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Duality

Consider the linear program

max 2x1 + 3x2

s.t. 4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

x1, x2 ≥ 0

(1)

Without computing the optimum, we can infer from the first inequality and from the
non negativity constraints that the objective is not larger than 12. I.e.

∀ x1, x2 ≥ 0, (2x1 + 3x2) ≤ 4x1 + 8x2 ≤ 12 (2)

We can in fact obtain a better upper bound if we divide the first inequality by two.
I.e.

2x1 + 3x2 ≤
1

2
(4x1 + 8x2) ≤

12

2

An even better bound can be derived if we add the first two inequalities and divide
by 3. I.e.

2x1 + 3x2 ≤
1

3
[(4x1 + 8x2) + (2x1 + x2)] ≤

1

3
15 = 5 (3)

From this, we in particular see that the objective cannot be larger than 5.

How good an upper bound can we get in this way? If we look at what we have just
done, the idea we followed was that we tried to derive an inequality of the form

d1x1 + d2x2 ≤ h (4)
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where d1 ≥ 2, d2 ≥ 3 and h is as small as possible (so as to generate a bound that is
as precise as possible on the objective). For such choices of d1 and d2, we then have

2x1 + 3x2 ≤ d1x1 + d2x2 ≤ h (5)

Let us try to formalize what we have learned and let us look for the best combination of
our constraints so that our upper bound on the objective is minimized (i.e. as accurate
as possible). For any non negative y1, y2 and y3, we can combine the constraints and
generate the additional inequality

y1 (4x1 + 8x2) + y2 (2x1 + x2) + y3 (3x1 + 2x2) ≤ 12y1 + 3y2 + 4y3 (6)

Or equivalently,

(4y1 + 2y2 + 3y3)x1 + (8y1 + y2 + 2y3)x2 ≤ 12y1 + 3y2 + 4y3 (7)

In particular, to obtain an upper bound on the objective, we need to choose y1, y2, y3
such that

4y1 + 2y2 + 3y3 ≥ 2 (8)

8y1 + y2 + 2y3 ≥ 3 (9)

Provided that our values of y1, y2, y3 satisfy the constraints (8) and (9), we can then
pick the values y1, y2, y3 that minimize the weighted combination 12y1+3y2+4y3 so as
to get the best upper bound on the objective of our original problem. Mathematically,
we can write this problem as

min 12y1 + 3y2 + 4y3

s.t. 4y1 + 2y2 + 3y3 ≥ 2

8y1 + y2 + 2y3 ≥ 3

y1, y2, y3 ≥ 0

(10)

The resulting problem (10) is known as the dual of our original LP. As we saw, the
dual provides an upper bound on the value of our original linear program. In this
case, we can check that the solution of the dual problem is given by y =

(
5
16 , 0,

1
4

)
with an objective value given by 4.75. One can also check that this is also the optimal
value of the primal LP (1)

Let us summarize our discoveries. For a linear program of the form

max cTx s.t. Ax ≤ b, and x ≥ 0 (11)

we can define the dual program as

min bTy

s.t. ATy ≥ c, y ≥ 0
(12)

The following propositions known as weak and strong duality theorems characterize
the relation between the primal and dual formulations (11)- (12).
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Primal linear program Dual linear program
Variables x1, x2, . . . , xn y1, y2, . . . , ym

Constraint matrix A AT

Right-hand side b c
Objective max cTx min bTy

Constraint direction ith constraint ≤ 0 yi ≥ 0
and variable sign ith constraint ≥ 0 yi ≤ 0

ith constraint = 0 yi ∈ R
xj ≥ 0 jth constraint ≥ 0
xj ≤ 0 jth constraint ≤ 0
xj = 0 jth constraint = 0

Proposition 1 (Weak Duality). For each feasible solution y of the dual linear pro-
gram (12), the dual value bTy provides an upper bound on the maximum of the ob-
jective function of the linear program (11), In other words, for each feasible solution
x of (11), and each feasible solution y of (12), we have

cTx ≤ bTy (13)

In particular, if (11) is unbounded, (12) has to be infeasible and if (12) is unbounded
(from below) then (11) is infeasible.

Proposition 2 (Strong Duality). For the linear programs

max cTx s.t. Ax ≤ b, and x ≥ 0 (14)

and

min bTy s.t. ATy ≥ c, and y ≥ 0 (15)

Exactly one of the following possibilities occurs

1. Neither (14) nor (15) has a feasible solution

2. (14) is unbounded and (15) has no feasible solution

3. (14) has no feasible solution and (15) is unbounded

4. Both (14) and (15) have a feasible solution. Then both have an optimal solution,
and if x∗ is an optimal solution of (14) and y∗ is an optimal solution of (15)
then

cTx∗ = bTy∗ (16)

that is the maximum of (14) equals the minimum of (15)

Solving a linear program usually provides more information than the mere optimal
value of the decision variables. To an optimal solution we can associate “shadow
prices” which give an indication on how much profit a company can gain, when one
of the constraints can be relaxed. We discuss this idea in more detail in the next
section
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Shadow prices

The shadow price associated to a particular constraint represents the change in the
value of the objective function per unit increase in the right-hand side of this con-
straint.

As an example, let us consider the problem of maximmizing the profit of a bike manu-
facturer. We will assume that the company assembles two models: model 1 and model
2 on two separate assembly lines. Moreover, we will assume that the company operates
a painting line, which is used for both bike models, as well as a wheel production line.
The LP formulation of the problem reads as follows

max 2.9x1 + 2.6x2 (profit in 1000 e)
s.t. 4.2x1 ≤ 100 (capacity of bike 1 assembly line)

5.7x2 ≤ 100 (capacity of bike 2 assembly line)
3.8x1 + 2.9x2 ≤ 100 (painting line maximum capacity)
3.1x1 + 5.8x2 ≤ 100 (wheel production line max capacity)
x1, x2 ≥ 0 (non negative production)

(17)

The optimal solution of this problem (you can check it with GLPK) is given by

x∗
1 = 22.22

x∗
2 = 5.36

(18)

Now let us assume that instead of owning the facilities and maximizing its profit, the
company has to rent those facilities. How much rent should the company typically
pay?

Obviously, prices at which the company should rent the facilities should always be non
negative, yj ≥ 0. Moreover, since the assembly lines each have a total capacity of 100
hours, let us write the total rent (for the four lines) as

r = 100y1 + 100y2 + 100y3 + 100y4 (19)

Clearly, the money we get for renting the assembly lines should always at least match
the money we make by producing and selling our bikes through the facilities. If we
let x∗

1 and x∗
2 to denote the maximum numbers of bikes that we can produce with the

business, according to the primal, the maximal profit we can generate with those bikes
is given by

2.9x∗
1 + 2.6x∗

2 (20)

Now if we rent our assembly lines at a respective cost per hour of y1, y2, y3 and y4,
we must therefore have (still according to the primal)

4.2x∗
1y1 + 3.8x∗

1y3 + 3.1x∗
1y4 ≥ 2.9x∗

1 (21)

I.e. the amount of money we get for the equivalent production time of bike 1 should
be bigger than the profit we make by actually producing and selling this bike. And
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similarly for the second bike

5.7x∗
2y2 + 2.9x∗

2y3 + 5.8x∗
2y4 ≥ 2.6x∗

2 (22)

Assuming that x∗
1 and x∗

2 do not vanish, we can thus write the renting problem as

min 100y1 + 100y2 + 100y3 + 100y4
s.t. 4.2y1 + 3.8y3 + 3.1y4 ≥ 2.9

5.7y2 + 2.9y3 + 5.8y4 ≥ 2.6
y1, y2, y3, y4 ≥ 0

(23)

Note that had we decided to combine the two constraints and to request a rent satisfying
the constraint

(4.2y1 + 3.8y3 + 3.1y4)x
∗
1 + (5.7y2 + 2.9y3 + 5.8y4)x

∗
2 ≥ 2.9x∗

1 + 2.6x∗
2 (24)

it would not have been possible to get rid of the unknowns x∗
1 and x∗

2.

So the dual can be used to derive a reasonable rent on the facilities. How about the
shadow prices then?

If we go back to the primal problem, we could wonder how much a relaxation regarding
the firm production constraints could increase the firm’s profit.

In other words, if we for example relax the maximum capacity of the painting line by
one hour, we get the problem

max 2.9x1 + 2.6x2

s.t. 4.2x1 ≤ 100
5.7x2 ≤ 100
3.8x1 + 2.9x2 ≤ 101
3.1x1 + 5.8x2 ≤ 100
x1, x2 ≥ 0

(25)

the solution in this case turns into

x1 = 22.67

x2 = 5.1264

and the profit is increased as

π = 2.9(22.67) + 2.6(5.1264) (26)

The gain in profit is thus given by ∆π = 79.06 − 78.39. Such a change is known as
the shadow price associated to the painting line.

In this case, the shadow price associated to the capacity constraint on the painting
line is thus given by 0.67e. Such a shadow price indicates that it can be profitable to
inject up to 0.67e to increase the capacity of the painting line by one hour.

We can apply the same procedure on the second constraint. For this constraint, our
production becomes

x∗
1 = 22

x∗
2 = 5.65

5



and the profit becomes

π = 2.9(22) + 2.6(5.65) = 78.5

Just as before, the shadow price for this constraint is thus given by

∆π = 78.5− 78.39 = .11

If we apply the same reasoning to the assembly lines, we get for the first assembly line

x∗
1 = 22.22

x∗
2 = 5.3639

π = 78.39⇒ ∆π = 0.

The profit will thus not be affect by a relaxation of this constraint. The same is true
for the bike 2 assembly line. This observation also confirms that the binding or tight
constraints at the optimum are the painting and wheel production line constraints.

Just as we did it for the constraints, it is also possible to study the evolution of the
profit as a function of the non negativity constraints. In this case the shadow prices
are refered to as reduced costs. I.e. the reduced cost associated with a non negative
constraint is the change in the objective function per unit increase in the lower bound
on the value of the corresponding variable.

As an example, increasing the right-hand side of the constraint x2 ≥ 0 by one unit to
x2 ≥ 1 will force the business to produce the model 2 bike. In the case of problem (17)
since the optimal solution is already given by a number of bikes x∗

2 ≥ 1 (see (18)),
changing the constraint will have no effect on the solution.

The reduced cost associated to a given variable can in fact also be computed from the
simplex tableaux.

To see this, let us consider the following problem. We are still interested in a bike
manufacturing company. But this time, we will assume that it produces 3 models of
bikes (we denote the corresponding numbers as x1, x2 and x3). The total profit is
assumed to be 5x1+4x2+7x3 and we assume that the constraints arise from a single
production line (let us say as a maximum production time)

7x1 + 5x2 + 9x3 ≤ 65 (27)

as well as on lets say the total storage capacity of the company

9x1 + 21x2 + 9x3 ≤ 140 (28)

Finally we restrict the production of models 1 and 2 to not exceed the following upper
bounds

x1 ≤ 9 (29)

x2 ≤ 6 (30)
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Writing the problem in standard form, we get

max 5x1 +4x2 +7x3

s.t. 7x1 +5x2 +9x3 +x4 = 65
9x1 +21x2 +9x3 +x5 = 140
x1 +x6 = 9

x2 +x7 = 9
x1, x2, x3, x4, x5, x6, x7 ≥ 0

(31)

The first simplex tableau is given by

x1 x2 x3 x4 x5 x6 x7

7 5 9 1 0 0 0 65
9 21 9 0 1 0 0 140
1 0 0 0 0 1 0 9
0 1 0 0 0 0 1 6
-5 -4 -7 0 0 0 0

Starting with the most negative entry in the reduced cost vector, we get x3 as our
entering variable and x4 as the leaving variable.

Applying the following operations on the rows

R2 ← R2 −R1 (32)

R1 ← R1/9 (33)

R4 ← R4 + 7R1 (34)

we get the tableau

x1 x2 x3 x4 x5 x6 x7

7/9 5/9 1 1/9 0 0 0 65/9
2 16 0 1 1 0 0 75
1 0 0 0 0 1 0 9
0 1 0 0 0 1 0 6

4/9 -1/9 7 7/9 0 0 0 7
(
65
9

)
As a result, given that the reduced cost vector still has negative entries, we thus con-
tinue using x2 as our next leaving variable. Choosing x5 as the entering variable, and
applying the following operations on the rows,

R2 ← R2/16 (35)

R1 ← R1 − 5/9R2 (36)

R4 ← R4 −R2 (37)

we get the tableau
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x1 x2 x3 x4 x5 x6 x7
29
36 0 1 21

144 − 5
144 0 0 665/144

2
16 1 0 − 1

16
1
16 0 0 75/16

1 0 0 0 0 1 0 9
− 2

16 0 0 1
16

1
16 0 1 6

11
24 0 7 111

144
1

144 0 0

whose associated reduced cost vector is given as

r∗ =

(
11

24
, 0, 7,

111

144
,

1

144
, 0, 0

)
(38)

The final solution is given by

x∗ =

(
0,

75

16
,
665

144
, 0, 0, 9, 6

)
(39)

From the reduced cost vector (38), recall that at the optimum, the change in the
objective given by a small change in the decision variables, can read as

∆π = r∗∆x (40)

Taking ∆x = (1, 0, 0, 0, 0, 0, 0) we can then study the effect of forcing a non zero x1.
In this example

∆π = r∗e1 = r1 =
11

24
(41)

Shadow prices and duality

The shadow prices can also be related to the dual variables. To see how, first recall that
only those constraints that are binding are associated to non zero shadow prices. As
a result if we let A to denote the part of A corresponding to the binding constraints,
as we saw the shadow prices are derived by considering the relaxation

Ax∆ = b+ ei∆ (42)

Solving those relations, we get

x∆ = A
−1

(b+ ei∆) (43)

and the corresponding change in the objective can be derived as

cTx∆ − cTx∗ = cTA
−1

(b+ ei∆)− cTx∗ (44)

= cTA
−1

(b+ ei∆)− cTA
−1

b (45)

The Shadow prices are given by the relative change in the objective following a relax-
ation of the constraint. Those prices must therefore obey

y∗
i =

1

∆

(
cTx∆ − cTx∗) (46)

= cTA
−1

ei (47)
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Grouping those prices in a single (column) vector yB, we can write

yT
B = cTA

−1
(48)

Note that this also implies yT
BA = cT or equivalently A

T
yB = c. Now if we introduce

the vector y whose entries are defined as

yi =

 (yB)i for i corresponding to a binding constraint

0 otherwise
(49)

we can write

ATy = c (50)

where A is the full matrix of the the LP (i.e A augmented with the rows corresponding
to the non binding constraints). This last relation in particular shows that the vector
y of shadow prices is dual feasible. In fact we can say more as we have

cTx∗ = cTA
−1

b = yT b (51)

By the duality theorem, the vector (49) of shadow prices is not only dual feasible but
also dual optimal. The shadow prices are the solutions of the dual problem!
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