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Introduction

Polynomials have been used for years because of there beautiful properties and their
ability to approximate functions. A classical problem which has a particularly long
history in mathematics is the problem of learning the coefficients of a polynomial of
degree n (hence n+1 parameters) whose values are prescribed at n+1 distinct points.
In this lecture, we will start by discussing the classical theory of polynomial interpo-
lation including the resulting error. We will also cover the notion of approximation
of a function by a polynomial. Finally we will briefly address the interpolation of
trigonometric polynomials.

General setting

The general idea of interpolation can be traced back to the seleucid period and the
ephemerides found on ancient astronomical cuneiform tablets from the cities of Uruk
and Babylon [4].

A first motivation for the use of polynomials as efficient objects in the approximation
of functions can be found in Weierstrass approximation theorem,

Theorem 1. [Weierstrass] Given f : [a, b] 7→ R continuous and an arbitrary ε > 0,
there exists an algebraic polynomial p such that

|f(x)− p(x)| ≤ ε, ∀x ∈ [a, b]

Proof. The proof unfolds relatively smoothly. The only technical step is an equality
relating the variance of a binomial variable to its binomial expansion. Without loss
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of generality, we can assume [a, b] = [0, 1] (the general case can be obtained from
the [0, 1] case via rescaling). We consider the sequence of polynomials pN (x), N ∈ N
defined as

pN (x) =

N∑
n=0

f
( n

N

)(
N

n

)
xn(1− x)N−n =

N∑
n=0

f
( n

N

)
Bn,N (x)

obtained from the Bernstein polynomials

Bn,N (x) =

(
N

n

)
xn(1− x)N−n

To get a bound on |f(x)− pN (x)|, we expand f(x) as

f(x) = f(x)(x+ (1− x))N

= f(x)

N∑
n=0

(
N

n

)
xn(1− x)N−n

From the definition of the Bernstein polynomials, we can then write

f(x)− pN =

N∑
n=0

(
f(x)− f

( n

N

))(
N

n

)
xn(1− x)N−n (1)

We will now show that for every ε > 0 the degree of pN can be chosen so that
|f(x)− pN (x)| ≤ ε for all x ∈ [0, 1]. Recall that a function f is continuous at x0 ∈ I
if ∀ε > 0, ∃δ(x0) > 0 s.t. |f(x) − f(x0)| < ε for all x ∈ I for which |x − x0| < δ. A
function is uniformly continuous if for all ε > 0 ∃ δ such that

|f(x)− f(x0)| < ε, for all x, x0 ∈ I s.t. |x− x0| < δ

In our case, the continuity of f on the whole interval [0, 1] implies that for ε > 0,
∃δ > 0, such that for all x, y ∈ [0, 1] satisfying |x− y| < δ, we have |f(x)− f(y)| < ε
(i.e continuity on a bounded closed interval implies uniform continuity on that same
interval).

Given the uniform continuity, let ε > 0 and let δ be such that |f(x) − f(y)| < ε as
soon as |x− y| < δ.

To control the deviation between f(x) and pN (x), we divide the index set in the
binomial expansion (1),

f(x)− pN (x) =
∑

|x− n
N |<δ

(
f(x)− f

( n

N

))(
N

n

)
xn(1− x)N−n

+
∑

|x− n
N |≥δ

(
f(x)− f

( n

N

))(
N

n

)
xn(1− x)N−n

Applying the triangle inequality to the first term and using the continuity of f , we
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get ∣∣∣∣∣∣
∑

|x− n
N |<δ

(
f(x)− f

( n

N

))(
N

n

)
xn(1− x)N−n

∣∣∣∣∣∣
≤

∑
|x− n

N |<δ

∣∣∣f(x)− f
( n

N

)∣∣∣ (N
n

)
xn(1− x)N−n

≤ ε

2

∑
|x− n

N |<δ

(
N

n

)
xn(1− x)N−n

≤ ε

2

N∑
n=0

(
N

n

)
xn(1− x)N−n

=
ε

2
(x+ (1− x))

N
=

ε

2

For the second term, we use∣∣∣∣∣∣
∑

|x− n
N |≥δ

(
f(x)− f

( n

N

))(
N

n

)
xn(1− x)N−n

∣∣∣∣∣∣ (2)

≤
∑

(x− n
N )

2

δ2
≥1

∣∣∣f(x)− f
( n

N

)∣∣∣ (N
n

)
xn(1− x)N−n (3)

≤ 2M
∑

(x− n
N )

2

δ2
≥1

(
N

n

)
xn(1− x)N−n (4)

Where M = supx∈[a,b] f(x). To get rid of the binomial factor, we use the following
trick

2M
∑

(x− n
N )

2

δ2
≥1

(
N

n

)
xn(1− x)N−n ≤ 2M

∑
(x− n

N )
2

δ2
≥1

(
x− n

N

)2
δ2

(
N

n

)
xn(1− x)N−n

(5)

≤ 2M

δ2

N∑
n=0

(
x− n

N

)2
(
N

n

)
xn(1− x)N−n (6)

≤ 2M

δ2N2

N∑
n=0

(n−Nx)
2

(
N

n

)
xn(1− x)N−n (7)

The second factor in the last line (highlighted in blue), is the variance of a binomial
variable with parameter (number of trials) N and probability of success x. This
variance can equivalently read as Nx(1− x). Substituting this in (7), we thus get

(7) ≤ 2M

δ2N2
Nx(1− x) =

2M

δ2N
x(1− x) ≤ M

δ2N
(8)
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Combining (8) and (2), we get

|f(x)− pN (x)| ≤ ε

2
+

M

2Nδ2

In particular, from this, we see that we can always choose δ and N such that |f(x)−
pN (x)| < ε for all x ∈ [0, 1].

The interpolation problem

For n ∈ N ∩ {0}, we let Pn denote the linear space of polynomials

p(x) =

n∑
k=0

akx
k

for a real (or complex) variable x and with real (or complex) coefficients a0, a1, . . . an.
A polynomial p ∈ Pn is said to be of degree n if an ̸= 0. In this lecture, we consider
Pn as a subspace of the linear space C[a,b] of continuous real (or complex) valued
functions on the interval [a, b], a < b. For m ∈ N, we denote as Cm[a, b] the linear
space of m times continuously differentiable real (or complex) functions.

Theorem 2. For n ∈ N ∩ {0}, each polynomial in Pn that has more than
n (complex) zeros , where each zero is counted repeatedly according to its
multiplicity, must vanish (i.e. all of its coefficients must be identically zero)

Proof. To be done

Theorem 3. The monomials
{
xk

}
k≥0

are linearly independent

The linear independence of the monomials 1, x, x2, . . . implies that those monomials
can be used to define a basis of Pn and that Pn has dimension n+ 1

Lagrange’s solution to the polynomial interpolation problem is based on the following
elementary functions. For a set of n + 1 arbitrary support points xi, i = 0, . . . , n
with xi ̸= xk for i ̸= k, there is a unique polynomial ℓj(x) (known as Lagrange
interpolation polynomial) satisfying

ℓj(xk) = δjk =

{
1 if j = k
0 if j ̸= k

(9)
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The Lagrange polynomials are equivalently defined as

ℓj(x) =
(x− x0) . . . (x− xj−1)(x− xj+1) . . . (x− xn)

(xj − x0)(xj − x1) . . . (xj − xj−1)(xj − xj+1) . . . (xj − xn)
(10)

=

n∏
i=0
i ̸=j

(x− xi)

(xj − xi)
, j = 0, . . . , n (11)

Theorem 4 (Lagrange interpolation Theorem). Given n+ 1 distinct points
x0, x1, . . . , xn ∈ [a, b], and n + 1 values f0, f1, . . . , fn ∈ R, there exists a
unique polynomial pn(x) ∈ Pn with the property

pn(xj) = fj , j = 0, . . . n

In the Lagrange representation, this interpolation polynomial is given by

pn(x) =

n∑
j=0

fjℓj(x)

where the Lagrange polynomials ℓj(x) are defined as in (9)-(11).

Although the values of the function f and those of its Lagrange interpolation coincide
at the interpolation points xk, f(x) can be quite different from the interpolating
polynomial for x ̸= xk. In particular, it is natural to wonder how large the difference
f(x)−pn(x) is when x ̸= xk, k = 0, . . . , n. Assuming that the function f is sufficiently
smooth, an estimate of the size of the interpolation error f(x)− pn(x) is given by the
following theorem

Theorem 5. Suppose that n ≥ 0 and that f is a real-valued function, defined
and continuous on the closed real interval [a, b], such that the derivative of f
of order n+ 1 exists and is continuous on [a, b]. Then, given that x ∈ [a, b],
there exists ξ = ξ(x) in (a, b) such that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!
πn+1(x) (12)

where

πn+1(x) = (x− x0) . . . (x− xn)

From this we thus have,

|f(x)− pn(x)| ≤
Mn+1

(n+ 1)!
|πn+1(x)| (13)

where

Mn+1 = sup
ξ∈[a,b]

∣∣∣f (n+1)(ξ)
∣∣∣
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Proof of the interpolation theorem. At the interpolation points, i.e. when x = xi, for
i = 0, . . . n, both the interpolating polynomial and the original function are zero and
the equality is trivially satisfied. Let us now focus on x ∈ [a, b] with x ̸= xi and let
us introduce the function φ(y) as

φ(y) : u 7→ φ(y) = f(y)− pn(y)−
f(x)− pn(x)

πn+1(x)
πn+1(y). (14)

The function φ(y) vanishes at y = xi, i = 0, . . . , n as well as y = x (n + 2 distinct
points). Using Rolle’s theorem, the derivative of φ(y), φ′(y) must therefore vanish at
n+ 1 points located in between the zeros of φ(y). As φ′(y) vanishes at n+ 1 points,
φ′′(y) vanishes at n points and we therefore have

f ′′(ξ)− p′′n(ξ) =
(f(x)− pn(x))

πn+1(x)
π′′
n+1(ξ)

continuing like this until φn+1(ξ), we can find a ξ ∈ (a, b) such that φ(n+1)(ξ) = 0
and we can write

φ(n+1)(ξ) = 0 = f (n+1)(ξ)− f(x)− pn(x)

πn+1(x)
(n+ 1)! (15)

Hermite interpolation

The idea of Lagrange interpolation can be generalized in various ways. A popular
alternative consists in requiring the polynomial p to take given function values and
derivative values at the interpolation points. For a set of distinct interpolation points
xk, k = 0, . . . , n and two sets of real numbers yk, k = 0, . . . , n and zk, k = 0, . . . , n
with n ≥ 0, we want to find a polynomial p2n+1 ∈ P2n+1 such that

p2n+1(xk) = yk, p′2n+1(xk) = zk, k = 0, . . . , n

The construction is similar to that of the Lagrange interpolation polynomials but now
requires two sets of polynomials Hℓ and Kℓ with ℓ = 0, . . . , n which are defined as
follows

Theorem 6 (Hermite interpolation theorem). Let n ≥ 0 and suppose that xk

k = 0, . . . , n are distinct real numbers. Then, given two sets of real numbers
yk, k = 0, . . . , n and zk, k = 0, . . . , n, there is a unique polynomial p2n+1 in
P2n+1 such that

p2n+1(xk) = yk, p′2n+1(xk) = zk, k = 0, . . . , n
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Proof. We keep the notation ℓj to denote the Lagrange polynomials and we further
introduce two sets of auxiliary polynomials Hk and Kk, k = 0, 1, . . . , n

Hk(x) = [ℓk(x)]
2 (1− 2ℓ′k(xk)(x− xk)) (16)

Kk(x) = [ℓk(x)]
2
(x− xk) (17)

where ℓk is used to denote the usual Lagrange polynomial such as defined in (9)
or (11).

From our definition of the ℓj(x), it is easy to see that

Hk(xi) = Kk(xi) = 0 (18)

H ′
k(xi) = K ′

k(xi) = 0 (19)

for xi ̸= xk. Moreover,

Hk(xi) =

{
1 if i = k
0 if i ̸= k

I.e. (19) follows from

H ′
k(x) = 2ℓkℓ

′
k − 4ℓkℓ

′
kℓ

′
k(xk)(x− xk)− 2(ℓk)

2ℓ′k(xk)

Finally note that from (17), Kk(xk) = 0 and K ′
k(xk) = 2ℓkℓ

′
k(x − xk) + ℓ2k(x) which

in particular gives K ′
k(xk) = 1. Grouping those results, we have

Hk(xi) =

{
1 if i = k
0 if i ̸= k

, H ′
k(xi) = 0

Kk(xi) = 0, K ′
k(xi) =

{
1 if i = k
0 if i ̸= k

Combining those ideas, a natural way to define our interpolating polynomial is as

p2n+1(x) =

n∑
k=0

[Hk(x)yk +Kk(x)zk]

The result of Theorem 6 can be summarized by the following definition

Definition 1 (Hermite interpolation polynomial). Let n ≥ 0 and suppose
that xi, i = 0, . . . , n are distinct real numbers. The polynomial p2n+1 defined
as

p2n+1(x) =

n∑
k=0

[Hk(x)yk +Kk(x)zk] (20)

where Hk and Kk are defined as in (16)-(17), is called Hermite in-
terpolation polynomial of degree 2n + 1 associated to the set of triples
{(xi, yi, zi), i = 0, . . . , n}
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Just as for the Lagrange polynomial, one can derive an error bound on the Hermite
interpolation

Theorem 7 (Hermite interpolation error). Suppose that n ≥ 0 and let f be
a real valued continuous 2n + 2 times differentiable function on the interval
[a, b] such that f (2n+2) is continuous on [a, b]. Further let p2n+1 denote the
Hermite interpolation polynomial of f defined as in (20). Then for each
x ∈ [a, b], there exists ξ = ξ(x) in (a, b) such that

f(x)− p2n+1(x) =
f (2n+2)(ξ)

(2n+ 2)!
[πn+1(x)]

2

where πn+1(x) is defined as

πn+1(x) = (x− x0)(x− x1) . . . (x− xn)

Moreover,

|f(x)− p2n+1(x)| ≤
M2n+2

(2n+ 2)!
[πn+1]

2

where

M2n+2 = max
ξ∈[a,b]

∣∣∣f (2n+2)(ξ)
∣∣∣

Newton representation

Lagrange interpolation is very convenient for theoretical investigations because of its
simple structure. For practical computations, it is only suitable for small n. For
large values of n, the Lagrange factors become large and oscillatory. A more practical
representation was obtained by Newton around 1676.
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Definition 2. Given (n + 1) distinct x0, . . . , xn ∈ [a, b] and (n + 1) values
y0, y1, . . . , yn ∈ R the divided differences Dk

j of order k at the point xj are
recursively defined as

D0
j = yj j = 0, . . . , n

Dk
j =

D
(k−1)
j+1 −D

(k−1)
j

xj+k − xj
j = 0, . . . , n− k

A convenient way to represent the divided differences is as the following table

x0, y0 = D0
0

x1, y1 = D0
1

x2, y2 = D0
2

x3, y3 = D0
3

D0
0

D0
1

D0
3

D2
0

D2
1

D3
0

Example 1. For the points x0 = 0, x1 = 1, x2 = 3, x4 = 4, and the values y0 =
0, y1 = 2, y2 = 8, y4 = 9, the table of divided differences is given by

0, 0

1, 2

3, 8

4, 9

2

3

1

1/3

−2/3

−1/4

In the Newton representation, for n ≥ 1, the uniquely determined interpolation poly-
nomial pn is given by

pn(x) = y0 +

n∑
k=1

Dk
0

k−1∏
i=0

(x− xi) (21)

Proof. Let p̃n denote the right-hand side of (21) and let pn denote the interpola-
tion polynomial as obtained from the Lagrange interpolating polynomials. We will
establish that pn = p̃n by induction. For n = 1, we have

p1 = y0 + (x− x0)
(y1 − y0)

(x1 − x0)

let us now assume that the relation holds for the degree n− 1 with n ≥ 2 and let us
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consider the difference dn = pn − p̃n,

dn(x) = pn − p̃n = pn(x)− p̃n−1(x)−Dn
0

n−1∏
i=0

(x− xi) (22)

In the Lagrange representation, the unique interpolation polynomial can read as

pn =

n∑
k=0

ykℓk =

n∑
k=0

yk

n∏
i=0
i ̸=k

x− xi

xk − xi
, k = 0, . . . , n. (23)

On the other hand, we can show (to be done) that the divided differences satisfy the
relation

Dk
j =

j+k∑
m=j

ym

j+k∏
i=j
i̸=m

1

xm − xi
, j = 0, . . . , n− k, k = 1, . . . , n (24)

in particular, we have

Dn
0 =

n∑
m=0

ym

n∏
i=0
i ̸=m

1

xm − xi
(25)

which is the coefficient of xn in the Lagrange decomposition of the interpolation
polynomial (23). From (22), this therefore implies that the difference dn does not
have any order n term. In other words, dn ∈ Pn−1. Note that by construction we
have

p̃n−1(xj) = yj = pn(xj), j = 0, . . . , n− 1 (26)

so that dn(xj) = 0 for j = 0, . . . , n−1. Since we have just showed that the polynomial
dn had degree n− 1, this last statement implies that dn must be identically zero.

Note that the Newton representation has the (elegant) general form

pn(x) = an(x− x0)(x− x1) . . . (x− xn−1) + . . .+ a1(x− x0) + a0 (27)

To conclude our discussion on interpolation, and before moving to the approximation
problem, we cover one last approach at deriving the interpolation polynomial known
as Neville’s scheme which is particularly useful when one only needs to estimate the
value of an interpolation polynomial at a point x (as in this case, it can help to avoid
explicitely building the polynomial)
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Theorem 8. Given n+1 distinct points x0, . . . , xn ∈ [a, b] and n+1 values
y0, . . . , yn ∈ Rn, the uniquely determined interpolation polynomials pki ∈ Pk,
i = 0, . . . , n− k, k = 0, . . . , n with the interpolation property

pki (xj) = yj , j = i, . . . , i+ k

satisfy the recurrence relation

p0i (x) = yi (28)

pki (x) =
(x− xi)p

k−1
i+1 (x)− (x− xi+k)p

k−1
i (x)

xi+k − xi
, k = 1, . . . , n (29)

Best approximation

Frequently, we measure the closeness of an approximation over the interval by taking
the largest deviation between the function and its approximation over the interval.
Alternative definitions are also possible, such as the integral of the squared deviation.

The major results in the theory of best approximation arise from the following ques-
tions:

a) Under what circumstances is there a best approximation?

b) How can the best approximants be characterized analytically or geometrically?

c) How can the best approximants be computed numerically?

d) What are the asymptotic properties of best approximations?

The linear approximation problem

Let X be a normed linear space. Select n linearly independent elements x1, x2, . . . , xn.
let y be an additional element. We wish to approximate y by an appropriate linear
combination of the x1, . . . , xn. The closeness of two elements will be defined as the
norm of their difference. I.e. we want to make

∥y − (a1x1 + a2x2 + . . .+ anxn)∥

as small as possible.

The element y − (a1x1 + . . .+ anxn) is called error or discrepancy.
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Definition 3. A best approximation to y by a linear combination of x1, . . . xn

is an element a1x1 + . . .+ anxn for which

∥y − (a1x1 + . . .+ anxn)∥ ≤ ∥y − (b1x1 + . . .+ bnxn)∥

for every b1, . . . , bn

The problem of finding best approximations can be pictured geometrically. The set
of all linear combinations a1x1 + . . .+ anxn forms a linear subspace of dimension n.
We can picture this as a plane. The element y will not, in general, lie on this plane
and we would like to locate the point of the plane closest to y.

Theorem 9. Given y and n linearly independent elements x1, . . . , xn, the problem of
finding

min
ai

∥y − (a1x1 + a2x2 + . . .+ anxn)∥ (30)

has a solution.

Proof. Let g(a1, . . . , an) denote the function

g(a1, . . . , an) ≡ ∥y − (a1x1 + . . .+ anxn)∥

The function g can be seen as a continuous function in the complex variables a1, a2, . . . , an.
I.e we have

|g(a′1, a′2, . . . , a′n)− g(a1, a2, . . . , an)| (31)

= |∥y − (a′1x1 + a′2x2 + . . .+ a′nxn)∥ − ∥y − (a1x1 + a2x2 + . . .+ anxn)∥| (32)

≤ ∥(a′1 − a1)x1 + (a′2 − a2)x2 + . . .+ (a′n − an)xn∥ (33)

≤ |a′1 − a1| ∥x1∥+ |a′2 − a2| ∥x2∥+ . . .+ |a′n − an| ∥xn∥ (34)

From this, we see that the difference (31) must be small when the difference of the
a′is is small.

We can get a similar result for the function h defined as

h(a1, . . . , an) = ∥a1x1 + . . .+ anxn∥ (35)

As a result both functions achieve their infimum on closed sets. We let

S =
{
a ∈ Rn | |a1|2 + |a2|2 + . . .+ |an|2 = 1

}
(36)

S is a closed and bounded set and h must therefore achieve a minimum on S. The
value 0 is ruled out as

∥a1x1 + a2x2 + . . .+ anxn∥ = 0

necessarily implies a1x1 + a2x2 + . . .+ anxn = 0 which is not possible as the xi’s are
assumed to be linearly independent.
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Let r =
√
a21 + a22 + . . .+ a2n. We have

h(a1, . . . , an) = r
∥∥∥a1
r
x1 + . . .+

an
r
xn

∥∥∥ ≥ εr, ε > 0

Similarly, we can write

d = ∥y − (a1x1 + . . .+ anxn)∥ ≥ ∥a1x1 + a2x2 + . . .+ anxn∥ − ∥y∥
≥ εr − ∥y∥

Note that ε is used to denote the minimum of h over the unit sphere S and as such
does not depend on r. As a result, we see that, as r → ∞, so does the value of d.
Restricting ourselves to a small sphere around 0, let ρ = infCn d(a1, a2, . . . , an) and

let R = 1+ρ+∥y∥
ε . If |a1|2 + |a2|2 + . . . + |an|2 > R2, we have d > εR − ∥y∥ > 1 + ρ.

We can thus write

inf
Cn

d(a1, a2, . . . , an) = inf
BR

d(a1, a2, . . . , an) (37)

where BR denotes the closed radius R ball. Since BR is closed and d is continuous,
the infimum on the RHS of (37) is a minimum which concludes the proof.

The following corollary focuses on the setting of univariate polynomial approximation.

Corollary 9.1. Let f ∈ C[a, b] and n be a fixed integer. The problem of finding

min
a0,a1,...,an

max
a≤x≤b

|f(x)− (a0 + a1x+ . . .+ anx
n)| (38)

has a solution.

Since the polynomial of best approximation corresponds to minimizing the maximum
value of the error f(x)− pn(x), it is often referred to as the minimax polynomial.

As we will see, although finding minimax polynomial is in general hard, in some
particular settings, this solution can be shown to be unique and built explicitly by
means of a family of polynomials known as the Chebyshev approximation polynomials.
Moreover, we will see that the zeros of the Chebyshev polynomials, when used as
interpolation points achieve the minimum of the interpolation error (13).

Chebyshev polynomials

When discussing the general setting of polynomial interpolation, we derived an upper
bound on the deviation |f(x)− pn(x)| of the form

Rn ≡ |f(x)− pn(x)| ≤ max
ξ∈[a,b]

∣∣∣f (n+1)(ξ)
∣∣∣ πn+1(x)

(n+ 1)!
(39)

where πn+1(x) = (x − x0)(x − x1) . . . (x − xn). It is important to keep in mind that
the RHS in (39) is ony an upper bound and this bound is by no means guaranteed to
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be tight. I.e. in many cases, the predicted error will be far greater than the actual
error.

Moreover, nothing guarantees that the maximum value of |f(x)−pn(x)| will match the
actual minimax bound (39) (I.e. the interpolation polynomial pn does not necessarily
match the minimax polynomial achieving the minimum in (38)). But that is another
story.

The error estimate for polynomial interpolation (39) splits into two main contribu-
tions. The first factor maxξ∈[a,b] f

(n+1)(ξ) depends only on the function being inter-
polated but is independent on the manner in which the interpolation is carried out.
The second part,

1

(n+ 1)
|x− x0||x− x1| . . . |x− xn|

is independent of the function.

Although we cannot optimize the first factor as this factor will differ for every new
function, we can however try to optimize the second one. Controlling that second
factor will imply a small (i.e. controlled) interpolation error.

In order to control this second factor, the only freedom we have is in the selection
of the interpolation points x0, x1, . . . , xn. It turns out that the set of interpolation
points that achieve the minimum of (x− x0)(x− x1) . . . (x− xn) reveals particularly
interesting for a number of questions in the theory of interpolation.

It also turns out that those interpolation points can be defined as the zeros of partic-
ular polynomials known as Chebyshev polynomials which we now introduce.

Recall that from de Moivre’s formula (cos θ + i sin θ)n = cosnθ + i sinnθ. Assuming
θ ∈ [0, π] and letting x = cos θ, sin θ =

√
1− x2, we can write

cosnθ + i sinnθ = (x+ i
√

1− x2)n

Expanding this expression using the binomial theorem, and taking the real part, we
get

cosnθ =

⌊n/2⌋∑
k=0

xn−2k(1− x2)k
(
n

2k

)
which is a degree n polynomial in x = cos θ.

Definition 4. The Chebyshev polynomial of degree n is defined as

Tn(x) = cosnθ = cos(n arccosx) = xn +

(
n

2

)
xn−2 + . . . , n = 0, 1, . . .

(40)
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It is relatively easy to compute closed form expressions for the first few Chebyshev
polynomials

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

The Chebyshev polynomials happen to satisfy a recurrence relation

Theorem 10. Let Tn(x) be defined as in Definition 4, we have

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, . . . (41)

Proof. Recall that

cos(n+ 1)θ = cosnθ cos θ − sinnθ sin θ

cos(n− 1)θ = cosnθ cos θ + sinnθ sin θ

Combining, we get

cos(n+ 1)θ = 2 cosnθ cos θ − cos(n− 1)θ

To get the conclusion, simply substitute θ = arccosx and use cosn arccosx = Tn(x).

We can now characterize the zeros of Tn(x).

Theorem 11. Let Tn(x) be defined as in Definition 4. The polynomial Tn(x)
has simple zeros at the n points

xk = cos
2k − 1

2n
π, k = 1, . . . , n (42)

On the closed interval [−1, 1], Tn(x) has extreme values at the n+ 1 points

x′
k = cos

2k

2n
π, k = 0, 1, . . . , n (43)

where it assumes the alternating values (−1)k.

Proof. Note that we have

Tn(xk) = cos

(
n arccos

(
cos

2k − 1

2n
π

))
= cos

(
(2k − 1)π

2

)
= 0

15



Similarly,

T ′
n(x) =

d

dx
cos(n arccosx)

= −n sin(n arccosx)
d

dx
arccosx

= n sin(n arccosx)
1√

1− x2

From this, one can check that

T ′
n(xk) =

n√
1− x2

k

sin(n arccosxk) =
n√

1− x2
k

sin

(
2k − 1

2
π

)
= ± n√

1− x2
k

̸= 0

This last relation shows that the zeros xk of Tn(x) are simple. We can also check that

T ′
n(x

′
k) =

n√
1− x2

k

sin (n arccosx′
k)

=
n√

1− x2
k

sin

(
2kπ

2

)
= 0

Finally,

Tn(x
′
k) = cos (π) = (−1)k

since |Tn(x)| = | cos(n arccosx)| ≤ 1, this confirms that the points x′
k are extreme

points of Tn(x).

We are now ready to tackle our original objective corresponding to finding the inter-
polation points that minimize the polynomial πn+1(x) on the RHS of (39).

Theorem 12. Let P̃n denote the class of all polynomials of degree n with
leading coefficient 1. Let T̃n = Tn/2

n−1 (The Chebyshev polynomial normal-
ized so that its leading coefficient equals 1) Then for any p̃ ∈ P̃n, we have

max
−1≤x≤1

∣∣∣T̃n(x)
∣∣∣ ≤ max

−1≤x≤1
|p̃(x)| (44)

Proof. Clearly, from the definition of Tn(x), the polynomial |T̃n(x)| achieves its max-
imum 1/2n−1 at the n + 1 points x′

k = cos kπ
n , k = 0, 1, . . . , n. Suppose there exists

p̃ ∈ P̃n s.t.

max
x∈[−1,1]

|p̃(x)| < 1

2n−1
(45)
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Let q(x) ∈ Pn−1 be defined as q(x) = T̃n(x)− p̃(x). Note that we have

q(x′
k) = T̃n(x

′
k)− p̃(x′

k) (46)

=
1

2n−1
(−1)k − p̃(x′

k) (47)

From this in particular, we see that the polynomial q takes alternate values at the
n + 1 points x′

k. q must therefore have at least n distinct zeros which is contraction

as q is in P̃n−1.

From the result of Theorem 12, we see that

|(x− x0)(x− x1) . . . (x− xn)| ≥ max
x∈[−1,1]

∣∣∣T̃n(x)
∣∣∣ = 1

2n−1

As a result, if we choose our interpolation points to be the roots of Tn+1(x), our upper
bound on the interpolation error (39) satisfies

Rn(f) ≡ |f(x)− pn(x)| ≤ max
ξ∈[a,b]

∣∣∣f (n+1)(ξ)
∣∣∣
∣∣∣T̃n(x)

∣∣∣
(n+ 1)!

(48)

≤ 1

2n−1(n+ 1)!
max
ξ∈[a,b]

∣∣∣f (n+1)(ξ)
∣∣∣ (49)

In particular, provided that maxξ∈[a,b] |f (k)(ξ)| is bounded by a constant C for all k,
the upper bound (49) will vanish as n → ∞.

Minimax Approximation

Now that we have introduced the Chebyshev polynomials, we can go back to our
original problem of finding the minimax polynomial pn ∈ Pn, that is to say the
polynomial pn (not necessarily interpolating f) that achieves the smallest error in the
ℓ∞ norm,

∥f(x)− p∗n(x)∥∞ = min
p∈Pn

∥f − p∥∞ (50)

There are very few functions for which it is possible to write down a simple closed
form for the minimax polynomial. One setting in which such a polynomial admits
a simple expression is the approximation of a power of x by a polynomial of lower
degree. The minimax approximation in this case, can be obtained from the Chebyshev
polynomials. This idea is summarized by the following theorem

Theorem 13. Let n ≥ 0. The polynomial pn ∈ Pn defined by

pn(x) = xn+1 − Tn+1(x)

2n
(51)

is the minimax approximation of degree n to the function x 7→ xn+1 on the
interval [−1, 1].
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Proof. To be done.

Trigonometric interpolation

In engineering and the natural sciences, it is also common to encounter periodic
functions, i.e. functions with the property f(t + τ) = f(t), t ∈ R for some τ ∈ R.
Aside from the more traditional setting, the family of periodic functions also includes
functions defined on closed planes and space curves. Polynomial interpolation as
introduced above is not appropriate for periodic functions as polynomials are not
periodic. An alternative is to turn to trigonometric polynomials which were first used
independently by Clairaut (1759) and Lagrange (1762). We will get back to those
notions when discussing the Fourier series and Fourier transform.

Definition 5 (General trigonometric polynomial). For n ∈ N, we denote by
Tn the linear space of trigonometric polynomials

q(t) =

n∑
k=0

ak cos kt+

n∑
k=1

bk sin kt

with real (or complex) coefficients a0, . . . , an and b1, . . . , bn. A trigonometric
polynomial q ∈ Tn is said to be of degree n if |an|+ |bn| > 0

Note that in the definition above, we restrict our attention to polynomials of period
T = 2π. We can of course similarly define polynomials of arbitrary period T as

qT (t) =

n∑
k=0

ak cos
2πkt

T
+

n∑
k=1

bk sin
2πkt

T

Just as for regular algebraic polynomials, one can derive a relation between the degree
of a trigonometric polynomial and the maximum number of distinct zeros of this
polynomial.

Theorem 14. A trigonometric polynomial in Tn that has more than 2n
distinct zeros in the interval [0, 2π) must vanish identically (i.e. all its coef-
ficients must be equal to zero)

Proof. Let

q(t) =
a0
2

+

n∑
k=1

[ak cos kt+ bk sin kt]
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setting b0 = 0 and γk = 1
2 (ak − ibk), γ−k = 1

2 (ak + ibk) and using Euler’s formula,
eit = cos t+ i sin t, we can rewrite our polynomial q(t) in complex form as

q(t) =

n∑
k=−n

γke
ikt

letting z = eit and using p(z) to denote the polynomial (in z)

p(z) =

n∑
k=−n

γkz
n+k

we get q(t) = z−np(z). If the trigonometric polynomial q(t) has more than 2n distinct
zeros tℓ, ℓ = 1, . . . , L > 2n on the [0, 2π) interval, then to each zero of q(t), one can
associate a distinct zero zℓ = eitℓ of p(z) on the unit circle.

A natural consequence of the connection between the maximum number of distinct
zeros and the vanishing of trigonometric polynomials is the linear independence of
the trigonometric functions in Tn and even in C[0, 2π]. This idea can be summarized
by the following theorem,

Theorem 15. The cosine functions cos kt, k = 0, 1, . . . , n and the sine
functions sin kt, k = 1, . . . , n are linearly independent in the function space
C[0, 2π]

Proof. Assume that one of the {cos kt}k≥0 ∪ {sin kt}k≥0 can be expressed as a linear
combination of the other trigonometric functions. In this case, there exists coefficients
ak ∪ bk such that

n∑
k=0

ak cos kt+

n∑
k=0

bk sin kt = 0, ∀t ∈ [0, 2π)

This relation in particular implies that the corresponding polynomial has more than
2n zeros. From the relation between the degree of the polynomial and the maximum
number of distinct zeros, we deduce that all the coefficients must vanish.

From the proof of Theorem (15), we can derive a result similar to the interpolating
properties of algebraic polynomials
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Theorem 16. Given 2n + 1 distinct points t0, . . . , t2n ∈ [0, 2π] and 2n + 1
distinct values y0, . . . , y2n ∈ R, there exists a uniquely determined trigono-
metric polynomial qn ∈ Tn with the property

qn(tj) = yj , j = 0, . . . 2n

In the Lagrange representation, this trigonometric interpolation polynomial
is given by

qn =

2n∑
k=0

ykℓk

with Lagrange factors

ℓk(t) =

2n∏
i=0
i ̸=k

sin t−ti
2

sin tk−ti
2

, k = 0, . . . , 2n
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