ING2 EILCO – Introduction to Machine Learning Practice Exam

Augustin Cosse

November 2022

Question 1 (Fall 2022). We consider a simple regression model with two coefficients $t = \beta_1 \tilde{x}_1^s + \beta_2 \tilde{x}_2^s$. We assume that the data has been centered so that the model is learned on $\tilde{x}^{(i)} = x^{(i)} - \frac{1}{N} \sum_i x^{(i)} = x^{(i)} - \overline{x}$ and $\tilde{t}^{(i)} = t^{(i)} - \frac{1}{N} \sum_i t^{(i)} = t^{(i)} - \overline{t}$. moreover, after the centering step, the $\tilde{x}^{(i)}$ are scaled as

$$\tilde{x}_k^{s,(i)} = \tilde{x}_k^{(i)} \leftarrow \tilde{x}_k^{(i)} / \sigma_k$$

where σ_k^2 is the variance associated to the k^{th} feature of $\boldsymbol{x}^{(i)}$,

$$\sigma_k^2 = \frac{1}{N} \sum_{i=1}^N (x_k^{(i)} - \overline{x}_k)^2, \quad \overline{x}_k = \frac{1}{N} \sum_i x_k^{(i)}$$

1. [2pts] Show that the normal equations in this case can read as

$$\left[\begin{array}{cc} 1 & r_{12} \\ r_{12} & 1 \end{array}\right] \left[\begin{array}{c} \beta_1 \\ \beta_2 \end{array}\right] = \left[\begin{array}{c} \gamma_1 \\ \gamma_2 \end{array}\right]$$

What is the expression for r_{12} in terms of the original $x_1^{(i)}, x_2^{(i)}$? (Start by writing the expression of r_{12} as a function of the $\tilde{x}^{s,(i)}$ then replace the $\tilde{x}^{s(i)}$ by their expression as a function of the $x^{(i)}$)

2. [2pts] Give the expression of the inverse $(\mathbf{X}^T \mathbf{X})^{-1}$ as a function of r_{12} . What are the values of r_{12} for which this inverse is well defined?

Question 2 (Fall 2022). We consider the neural network shown in Fig. 2 which consists of alternating 2 units and 1 unit hidden layers. The weights associated to the i^{th} unit in layer k are denoted as $w_{ij}^{(k)}$ and each neuron is equipped with a sigmoid activation and a bias $w_{i0}^{(k)}$ (not represented on the Figure)

- 1. [1pts] Sketch the sigmoid activation
- 2. [2pts] Give the detailed expression of y(x; W) as a function of x, and the $w_{ij}^{(k)}$.
- 3. [4pts] <u>Using backpropagation</u>, derive the gradient with respect to $w_{11}^{(1)}$ for a general t and x (give all the steps)

FIGURE 1 – Training set for Question 3.

FIGURE 2 – Neural Network for Question 2

Question 3 (Fall 2022). We consider the logistic regression classifier

$$p(t(\boldsymbol{x}) = 1 | \boldsymbol{x}) = \sigma(\beta_0 + \beta_1 x_1 + \beta_2 x_2)$$

$$p(t(\boldsymbol{x}) = 0 | \boldsymbol{x}) = 1 - \sigma(\beta_0 + \beta_1 x_1 + \beta_2 x_2)$$

where $\sigma(x)$ denotes the usual sigmoid function. Given the data shown in Fig. 1,

- 1. [2pts] What would be a good choice for the parameters $\beta_0, \beta_1, \beta_2$ (the choice does not need to be optimal)
- 2. [2pts] Let us assume that your solution corresponds to the minimum of a certain loss $\ell(\beta)$. How would this solution change if we now decided to minimize $\ell + \lambda R(\beta)$ where R denotes the Ridge regularizer. Motivate your answer.

Question 4 (Summer 2022). We collect data for a group of students in a machine learning class with variables

 x_1 = "number of hours studied", x_2 = "undergrad GPA" and t = "receives an A". We fit a logistic regression model to the data and produce estimated coefficients $\hat{\beta}_0 = -6$, $\hat{\beta}_1 = 0.05$, $\hat{\beta}_2 = 1$.

- 1. Estimate the probability that a student who studies for 40h and has an undergrad GPA of 3.5 gets an 'A' in the class.
- 2. How many hours would the student in part (a) need to study to have a 50% chance of getting an 'A' in the class?

Question 5 (Summer 2022). We consider a d = 2 dimensional dataset with 2 pairs $\{x_i, t_i\}_{i=1}^2$, i.e. $x_i = (x_{i1}, x_{i2}) \in \mathbb{R}^2$. We assume that $x_{i1} = x_{i2}$ for i = 1, 2 as well as $t_1 + t_2 = 0$ and $\sum_{i=1}^2 x_{i1} = \sum_{i=1}^2 x_{i2} = 0$ so that the bias $\beta_0 = 0$. Answer the following questions

- a) Write the ridge regression optimization problem in this setting [1pt]
- b) Argue that in this setting, the ridge coefficient estimates satisfy $\hat{\beta}_1 = \hat{\beta}_2$ [1pt]
- c) Write down the LASSO optimisation problem in this setting [1pt]
- d) Argue that in this setting, the coefficients β₁ and β₂ are not unique In other words, there are many possible solutions to the optimisation problem in c. Describe those solutions. [2pts]

Question 6 (Summer 2022). Suppose we have a dataset with five features explained below

x_1	GPA
x_2	IQ
x_3	Level (1 for college, 0 for High School)
x_4	Interaction between GPA and IQ
x_5	Interaction between GPA and Level

The target is "starting salary after graduation(in thousands of dollars)". Suppose that we use a least squares approach to learn the model and got $\hat{\beta}_0 = 50$, $\hat{\beta}_1 = 20$, $\hat{\beta}_2 = .07$, $\hat{\beta}_3 = 35$, $\hat{\beta}_4 = .01$ and $\hat{\beta}_5 = -10$. Indicate whether the following are true or false

True / False	For a fixed value of IQ and GPA, high school graduates
	earn more, on average, than college graduates
True / False	For a fixed value of IQ and GPA, college graduates earn
	more, on average, than high school graduates
True / False	For a fixed value of IQ and GPA, high school graduates earn
	more, on average, than college graduates provided that the GPA is high enough
True / False	For a fixed value of IQ and GPA, college graduates earn
	more, on average, than high school graduates provided that
	the GPA is high enough