
Introduction to Optimisation,

Lecture 1

Augustin Cosse

January 2022

This note was written as part of the series of lectures on Optimisation delivered at
ULCO in 2022-2023. The version is temporary. Please direct any comments or

questions to augustin.cosse@univ-littoral.fr.

Introduction

In this course we will be concerned with general problems of the form

min f(x) (1)

s.t. x ∈ S (2)

Here f : S 7→ R and S denotes the set of feasible solutions. it can be shown (Weier-
trass) that if S is compact and f is a continuous function, then the optimum exists.
We will cover various instances of problem (2) (see Figure 1 for a (non-exhaustive)
diagram).

Linear Programming

The problem of solving a set of linear equations can be traced back to Fourier
(1826/1827) who introduced one of the first resolution method known today as the
Fourier-Motzkin elimination. The creation of linear programming as a discipline, to-
gether with its first serious recognition came with the work of Dantzig, Kantorovitch,
Koopmans and von Neumann.

Dantzig introduced what is known today as the Simplex algorithm. von Neumann
established the theory of duality. The main contribution of Kantorovitch to linear
programming, which was rewarded by the Nobel prize in economics, followed from
an interest in the distribution of raw material which he developed while working
as a consultant around 1938 for the Soviet government’s laboratory of the Pywood
trust, and with the objective of maximizing equipment productivity under certain

1

Continuous

Optimisation

Discrete

ConstrainedUnconstrained

Integer
programming

Stochastic
programming

Linear
programming

Non Linearly
Constrained

Network
Programming

Non Linear
Equations

Non
Differentiable
Optimization

Global
Optimization

Figure 1: A few of the (many) optimization subfields and the connections among
those.

restrictions. Kantorovitch found that many (seemingly) different problems shared
a same mathematical form: distribution of equipement, best use of sowing area,
distribution of transport flows,... Kantorovitch gathered those findings together with
what would constitute the foundations of linear programming in his booklet The
Mathematical Method of Production Planning and Organization. Similar ideas were
developed around the time by Tjalling Koopmans and Georges Dantzig. The career
of Kantorovitch would then be devoted to those ideas and their generalizations.

In linear programming, both the function f and the set S are described by linear

2

combinations of the variables. The general form of a linear program is as follows

min

N∑
i=1

cixi

s.t.

N∑
j=1

aijxj ≤ bi, i ∈ I1

N∑
j=1

aijxj ≥ bi, i ∈ I2

N∑
j=1

aijxj = bi, i ∈ I3

xj ≥ 0, j ∈ V1

xj ≤ 0, j ∈ V2

Compactly, we can write the problem as

min cTx

s.t. aT
i x ≥ bi, i ∈ I1

aT
i x ≤ bi, i ∈ I2

aT
i x = bi, i ∈ I3

xj ≥ 0, j ∈ V1

xj ≤ 0, j ∈ V2

Linear optimization spans a wide range of applications including transportation,
air traffic control, movements of truck loads, telecommunication, manufacturing,
medicine, engineering,... Three particular applications are discussed below.

The transportation problem

In the transportation setting, a given product has to be shipped in distinct amounts
u1, u2, . . . , un from n service points to m destinations where it is needed in respective
amounts v1, v2, . . . , vm. If the cost of sending one unit of the given product from
source i to destination j is encoded as cij , the transportation problem consists in
estimating the quantities xij to be sent from the factories i to the destinations j
so that the total transportation cost is minimized. The problem can be represented
graphically by means of a complete graph Km,n with edge weights given by cij (see
Fig.2)

From the quantities that are shipped from i to j, the total cost reads as∑
i,j

cijxij

3

To express the constraints, let us note that for any fixed shipping point i, the total
quantity to be shpipped is given by ui so that∑

j

xij = ui, i = 1, . . . , n

Likewise, for any given destination j, the quantity that should be received by j is
given by vj . Hence ∑

i

xij = vj , j = 1, . . . ,m

Note that the two sets of equalities above necessarily imply

n∑
i=1

ui =

m∑
j=1

vj

It also seems natural to require the quantities shipped xij to be non negative, i.e. xij ≥
0 for every i, j. Altogether, the transportation problem can thus read mathematically
as

min
∑
ij

cijxij

s.t.
∑
j

xij = ui, i = 1, 2, . . .

∑
i

xij = vj , j = 1, 2, . . .

xij ≥ 0, for all i, j

The diet problem

Another instance of a linear problem is the diet problem. In the diet problem, we
have at our disposal the nutritional values as well as the prices of a number of prod-
ucts together with a chart indicating the daily requirements for each nutrient. The
objective then consists in determining a mix of the different products that could be
purchased so as to meet the nutritional requirements at a mimimal cost.

If we let xi to denote the amount of product i that should be purchased, and if ci is
used to denote the unit price for product i, the total cost of the combination is then
given by

n∑
i=1

cixi.

For each nutrient j, we must make sure that the requirement is met. For this, we
introduce the variables aij ; which encode the nutritional value (in the jth nutrient)

4

u4

u3

u2

u1

v5

v4

v3

v2

v1
c11

Figure 2: Graphical representation of the transportation problem. The cost associated
to the path from u1 to v1 is highlighted and indicated as c11

of product i; and bj the minimal requirement in the same nutrient. The nutritional
constraint then reads as

n∑
i=1

ajixi ≥ bj , for every j

As in the transportation problem, the amount in each nutrient is required to be non
negative xi ≥ 0. The final problem then reads as

min
∑
i

cixi

s.t.
∑
i

ajixi ≥ bj , for every j

xi ≥ 0, for every i

Portfolio optimization

As a last application, we consider the problem of determining, for a given portfolio,
which stocks and how many of those stocks one should sell to free a given amount C
of cash while maintaining maximum value of the portfolio. Let us use pi to denote
the current price of shares from company i and let us assume that the portfolio is
currently made of xi shares from company i that were purchased at an initial price of
qi. Let us first use fi to denote the expected future price of the shares from company
i. We assume that the owner of the portfolio pays a tax of 30% on every capital gained
by selling a share and that he/she pays an additional 1% as transaction cost (i.e we
assume that the owner uses an external broker). The question we want to answer is
then “which amount of what shares do we have to sell in order to free an amount C

5

of cash while keeping the highest possible value for the portfolio?”. Once again, one
can check that the problem just described can be expressed as a linear program

max

n∑
i=1

fi(si − xi)

s.t.

n∑
i=1

pixi −
30

100

n∑
i=1

(pi − qi)xi −
1

100

n∑
i=1

pixi ≥ C

0 ≤ xi ≤ si

The geometry of linear programming

Each inequality in linear programming represents a half-space. The feasible region
being given by the intersection of all those halfspaces ∩i

{
x | aT

i x ≤ bi
}
.

Such an intersection is known as a polytope (polygon in 2D and polyhedron in 3D).

Given a feasible point x ∈ Rn, a constraint aT
i x ≤ bi is called active (or binding) if

aT
i x = bi otherwise it is called inactive.

Let us consider the mathematical formulation of the Lipton problem (see recitation
1). The cost in this problem being linear, it has level curves that are straight lines
of equation x1 + 1.5x2 = c. When varying the value of c, we thus obtain parallel
lines. The question is then how big can we take c for a feasible pair (x1, x2)?. Since
all the pairs that achieve a profit of c are located along the line x1 + 1.5x2 = c, we
can move the line to maximize the value of c and study when the intersection of this
line with the feasible set remains non empty for increasing values of c (see Fig. 4 for
an illustration of this).

From the discussion above, it is not difficult to see that under the assumption that
the linear program has a solution, at least one of the optimal solutions will be located
at a vertex of the feasible set.

To clarify what we mean by a vertex, we start by recalling a few geometric notions.

Definition 1. Let x1,x2, . . . ,xk ∈ Rn and let λ1, . . . , λk ∈ R≥0 such that
∑k

i=1 λi =

1. The vector
∑k

i=1 λixi is called a convex combination of the x1, . . . ,xk. The set of
all convex combinations of x1, . . . ,xk is called convex hull of x1, . . . ,xk

Clearly every convex hull is a polytope. We can now proceed with a formal charac-
terization of vertices and extreme points.

Definition 2 (extreme point). x is an extreme point of the polytope P if it cannot
be written as a convex combination of two other points in P . I.e. there do not exist
y, z ∈ P and λ ∈ (0, 1) s.t. x = λy + (1− λ)z.

Unlike the more general extreme points, vertices are characterized by the existence of
at least one objective vector with respect to which no improvement can be achieved
without leaving the feasible set.

6

Figure 3: Illustration of the distinction between vertices that are also extreme points
(blue) and extreme points that are not vertices or exposed (red). The convex hull is
shown in green.

Definition 3 (vertex or exposed point). x is a vertex of the polytope P if there exists
a vector c such that cTx < cTy for all y ∈ P,y ̸= x

In a convex polytope defined by a finite intersection of half-spaces, all the extreme
points are also vertices. The two notions are illustrated in Fig. 3.

The connection between the optimal solution of a linear program and the extreme
points of its associated polytope can be summarized by the following theorem

Theorem 1. Given a bounded linear program whose feasible set contains at least one
extreme point, there is always an extreme point that is an optimal solution

Proof. Let V =
{
x ∈ Rn | Ax = b,x ≥ 0, cTx = v

}
. The set of feasible points with

minimal objective value v. The feasible set S contains no line since it contains one
extreme point. Similarly, the set V cannot contain any line either as V ⊆ S. As a
result, V must contain an extreme point. Let us denote this point as x∗.

From the above, we thus have x∗ ∈ V ⊆ S. Let us assume that x∗ is not an extreme
point of S. In this case, there must exist λ ∈ (0, 1) such that x∗ = λy+ (1− λ)z and
y, z ∈ S. Now take cTx∗ = λcTy + (1 − λ)cTz. Since x∗ is an extreme point of V ,
either y /∈ V or z /∈ V . As a result, at least one of y and z must have a value cTy
(resp. cTz) smaller than v which implies the contradiction

λcTy + (1− λ)cTz < v = cTx∗

Standard form

Linear programs admit several equivalent forms.

7

Definition 4. The standard form of a linear program is given by

min cTx, s.t. Ax = b, x ≥ 0

The main ingredients of every LP are thus

• an m× n matrix A with n > m

• a vector b ∈ Rm

• a vector c ∈ Rn

Any linear program can be transformed into the standard form through 3 three main
steps

(i) Variable without sign restriction. In this case, we introduce a decomposition into
a positive and a negative part x+ and x− so that x = x+ − x−, |x| = x+ + x−

and x+, x− ≥ 0. I.e. any variable xi not restricted in sign can be written as the
difference of two new variables that are both non negative.

(ii) Transforming inequalities into equalities. Very often, linear programs will be
formulated in terms of inequalities. I.e.

min cTx, s.t. Ax ≤ b, A′x = b′, x ≥ 0

First note that by multiplying an inequality by −1 we can always change the
direction of the inequality. To turn an inequality into an equality, we can rely
on the notion slack variable. I.e. for any constraint aTx ≤ b, we can introduce a
variable s as s = b−aTx and rewrite the constraint as ãT x̃ = b where ã = [a, 1],
x̃ = [x, s]. The number of slack variables in the standard form is equal to the
number of inequality constraints in the original formulation.

(iii) Finally, note that any maximization can always be turned into a minimization
by flipping the sign of the objective function

max f(x) = −min −f(x).

Example 1. Consider the following program

max 4x1 − 2x3

s.t. x1 + x2 + x3 = 2

x1 − 2x2 − x3 ≤ 1

x1 + x3 ≥ −2

x1, x2 ≥ 0

1. For the variables that are restricted in sign, x3 in this case, we introduce a
decomposition into positive and negative part,

x3 = x+
3 − x−

3 , x+
3 , x

−
3 ≥ 0

8

From this, the original problem turns into

max 4x1 − 2x3

x1 + x2 + x+
3 − x−

3 = 2

x1 − 2x2 − x+
3 + x−

3 ≤ 1

x1 + x+
3 − x−

3 ≥ −2

x1, x2, x
+
3 , x

−
3 ≥ 0

2. We now introduce non negative slack variables to turn the inequalities into equal-
ities. Starting with the first inequality, and adding a non negative correction to
the LHS, we get

x1 − 2x2 − x+
3 + x−

3 + x4 = 1, x4 ≥ 0

For the second one, a similar reasoning yields

x1 + x+
3 − x−

3 − x5 = −2, x5 ≥ 0

After this second step, our problem thus reads as

max 4x1 − 2x3

x1 + x2 + x+
3 − x−

3 = 2

x1 − 2x2 − x+
3 − x−

3 + x4 = 1

x1 + x+
3 − x−

3 − x5 = −2

x1, x2, x
+
3 , x

−
3 , x4, x5 ≥ 0

3. As our final step, we turn the maximization into a minimization which finally
gives

min 2x3 − 4x1

x1 + x2 + x+
3 − x−

3 = 2

x1 − 2x2 − x+
3 + x−

3 + x4 = 1

x1 + x+
3 − x−

3 − x5 = −2

x1, x2, x
+
3 , x

−
3 ,4 , x5 ≥ 0

Given a linear program, the following situations may arise:

1) There is no admissible solution

2) There can be no solution because the value of the objective decreases indefinitely
towards −∞ for feasible vectors

3) There can be a unique optimal solution (desirable situation)

4) The problem can have multiple (i.e. infinitely many) optimal solutions. In fact
for 2 optimal solutions x1, x2, any convex combination tx1 + (1− t)x2, t ∈ [0, 1] is
again an optimal solution.

9

2 4 6 8 10

5

10

15

20

x

y
6x+ 3y ≤ 45
4x+ y ≤ 18

2x ≤ y
y + 3 ∗ x = 16.5

Figure 4: Graphical solution of the linear program (3).

Graphical solution

As already mentioned above, each inequality in a linear program defines a half-
space. The feasible region being defined by the intersection of all those halfspaces
∩i

{
x|aT

i x ≤ bi
}
. Such an intersection defines the feasible set of all admissible solu-

tions (a polytope in this case).

The cost function cTx being also linear, it has level curves that are straight lines of
equation cTx = γ for some constant γ. When varying γ, we obtain parallel lines
(shown in orange in Fig. 4).

Solving a linear program is therefore equivalent to studying how large (resp. small)
one can take the constant γ while maintaining a non empty intersection between the
line cTx = γ and the feasible set. In the example of problem (3) and Fig. 4, this is
equivalent to increasing the value of γ all the way to 16.5 and hence moving the line
y+3x = γ along the positive y axis until there is no intersection between this line and
the polytope anymore (this last point corresponding in this case to the intersection
between the blue and red constraints)

max x2 + 3x1

s.t. 6x1 + 3x2 ≤ 45

4x1 + x2 ≤ 18

2x1 ≤ x2

(3)

10

A first naive algorithm

With Theorem 1, we saw that provided that the linear program had at least one
extreme point, one of the extreme points had to be optimal. From this, it thus seems
natural to design a first naive algorithm that would simply generate all the vertices
and then compare the objective values of those vertices. However, although it was
easily done in 2D, by looking at the feasible set, we still haven’t discussed how to
generate the vertices in arbitrary LPs

To extend our naive vertex search from 2D to an arbitrary number of dimensions, we
need the notion of Basic solution which we define next

Definition 5. Given the polytope P = {x | Ax ≥ b}, we call a vector x a basic
solution if the subspace spanned by the constraints that are tight at x is of dimension
n. I.e. span

{
ai | aT

i x = bi
}
= Rn

Consider the standard form of an LP, {x | Ax = b, x ≥ 0}. Note that we can always
write the equality constraints as {Ax ≥ b}∩{−Ax ≥ −b}∩{x ≥ 0}. Moreover, in this
case both the Ax ≥ b and −Ax ≥ −b are tight at any feasible x. As a result, the only
freedom we have (if we look for an optimal solution) is regarding our choice of the non
negativity constraints (that is to say, which of those do we want to be tight/binding).
In the sense of Definition 5, if we assume that the rows of A are linearly independent,
basic solutions can thus be generated by combining the rows ofA with n−m canonical
vectors ei such that the resulting subspace, span {ai}Ni=1 ∪ span {ej}j∈I = Rn, and

then solve the system resulting from the combination Ãx = b where Ã =

[
A
E

]
and

E is given by the set of canonical vectors ei such that Ã has linearly independent
rows. Now the row rank (number of linearly independent rows) and the column rank
(number of linearly independent columns) are equivalent. Basic solutions can then
be obtained equivalently by combining A with canonical vectors ei such that the
columns of the resulting matrix are independent (see below)

Ã =



a11 a12 . . . a1n
...

am1 am2 . . . amn

1 0 . . . 0
...
0 1 . . . 0


Now since the columns corresponding to the non zero entries in the canonical vectors
are independent by construction, we are left with requiring that the remaining m
columns of A are linearly independent.

Basic solutions can then be obtained by finding m linearly independent columns of
A (let’s say corresponding to the variables xi, i ∈ B), solving the system ABxB = b
and setting the remaining n−m variables (in [n] \ B) to zero (corresponding to the
canonical constraints eTi x = 0 associated to the last n-m rows of Ã)

Keep in mind that basic solutions are not required to be feasible. Those are sim-

11

ply required to “activate” some of the constraints. This subtlety is highlighted by
Example 2 below.

Example 2. Consider the following feasible set shown in Fig. 5.

x2 ≤ 10− x1

x2 ≥ 1− x1

x2 ≥ x1 − 1

x1 ≥ 0

x2 ≥ 0

(4)

The standard form of the problem is given by

x2 + x1 + x3 = 10

x2 + x1 − x4 = 1

x2 − x1 − x5 = 1

x1, x2, x3, x4, x5 ≥ 0

The rows of A are clearly independent in this case. If we set x2 and x3 to zero, we
get the system  1 0 0

1 −1 0
−1 0 −1

 x1

x4

x5

 =

 10
1
1


The columns of the matrix corresponding to this choice are again clearly linearly
independent. The associated basic solution is given by x1 = 10, x2 = 0 which is not
a feasible solution. Now if instead we had retained the columns of A corresponding
to x2, x4 and x5, and had set x1 and x3 to zero, the system would have turned into 1 0 0

1 −1 0
1 0 −1

 x2

x4

x5

 =

 10
1
1


which now gives x2 = 10, x1 = 0. This time we get a basic solution that belongs to
the polytope.

We call basic solutions that belong to the polytope Basic Feasible Solutions (BFS).

We can now summarize our naive algorithm (see Algorithm 1 below).

12

−1 1 2 3 4 5 6

2

4

6

8

10

x

y
x2 ≤ 10− x1

x2 ≥ 1− x1

x2 ≥ x1 − 1

Figure 5: Feasible set for the program (4).

Algorithm 1 : Naive Algorithm

1. Until there is no new vertex:

a. Pick any subset of m linearly independent columns of A

b. Label the indices of those columns as {i1, i2, . . . , im} = B and solve
ABxB = b where xB encodes the variables associated to the indices
in B.

c. Set the variables corresponding to the remaining indices inN = [n]\B
to zero

2. Select the vertex with the largest (or smallest) value cTx

The naive algorithm introduced above will work but it will clearly be slow as it needs
to visit every vertex of the feasible set. The situation is in fact worst than that. Since
the number of vertices is in general combinatorial in the number of variables and
constraints, the runtime of our naive algorithm will be exponential in the worst case.

How could we improve this runtime then?

Although it might not always be possible to improve the exponential runtime in the
worst case if we restrict ourselves to generating and comparing basic feasible solutions
(we will see later that this is in fact possible provided that we turn to a more advanced
method known as the Ellipsoid method), for some instances it might be possible to
visit the vertices in a more clever manner. In the next section we introduce a more
efficient procedure due to Dantzig (1963) which explores the candidate solutions by
jumping from vertex to vertex while making sure that the objective decreases at each
jump.

13

The Simplex Method

The Simplex algorithm starts at a particular extremal feasible vector x which we can
write as (xB ,0), xB ∈ Rm, 0 ∈ Rn−m, xB ≥ 0. From here on, I will use the notation
xB to denote the basic variables (i.e. the ones that are non zero) and correspondingly
xN to denote the non basic variables.

After defining an initial candidate solution, the algorithm iteratively sets one of the
components of xB to zero while moving one of the variables from the set of zero
variables to become positive. This step corresponds to moving from one extremal
point to another adjacent extremal point of the feasible set. The main idea of the
Simplex is to choose the next vertex so as to lower the cost as much as possible. we
also need to decide when to stop the exploration of the vertices.

Let A = [AB ,AN] where N gathers the columns associated to the indices of the
variables in xN . Under this decomposition, we can write our system as

ABxB = [AB ,AN]

[
xB

0

]
= b

Similarly the cost associated to the decomposition can be written as

cTx = [cB , cN]
T
x = cTBxB = cTBA

−1
B b

The basic idea of the simplex algorithm consists in selecting the entering variables
from xN so that the cost associated to the new feasible solution x = (xB ,xN) is
lower than the cost associated to the previous candidate solution. Note that we have

Ax = [AB , AN]

[
xB

xN

]
= ABxB +ANxN = b = ABxB

hence

xB = A−1
B (ABxB −ANxN)

= xB −A−1
B ANxN

and the cost of this new solution is then given by

[
cTB , c

T
N

] [xB −A−1
B ANxN

xN

]
= cTBxB + cTNxN − cTBA

−1
B ANxN

= cTBxB︸ ︷︷ ︸
previous cost

+
(
cTN − cTBA

−1
B AN

)
xN

As a result, if
(
cTN − cTBA

−1
B AN

)
xN is negative, the update will have lowered the

cost.

We call r = (cTN − cTBA
−1
B AN) the reduced cost vector. If none of the entries in

the reduced cost vector are negative (resp. positive), then there is no possibility to
further lower (resp. increase) the value of the objective.

14

As long as the reduced cost vector has some negative components, there is however a
chance that we can lower the cost provided that there is a corresponding feasible x.
Instead of looking for complex updates, the Simplex method considers updates of the
form xN = tv where v is a canonical vector having all but one non zero components
(in other words, we only change one component at a time, the so-called “entering
variable”). Since our objective is to lower the cost as much as possible, it makes sense
to start by taking the basis associated to the most negative component in r (This is
known as Dantzig’s pivot rule)

Following this idea, we will choose t so that rTxN = rT tv is as negative as possible
while maintaining x in the feasible set. To ensure feasibility of x, recall that we must
have

Ax = Ax = b

ABxB +ANxN = ABxB = b

as well as

xB = xB −A−1
B ANxN

= A−1
B b− tA−1

B ANv ≥ 0

Since all the other variables in xN will be zero, we are left with checking that the
variables in xB also remain non negative. The case t = 0 corresponds to the original
extreme feasible point.

We can therefore gradually increase the value of t until the first entry in xB becomes
negative. If increasing the value of t immediately leads to the introduction of a
negative variable in xN , the update can be done via one of the following alternatives:

• We either keep our original entering variable and we set the first variable that
becomes negative as our leaving variable (i.e. we set it to 0). In this case the cost
will not change.

• Or we switch to a new entering variable corresponding to the second largest com-
ponent in the reduced cost vector.

If on the contrary, there is a threshold t before which none of the variables vanish, we
set t to t, select as our entering variable the variable corresponding to the non zero
entry in v and as our leaving variable the first variable that vanishes for t = t. If no
matter how large t becomes, none of the variables are becoming negative, the problem
does not admit a solution (i.e the problem is unbounded). Similarly if rj ≥ 0 for all
j, the current vertex x is optimal. Instead of screening all the candidate entering
variables with the risk of not being able to grow the value of t at all, since xB can
read as

xB = A−1
B b− tA−1

B ANv (5)

We study the ratios

A−1
B b

A−1
B ANej

(6)

15

(including 0 numerators with positive denominators) and select as the leaving vari-
ables the variables corresponding to the smallest ratio. Once the leaving variable has
been selected, we can thus set the value of this variable to

0 =
(
A−1

B b− tA−1
B ANv

)
j

provided that j corresponds to the smallest ratio. The value of the entering variable
is set to t.

Before going further, we illustrate the simplex method on a few simple examples

Example 3. We consider the problem

min 2x1 + x2 + 7x3 + x4

s.t. x1 + x3 + 2x4 = 4

x2 + x3 − x4 = 3

xi ≥ 0

Let us start by writing the problem in standard form. we have

A =

(
1 0 1 2
0 1 1 −1

)
, b =

(
4
3

)
, c = (2, 1, 7, 1)

1. Initialization. We choose for example AB =

(
1 0
0 1

)
, AN =

(
1 2
1 −1

)
Hence cB = (2, 1), cN = (7, 1). From this, inverting the system ABx = b we
obtain xB = (4, 3). Checking the cost vector, we have cTx = 11. We now
compute the vector of reduced cost

r = cTN − cTBA
−1
B bsAN

= (7, 1)− (2, 1)

(
1 0
0 1

)−1 (
1 2
1 −1

)
= (4, 2)

Since we have at least one negative entry in r (corresponding to x4 in this case),
we can proceed with the simplex iterations.

2. Entering variables. In this case, the most (and actually the only) negative
entry in r corresponds to the variable x4. So we choose this variable as our
entering variable. Choosing x4 as our entering variable, we have

A−1
B b− tA−1

B ANv =

(
4
3

)
− t

(
1 2
1 −1

)
v, taking v = e4

=

(
4
3

)
− t

(
2
−1

)
=

(
4− 2t
3 + t

)
From this, the first variable to exit the basis for t > 0 will thus be x1 and the
new system following from the swap is then given by

A′
B =

(
0 2
1 −1

)
︸ ︷︷ ︸

Basic variables x2, x4

, b′ =

(
4
3

)
, c′B = (1, 1) , c′N = (2, 7)

16

A′
N =

(
1 1
0 1

)
︸ ︷︷ ︸

Non-Basic variables x1, x3

Calculating the residual cost vector, we get

r = c′N − c′B (A′
B)

−1
A′

N

=

(
1
7

)
− (1, 1)

(
1/2 1
1/2 0

)(
1 1
0 1

)
=

(
2
7

)
− (1, 1)

(
1/2 3/2
1/2 1/2

)
=

(
2
7

)
−

(
1
2

)
> 0

Since all the components of r have now become non negative, we can take the
vector (0, 5, 0, 2) (in this case we can push x4 up to 2). Recall that the simplex
iterates are given by (xB − A−1

B ANxN ,xN), taking xN = tv, we get (xB −
tA−1

B ANv, tv). The corresponding cost is then given by

cTx = (2, 1, 7, 1)T


0
5
0
2

 = 7

So far we have covered the ideal situation in which a solution exists and the simplex
algorithm is able to return it. When running the simplex though, several situations
can occur:

• Unboundedness

• Multiple solutions

• Degeneracy

• Infeasibility

We discuss some of those issues in more details below.

Unboundedness

A first situation that can occur is when whatever the value of t, we always keep a
feasible solution. As an example, consider the problem

max x1

s.t. x1 − x2 ≤ 1

− x1 − x2 ≤ 2

x1, x2 ≥ 0

(7)

17

−1 1 2 3 4

2

4

6

x

y −x1 + x2 ≤ 2
x1 − x2 ≥ 1

Figure 6: Feasible set for the program (7).

whose feasible set is illustrated in Fig. 6 below.

As usual, we first turn the problem into standard form by introducing the auxilliary
slack variables x3, x4 as

x1 − x2 + x3 = 1

−x1 + x2 + x4 = 2

and turning the max into a min. From this, we can define

A =

(
1 −1 1 0
−1 1 0 1

)
, AB =

x3 x4()
1 0
0 1

, AN =

x1 x2()
1 −1
−1 1

We also have c = (1, 0, 0, 0), cB = (0, 0), cN = (−1, 0). We compute the vector of
reduced costs as

r = cN − cBA
−1
B AN

= (−1, 0)− (0, 0)

We can thus take x1 as our entering variable. From this, setting v = e1, we get

x′
B = A−1

B b− tA−1
B ANe1

=

(
1
1

)
− t

(
1 −1
−1 1

)
e1 =

(
1
2

)
−
(

t
−t

)
The first variable to leave will therefore be x3 for t = 1. Our next iteration will be

AB =

x1 x4()
1 0
−1 1

, AN =

x2 x3()
−1 1
1 0

, b =

(
1
2

)

18

cB = (1, 0) , cN = (0, 0)

The corresponding reduced cost vector is then given by

r = cN − cBA
−1
B AN

Noting that A−1
B =

(
1 0
1 1

)
we can express this vector as

r = (0, 0)− (−1, 0)

(
1 0
1 1

)(
−1 1
1 0

)
= (0, 0)− (−1, 0)

(
−1 1
0 1

)
= (0, 0)−

(
1
−1

)
= (−1, 1)

It thus seems natural to choose x2 as our entering variable. Now let us look at the
result of such a choice. We have

x′
B = A−1

B b− tA−1
B ANe3

=

(
1 0
1 1

)(
1
2

)
− t

(
1 0
1 1

)(
−1 1
1 0

)(
1
0

)
=

(
1
3

)
− t

(
−1 1
0 1

)(
1
0

)
=

(
1
3

)
− t

(
−1
0

)
We see that we can take t arbitrarily large without violating any of the positivity
constraints.

Degeneracy

Another situation that might occur with the simplex is degeneracy. As an illustration
of this situation, consider the following example:

Example 4.

min x1 + 2x2 + x3

s.t. x1 + x2 + 2x3 = 3
−x1 + x2 + 3x3 = 2
3x2 + 6x3 = 4
2x3 + x4 = 1
x1, x2, x3, x4 ≥ 0

In this case, we have

A =


1 0
2 1
0 1
1 −1

 , b =

(
0
2

)
, c = (3, 1, 8, 1)

19

Let us initialize the simplex with AB =

(
1 0
0 1

)
(which again simplifies the calcu-

lation of the inverse A−1
B). From this, we thus have

AB =

x1 x2()
1 0
0 1

,

x3 x4()
2 1
1 −1

together with cB = (3, 1) and cN = (8, 1). We start by computing the reduced cost
vector

r = cN − cBA
−1
B AN = (8, 1)− (3, 1)

(
2 1
1 −1

)
= (8, 1)− (7, 2)

= (1,−1)

From this reduced cost vector, we see that since at least one of the residual costs is
negative, there is a chance we might be able to further reduce the cost. Choosing x4

as our next entering variable, we get

A−1
B b− tA−1

B ANv = b− tANv (8)

=

(
0
2

)
− t

(
2 1
1 −1

)(
0
1

)
(9)

=

(
0
2

)
− t

(
1
−1

)
(10)

The leaving variable in this case will be x1. For such a choice, a rapid analysis of (10)
shows that as soon as t becomes positive, x1 takes a negative value. This in particular
means that we won’t be able to make any progress with respect to the value of the
objective. Nonetheless, if the stopping of our algorithm is based on the absence of
negative residual costs, it will proceed and remove x1 from the basis (although it does
not improve the objective). From this, we get the decomposition

AB =

x2 x4()
0 1
1 −1

,

x1 x3()
1 2
0 1

together with c = (3, 1, 8, 1) and cB = (1, 1), cN = (3, 8). we get the new reduced cost
vector as

A−1
B =

(
1 1
1 0

)
, r = cN − cBA

−1
B AN

= (3, 8)− (1, 1) (1, 1)

(
1 1
1 0

)(
1 2
0 1

)
= (3, 8)− (1, 1)

(
1 2
1 2

)
= (3, 8)− (2, 4) ≥ 0

The simplex algorithm is guaranteed to terminate in a finite number of iterations
provided that there are no degenerate solutions. In the presence of degenerate solu-
tions, the algorithm has to be modified to guarantee its termination in a finite number
of iterations.

20

Simplex tableaux

A classical and efficient way to implement the simplex method is by means of simplex
tableaux. Consider the problem

min 4x1 + 6x2

s.t. − x1 + x2 ≤ 11

x1 + x2 ≤ 27

2x1 + 5x2 ≤ 90

introducing slack variables s1, s2, s3, we can write the problem in standard form as

min −4x1 −6x2

s.t. −x1 +x2 +s1 = 11
x1 +x2 +s2 = 27
x1 +x2 +s3 = 90

The corresponding simplex tableau then reads as

x1 x2 s1 s2 s3 b
-1 1 1 0 0 11
1 1 0 1 0 27
1 1 0 0 1 90
-4 -6 0 0 0 0

In this case x1 and x2 are the non basic variables. As we start by choosing x1 and
x2 as our non basic variables, the values of those variables are set to 0 and the values
of the slack variables are thus given as s1 = 11, s2 = 27 and s3 = 90. As a result we
have x1 = 0, x2 = 0, s1 = 11, s2 = 27, s3 = 90. The entry in the lower right corner of
the tableau corresponds to the value of the obejctive.

To perform optimality check for a solution represented by a simplex tableau, it suffices
to look at the entries in the bottom row. If any of those entries are negative, the
solution is not optimal.

To improve the solution, we choose x2 as our entering variable as this is the variable
that has the most negative entry in the last row

x1 x2 s1 s2 s3 b
-1 1 1 0 0 11
1 1 0 1 0 27
1 1 0 0 1 90

-4 -6 0 0 0 0

To determine the index of the leaving variable, we locate the entries that are positive
in the column of the entering variable and we form the ratios given by the entries of

21

the last column and the entries of the column corresponding to the entering variable.
I.e

x1 x2 s1 s2 s3 b
-1 1 1 0 0 11
1 1 0 1 0 27
1 1 0 0 1 90

-4 -6 0 0 0 0

In this case the ratios are given by 11/1, 27/1 and 90/5 = 18. The basic variables are
given by the slack variables s1, s2 and s3 and the matrix AB = I so that A−1

B = I.
As pointed out in (5), (6), the first variable xBi

to leave the basis corresponds to the
first entry that becomes negative in the vector

A−1
B b− tA−1

B ANei

when increasing the value of t. Concretely this variable is thus given by the smallest
of the ratios (6) (In the case of a simplex tableau, since the operations on the tableau
always maintain AB = I this corresponds to taking the variable corresponding to the
smallest entry in the vector given by the entrywise ratio of the last column (b) to
the column of the entering variable ANei). Applying this idea to the above tableau,
we choose s1 as our departing variable. To apply the change, we simply implement
one step of Gauss-Jordan elimination to turn the column of the entering variable (x2

in our example) into the canonical vector. Note that in order to keep the canonical
columns for s2 and s3, we are restricted to operations involving the row (the first one
in this case) that has zero entries in the columns associated to those variables. In the
illustration that we make of this step, we highlight the column of the leaving (resp.
entering) variable in red (resp. green). The Gauss-Jordan operations on the rows are
indicated on the side of the tableau.

x1 x2 s1 s2 s3 b
-1 1 1 0 0 11
1 1 0 1 0 27
1 1 0 0 1 90
-4 -6 0 0 0 0

⇒

x1 x2 s1 s2 s3 b
-1 1 1 1 0 11
2 0 -1 1 0 16 R2 - R1
7 0 -5 0 1 35 R3 - 5R1
-10 0 6 0 0 66 R4 + 6R1

Since the last row (i.e. corresponding to the vector of reduced costs) still contains a
negative entry, the iterations will continue with x1 as the next leaving variable.

Initialization and the last row

The last row of the simplex should always be initialized with an empty space for the
cost value (using a zero can be misleading as we explain next). The absence of a value
simply indicates that we haven’t computed the value of the cost yet.

Example 5. Consider the following problem

22

min x1 +2x3

s.t. x1 +x2 +x3 = 2
2x1 +3x2 +x4 = 1

(11)

The original tableau for this problem is given by

x1 x2 x3 x4 b
1 1 1 0 2
2 3 0 1 1
1 0 2 0

(12)

In this original tableau, the last row indicates the original cost function and the empty
space that appears on the right (this space is sometimes filled with a zero) simply means
that we haven’t added anything yet to this cost function to write it as a constant.

At each iteration of the simplex, the tableau highligths a subset of the variables that
take non zero values (the basis) and another subset of the variables that are set to zero.
At each of those iterations, the operations we apply to the last row are equivalent to
removing the basic variables from the expression of the objective (or substituting the
expression of those variables as functions of the non basic variables obtained from the
equality constraints) in order to reduce the objective to a simple constant + terms
that are multiplying vanishing variables. Consider problem (11). In the setting of this
problem, in order to “get rid” of the “2” that appears under the variable x3 in the
objective, we use the row associated to this variable (i.e the pivot row) and combine
the last row with −2 times this first row which gives

x1 + 2x3

−2 (x1 + x2 + x3)
= −x1 − 2x1 − 2x2

= −x1 − 2x2

(13)

The corresponding tableau is given by

x1 x2 x3 x4 b
1 1 1 0 2
2 3 0 1 1
−1 −2 0 0 −4

(14)

When applying this operation to the tableau, we in fact combine a corresponding linear
combination of the equality constraints to the objective function. I.e. the mathematical
operation corresponding to the execution of the simplex update is actually given by

x1 + 2x3 the original objective
−2 (x1 + x2 + x3 − 2) the constraint x1 + x2 + x3 − 2 = 0
= −x1 − 2x2 + 4

(15)

23

Moreover, since we have eliminated all the basic variables from the objective and since
all the non basic variables are zero, the constant term that appears in this objective
(the “4” in this case) is the value of this objective at the current vertex/simplex iterate.

Adding a linear combination of the (equality) constraints to the original objective
obviously does not change the value of this objective (provided that we stay inside
the feasible set) and we can thus always perform such an operation. However, when
combining the rows in the tableau, we leave aside the constants in the equations (i.e.
the right-hand sides) (compare (13) to (15)) and we must therefore keep track of those
right-hand sides. By performing the same operations on the right-hand sides as those
that we apply on the rows, i.e.

x1 + 2x3

−2(x1 + x2 + x3) = −2(2)
= −x1 − 2x2 = −4

(16)

one can see that the value we get is not the value of the objective but the opposite of
this value (we simply move the constant on the other side of the equality). From now
on, this value should therefore be kept in the tableau as we have modified the objective
by adding to it a non zero expression.

Artificial variables

In order to start the simplex, we need to find an initial basic feasible solution. Some-
times this is straightforward, for example when we have constraints of the form
Ax ≤ b with b ≥ 0. In this case we can introduce the usual slack variables and
rewrite the constraints as Ax+s = b and because b ≥ 0, the vector defined by x = 0,
s = b is a basic feasible solution by definition. In general though, finding a basic
feasible solution might not always be that easy. What we can always do is multiply
the RHS by ±1 in order to obtain non negative bi. We can then introduce a vector
y ∈ Rm of “artificial” variables and consider the problem

min y1 + y2 + . . .+ ym (17)

s.t.Ax+ y = b (18)

x ≥ 0 (19)

y ≥ 0 (20)

For this auxiliary problem, initialization is easy since we can just take x = 0 and
y = b. Note that for any feasible x, the choice y = 0 gives a feasible solution to the
auxiliary problem. Moreover, since all the variables in y are non negative, and since
the objective is given by y1 + y2 + . . .+ ym, if the objective of the auxilliary problem
is different from 0, this means that this auxilliary problem does not have a solution of
the form [x,0] and hence that the original problem does not have a feasible solution.

We can thus apply the simplex to the auxiliary problem and this will tell us if the
original problem is feasible or not. The auxiliary problem however only provides
a partial answer to our original question as the final tableau will not necessarily
terminate with a basic feasible solution of the original problem.

24

If the Simplex on the auxilliary problem terminates with a basis corresponding to
the original variables, we can just drop the columns corresponding to the auxiliary
variables. If it is not the case (meaning we have a degenerate basic feasible solution),
and some of the auxiliary variables are in the basis (although with zero value), since
the auxilliary variables must be zero at the optimum, let AB(1), . . . , AB(k) denote
the columns of A that belongs to the basis and such that xB(1), . . . xB(k) are non
zero. Since at least one of the artificial variables with value 0 is in the basis, there
must be a total of k < m non zero basic variables. If we assume that the matrix
A has rank m, one can choose an additional m − k columns from A to obtain a set
of linearly independent columns. In other words, we replace the columns associated
to the artificial variables by columns associated to the original variables xi. The
procedure is known as “driving the artificial variables out of the basis”.

To find a non artificial variable to add to the basis, if the artificial variable is the
ℓth variable in the basis (i.e. whose column corresponds to the ℓth canonical basis
vector), then we choose a column B−1Aj in the tableau corresponding to a non basic
variable whose ℓth entry is non zero. Since the ℓth basic variable is zero (i.e. the RHS
entry corresponding to the ℓth row is zero), using this row to bring the new variable
into the basis (and remove the zero artificial variable) will not affect the values of
the other basic variables. Neither will it affect the value of the objective. Since the
objective does not change and since an objective of value 0 is known to be optimal,
the change of basis will only replace a non negative reduced cost vector by another
non negative reduced cost vector. In other words, swapping columns (whenever the
entry corresponding to the original artificial variable is non zero) will not change the
nature of the solution and we can thus always do this.

If instead we cannot find a column with a non zero ℓth entry among the original
variables (meaning all the entries corresponding to the original variables in the row
are zero) then it means that by applying operations on the rows of A we were able
to reduce one of the rows of this matrix to zero. This in turns means that this row
can be written as a linear combination of the other rows (it is thus linearly dependent
on the other rows) and we can thus remove this row from A without modifying the
problem.

This last situation is illustrated in the example below

Example 6. We consider the following problem which is taken from [3]

min x1 +x2 +x3

s.t. x1 +2x2 +3x3 = 3
−x1 +2x2 +6x3 = 2

4x2 +9x3 = 5
3x3 +x4 = 1

x1, x2, x3, x4 ≥ 0

(21)

To find a feasible solution, we form the following auxilliary problem

25

min x5 +x6 +x7 +x8

s.t. x1 +2x2 +3x3 +x5 = 3
−x1 +2x2 +6x3 +x6 = 2

+4x2 +9x3 +x7 = 5
+3x3 +x4 +x8 = 1

x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0

(22)

A first basic feasible solution can now be obtained as (x1, x2, . . . , x4) = 0 and taking
(x5, x6, x7, x8) = b = (3, 2, 5, 1). After updating the reduced cost vector, we get the
tableau

x1 x2 x3 x4 x5 x6 x7 x8

1 2 3 0 1 0 0 0 3 x5

−1 2 6 0 0 1 0 0 2 x6

0 4 9 0 0 0 1 0 5 x7

0 0 3 1 0 0 0 1 1 x8

0 −8 −21 −1 0 0 0 0 −11

(23)

Having x8 exit and x4 enter the basis (although not optimal in terms of the reduced
cost, this can rapidly be done to reduce the cost since x4 already has a canonical
column) gives

x1 x2 x3 x4 x5 x6 x7 x8

1 2 3 0 1 0 0 0 3 x5

−1 2 6 0 0 1 0 0 2 x6

0 4 9 0 0 0 1 0 5 x7

0 0 3 1 0 0 0 1 1 x4

0 −8 −18 0 0 0 0 1 −10

(24)

We now bring x3 into the basis and have x4 exit the basis

x1 x2 x3 x4 x5 x6 x7 x8

1 2 0 −1 1 0 0 −1 2 x5

−1 2 0 −2 0 1 0 −2 0 x6

0 4 0 −3 0 0 1 −3 2 x7

0 0 1 1/3 0 0 0 1/3 1/3 x3

0 −8 0 6 0 0 0 7 −4

(25)

Next we bring x2 into the basis and let x6 exit the next tableau is then given by

x1 x2 x3 x4 x5 x6 x7 x8

2 0 0 1 1 −1 0 1 2 x5

−1/2 1 0 −1 0 1/2 0 −1 0 x2

2 0 0 1 0 −2 1 1 2 x7

0 0 1 1/3 0 0 0 1/3 1/3 x3

−4 0 0 −2 0 4 0 −1 −4

(26)

26

Finally we let x1 enter the basis and x5 leave, which gives the tableau

x1 x2 x3 x4 x5 x6 x7 x8

1 0 0 1/2 1/2 −1/2 0 1/2 1 x1

0 1 0 −3/4 1/4 1/4 0 −3/4 1/2 x2

0 0 0 0 −1 −1 1 0 0 x7

0 0 1 1/3 0 0 0 1/3 1/3 x3

0 0 0 0 2 2 0 1 0

(27)

From this tableau, one can see that the objective drops to 0 which means we have a
feasible solution to the auxiliary problem. However, the auxiliary variable x7 is still
in the basis (in this case x7 is the third variable in the basis) and all the entries
corresponding to the original variables are now zero in the third row which means
this row can be written as a linear combination of the other rows (i.e. by applying
operations on the rows of A we were able to reduce this row to zero). We can thus
delete this row from the matrix A in this case. This leaves the following reduced
tableau.

x1 x2 x3 x4

1 0 0 1/2 1
0 1 0 −3/4 1/2
0 0 1 1/3 1/3

(28)

From this, we can now compute te reduced cost and then start the Simplex.

Following [3], we summarize our conclusion from example 6 below.

27

Two-phase Simplex:

Phase I

1. By multiplying some of the constraints by −1, change the problem so that
b ≥ 0

2. Introduce artificial variables y1, . . . , ym (if needed) and apply the simplex
method to the auxiliary problem with cost

∑m
i=1 yi

3. If the optimal cost in the auxiliary problem is positive, the original problem
is infeasible and the algorithm terminates

4. If the optimal cost in the auxiliary problem is zero, a feasible solution to
the auxiliary problem has been found

If no artificial variable is in the final basis, the artificial variables and the corre-
sponding columns can be eliminated and a feasible basis for the original problem
can be derived

5. If the ℓth basic variable is an artificial one, examine the ℓth entry of the
columns of the tableau. if all the entries are zero then the ℓth constraint
represent a redundant constraint and can be eliminated. Otherwise, if the
ℓth entry of the jth column is non zero, apply a change of basis and repeat
until all artificial variables are out of the basis.

Phase II

1. Let the final basis and tableau obtained from Phase I be the initial basis
and tableau obtained for Phase II

2. Compute the reduced cost of all variables for this initial basis

3. Apply the simplex method to the original problem.

The “big M” method

Instead of using the auxiliary problem as an initialization step for the simplex, one
can also incorporate that step directly into the simplex iterations. The result is known
as the “big M” method.

The idea of the “big M” method is to introduce an objective of the form

n∑
j=1

cjxj +M

m∑
i=1

yi

28

where the yi are the artificial variables which were introduced above. For a sufficiently
large value of M , in the minimization setting, we can expect the variables yi to be
driven towards zero. In particular, there is no reason to fix the value of M and we
can just leave it as an arbitrary constant and then implement the simplex on that
constant.

Consider the following example

Example 7. We consider the problem

min x1 +2x2 +x3

s.t. x1 +x2 +x3 = 2
−x1 +x2 +2x3 = 3

4x2 +6x3 = 5
2x3 +x4 = 1

x1, x2, x3, x4 ≥ 0

(29)

Adding artificial variables and using the “big-M” method, the problem turns into

min x1 +2x2 +x3 +Mx5 +Mx6 +Mx7

s.t. x1 +x2 +x3 +x5 = 2
−x1 +x2 +2x3 +x6 = 3

4x2 +6x3 +x7 = 5
2x3 +x4 = 1

x1, x2, x3, x4 x5 x6 x7 ≥ 0

(30)

In this instance, we omit the artificial variable x8 as x4 only appears in the last row
and has a multiplicative coefficient of 1. The initial tableau is given by

x1 x2 x3 x4 x5 x6 x7

1 1 2 0 1 0 0 2
−1 1 2 0 0 1 0 3
4 6 0 0 0 0 1 5
0 0 2 1 0 0 0 1
1 2 3 0 M M M

(31)

Using the basic operations on the rows in order to set the reduced costs associated to
the basic variables to zero we get the tableau

x1 x2 x3 x4 x5 x6 x7

1 1 2 0 1 0 0 2
−1 1 2 0 0 1 0 3
4 6 0 0 0 0 1 5
0 0 2 1 0 0 0 1

1− 4M 2− 8M 3− 4M 0 0 0 0 −10M

(32)

29

For a sufficiently large value of M , we see that the first 3 non zero entries of the
reduced cost vector will be negative. Starting with the most negative entry (x2 in
this case) as the entering variable, we can look at the ratios (2, 3, 5/6) given by the
RHS over the second column. The smallest ratio in this case being given by 5/6, we
therefore take x7 as the leaving variable.

We continue like this until we are left with a reduced cost vector that does not contain
any negative entry for a sufficiently large M . In the last tableau all the artificial vari-
able must have been driven outside the basis as any optimal solution to problem (30)
for sufficiently large M must necessarily be of the form (x∗

1, x
∗
2, x

∗
3, x

∗
4, 0, . . . , 0).

References

[1] Pablo Pedregal, Introduction to optimization, volume 46, Springer 2004.

[2] Jǐŕı Matoušek, Bernd Gärtner, Understanding and using linear programming, vol-
ume 33, Springer 2007.

[3] Dimitris Bertsimas, John Tsitsiklis, Introduction to linear optimization, (Vol. 6,
pp. 479-530), Belmont, MA: Athena Scientific, (1997)

30

