static long diskUsage(File root) {

long total = root.length(); // direct disk usage

if (root.isDirectory()) { // if directory,

for (String childname : root.list()) {

File child = new File(root, childname);

total += diskUsage(child); // add child’s usage}

}

System.out.println(total + "\t" + root);

return total; // return the grand total

}

