Analyse Numérique Transformée de Laplace

Augustin Cosse augustin.cosse@univ-littoral.fr

January 2022

 ${\bf Question} \ 1 \ \ Compute \ the \ Laplace \ transform \ for \ the \ function$

$$f(t) = \begin{cases} t & 0 \le t \le 1\\ 1 & t > 1 \end{cases}$$

Question 2 Compute the Laplace transform for the following functions:

(a)
$$f(t) = 4t$$
, (b) $f(t) = te^{2t}$, (c) $f(t) = \begin{cases} 1 & t \ge a \\ 0 & t < a \end{cases}$, (d) $f(t) = 2\cos 3t$

Question 3 Without actually computing it, show that the following functions possess a Laplace transform

(a)
$$\frac{\sin t}{t}$$
, (b) $\frac{1-\cos t}{t}$, (c) $f(x)$ defined as in Fig. 1

Question 4 Find the Laplace transform of $f(t) = te^{at}$ and deduce the transform of $g(t) = t^n e^{at}$

Figure 1: Question 3

Question 5 For each of the following functions, determine which has a Laplace transform. if it exists, find it, if it does not, briefly say why

(a)
$$e^{3t}$$
, (b) e^{t^2} , (c) $e^{1/t}$, (d) $\frac{1}{t}$

Question 6 Find the Laplace transform for the following functions

(a)
$$4t + 6e^{4t}$$
, (b) $e^{-4t}\sin(5t)$

Question 7 Using the differentiation property, find the Laplace transform for the following functions

(a)
$$te^{2t}$$
, (b) $t\cos t$

Question 8 Consider the function

$$f(t) = \frac{\sin t}{t} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n+1)!}$$

does this function admit a Laplace transform? Why? if yes, give the expression o the transform.

Question 9 Using the properties of the Laplace transform, find the following inverse transform

$$\mathcal{L}^{-1}\left(\frac{1}{2(s-1)} + \frac{1}{2(s+1)}\right)$$

Question 10 Consider the Heaviside step function defined as

$$H(t-a) = \begin{cases} 1 & t > a \\ 0 & t < a \end{cases}$$

Compute the Laplace transform of H(t-a) then deduce from it the inverse Laplace transform of $\frac{e^{-as}}{s}$

Question 11 This time, we consider the indicator function on the [a, b] interval.

$$\mathbb{1}_{[a,b]}(t) = \frac{1}{b-a} \left(H(t-a) - H(t-b) \right) = \begin{cases} 0 & t < a \\ \frac{1}{b-a} & a \le t < b \\ 0 & t \ge b \end{cases}$$

Find the Laplace transform of $\mathbb{1}_{[a,b]}(t)$

Question 12 Using the translation property of the Laplace transform, and the fact that $\mathcal{L}(\sin \omega t) = \frac{\omega}{s^2 + \omega^2}$, find the transforms of the following functions

- a) $f_1(t) = e^{at} \cos \omega t$
- b) $e^{at}\sin\omega t$
- c) $e^{at} \cosh \omega t = e^{at} \frac{1}{2} \left(e^{\omega t} + e^{-\omega t} \right)$
- d) $e^{at} \sinh \omega t = e^{at} \frac{1}{2} \left(e^{\omega t} e^{-\omega t} \right)$

Finally use the above transforms to infer the inverse transform of G(s),

$$G(s) = \frac{s}{s^2 + 4s + 1}$$

Question 13 Use a partial fraction expansion to determine the inverse transform

$$\mathcal{L}^{-1}\left\{\frac{a}{s^2-a^2}\right\}$$

Question 14 Determine the following inverse transform

$$\mathcal{L}^{-1}\left\{\frac{s^2}{(s+3)^3}\right\}$$

Question 15 Find the following inverse Laplace transforms

a) $\mathcal{L}^{-1}\left\{\frac{s+3}{s(s-1)(s+2)}\right\}$ b) $\mathcal{L}^{-1}\left\{\frac{(s-1)}{s^2+2s-8}\right\}$ c) $\mathcal{L}^{-1}\left\{\frac{3s+7}{s^2-2s+5}\right\}$ d) $\mathcal{L}^{-1}\left\{\frac{e^{-7s}}{(s+3)^3}\right\}$