
8 Agent-Based Simulations
“There’s no love in a carbon atom, no hurricane in a water molecule, and no

financial collapse in a dollar bill.” P. Dodds1

The word complex comes from the Latin com, which means “together” and
plectere, which means “to weave”. The real meaning of the word complex, though,
is more complex than that. Complex systems can partially be understood as collec-
tions of agents that interact non-trivially among themselves and their environments
producing novel and rich phenomena that, typically, cannot be anticipated from the
study of their individual units [223, 224]. Some topics related to complexity were
already studied in the previous chapters without an explicit reference to it. For in-
stance, cellular automata was already studied in Sec. 6.3.1 and game theory was
seen in Chapter 7.

As stated in the first chapter, economics is a discipline that deals with interacting
people that are subject to emotions, conformity, collective motion, and many other
complex phenomena. As Wolfram2 once put it, in order to develop models that cap-
ture these complex behaviors, one must look for novel tools beyond the standard
mathematical descriptions that we are used to [225].

This chapter deals exactly with the interaction of agents and the emergence that
appears in these processes. It begins exploring the intricate connections that agents
make and then moves towards some socioeconomic models of opinion dynamics and
segregation. The book ends with a study of kinetic models, linking trade and wealth
to the Boltzmann3 equation.

8.1 COMPLEX NETWORKS
If you paid attention to the endnotes so far, you probably noticed that many impor-
tant authors make networks of collaboration. The same is valid for banks interacting
through credit or firms interacting through trade. Depending on the topology of the
network, some behaviors may emerge and affect properties such as performance and
fragility. In this section we will study these networks, some of their metrics and ap-
plications in econophysics.

In order to study networks, we must study graphs. These are ordered pairs
G = (V,E) where V is a set of points called vertices (or nodes), and E ⊆
{{x,y}|x,y ∈V, x , y}} is a set of lines called edges (or links) that connect those
nodes. The graph may be weighted if there is a function w : E → R associated with
all edges of the graph. On the other hand, if the graph is unweighted, then w : E→B,
where B is the Boolean4 domain B = {0,1}. We say that the graph is undirected if
the edges are comprised of unordered vertices, and directed otherwise. All graphs
presented here will be unweighted and undirected, unless explicitly stated otherwise.
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A graph can be simple if it allows only one edge between a pair of nodes or
multigraph otherwise. A multigraph with loops is known as pseudograph. Finally, a
graph can be complete if all pair of nodes are connected by edges.

A graph can be represented by an adjacency matrix whose elements are the num-
ber of edges that directly connect two nodes. In the case of a simple graph, the ad-
jacency matrix is a Boolean matrixa. We can also define the neighborhood NG(v)
of a node v as a subgraph of G induced by the neighbors (adjacent nodes, or nodes
connected by an edge to v) of v.

A walk of length n is defined as an alternating sequence of nodes and edges
v0,e1,v1,e2 . . . ,ek,vk such that edge ei = {vi−1,vi}, for 1≤ i≤ n. In Fig. 8.1, a walk
could pass sequentially through nodes abacd. This walk can be closed if the first and
last nodes are the same. An example would be a walk through the sequence abca. It
is considered open otherwise. An example would be abc. Also, a trail is defined as a
walk with no repeated edges such as abcd. A path is defined as an open trail with no
repeated nodes such as abcd. Furthermore, a cycle is defined as a closed trail with
no repeated vertices except the first and last nodes such as acd f a. Finally, a circuit
is a closed trail with no repeated edges that may have repeated nodes. An example
would be abc f dca.

Observe that the number of 1-walks between nodes is given by the adjacency
matrix. The number of 2-walks between two nodes is given by ∑n ainan j but this
leads to the product AA. Therefore, we find by induction that the elements of the nth

power of the adjacency matrix gives the number of n-walks between these nodes.
For instance, for the graph in Fig. 8.1 the adjacency matrix is given by Eq. 8.1. The
2-walks between a and a are aba, aca, and a f a and this is captured by the element
A2

11 = 3. Also note that the number of triangles in a graph can be found from the
diagonal of A3. Since a triangle has three nodes and every node is counted, we must
divide the trace of A3 by 3. Also, both clockwise and counterclockwise walks are
computed. Therefore the number of triangles is given by Tr

(
A3
)
/6.

A =


0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 1
0 0 1 0 0 1
0 1 0 0 0 1
1 0 1 1 1 0

 , A2 =


3 1 2 2 2 1
1 3 1 1 0 3
2 1 4 1 2 2
2 1 1 2 1 1
2 0 2 1 2 0
1 3 2 1 0 4

 (8.1)

The degree matrix, a related concept, is a diagonal matrix whose elements are the
node degrees. A Laplacian matrix can be constructed as L = D−A.

A graph can be regular if all nodes have the same number of connections (have
the same number of neighbors, or the same degree, or even the same coordination
number, depending the audience) as shown in Fig. 8.2. If the regular graph (dis-
counting its external nodes, or leaves, that have degree 1) contains no cycles and is
connected, then it is a Cayley5 tree. If this tree has an infinite number of nodes (no

aA matrix whose elements are in the Boolean domain B.
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Figure 8.1: A random graph used to illustrate the concepts of (from left to right)
walk, trail, cycle, and circuit

leaves), then it is a Bethe6 lattice. A spanning tree of a graph G is a subgraph of G
that is a tree and contains all nodes of G.

0-regular 1-regular 2-regular 3-regular

Figure 8.2: Graphs with the same number of nodes but with different regularities

If a graph has non-trivial topological properties, then we call it a complex network.
A non-trivial topological property could be, for instance, a degreeb distribution with
a long tail. In order to explore these properties we must study some graph metrics.

8.1.1 METRICS

A metric space is a tuple (X ,d) where X is a set, and d : X ×X →R+ is a function
(called metric or distance) such that for any x,y,z ∈ X , d satisfies:

1. Leibniz’s7 law of indiscernibility of identicals: d(x,y) = 0 ⇐⇒ x = y,
2. The symmetry axiom: d(x,y) = d(y,x), and
3. The triangle inequality: d(x,z)≤ d(x,y)+d(x,z).

Considering graphs, the shortest path (or geodesic) between nodes is a metric that
can be found in different algorithms such as Dijkstra’s8 [226], Bellman9-Ford10 [227]
and Floyd11-Warshall12 [228, 229]. The number of edges in a geodesic is known
as distance between two nodes. The eccentricity of a node is the longest distance
between this node and any other in the graph. The radius of a graph is the minimum
eccentricity of any node. On the other hand, the diameter of a graph is the maximum
eccentricity of any node.

bNumber of connections of a node makes with other nodes.
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8.1.1.1 Clustering Coefficient
The node neighborhood of a node vi is defined as:

Ni =
{

v j : ei j ∈ E ∨ e ji ∈ E
}
. (8.2)

The local clustering coefficient for a node measures the propensity of the neigh-
borhood of a node to form a cliquec, or cluster together. It is defined as the ratio
between the existing number of edges among its neighbors (or similarly, the number
of triangles that they form) and the total number of edges that there could be among
them:

Ci = 2

∣∣{e jk : v j,vk ∈ Ni,e jk ∈ E
}∣∣

|Ni|(|Ni|−1)
. (8.3)

In terms of the adjacency matrix, it can be computed as:

Ci =
∑ j,k Ai jA jkAki

∑ j Ai j
(
∑ j Ai j−1

) . (8.4)

The global clustering coefficient, on the other hand, is the ratio between the num-
ber of closed tripletsd (or three times the number of triangles) and the number of all
triples in the graph. In terms of the adjacency matrix, it is given by:

C =
∑i, j,k Ai jA jkAki

∑i
[
∑ j Ai j

(
∑ j Ai j−1

)] = Tr(A3)

∑i ki(ki−1)
, (8.5)

where
ki = ∑

j
Ai j. (8.6)

Figure 8.3 shows three graphs with the same number of nodes but with different
topologies. The local clustering coefficients for node 1 are C1 = 1, 1/3, and 0 for the
graphs a, b, and c, respectively. On the other hand, the global clustering coefficients
are C = 1, 0.44, and 0, respectively.
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Figure 8.3: Three graphs with the same number of nodes but with distinct topologies

cA subgraph where every two distinct nodes are adjacent.
dAn undirected subgraph consisting of three nodes connected by either two edges (open) or three edges

(closed).
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A snippet to compute the global clustering coefficient is given bellow.

import numpy as np:

def gclust(A):
N = np.shape(A)[0]

num = np.trace(np.linalg.matrix_power(A,3))

k = [0 for j in range(N)]
for i in range(N):
for j in range(N):

k[i] = k[i] + A[i,j]

den = 0
for i in range(N):

den = den + k[i]*(k[i]-1)

return num/den

Some models link the clustering of agents with respect to their demands to many
stylized facts such as the fat tails observed in the distribution of returns in the stock
market [230].

8.1.1.2 Centrality
How important is a node compared to all others in the network? This is quantified
by the centrality [231] of a node. The degree centrality is simply defined as the ratio
between its degree and the total number of nodes subtracted by one. Figure 8.4 shows
a centralized network where a central node works as a hub, a decentralized network
with multiple hubs, and a distributed network with a few or no hubs.

It is also possible to define a closeness centrality [232] as the reciprocal of the
farness, or the sum of the distances d between a specific node and all other nodes of
a network:

Cc(p) =
|V |−1

∑(p,q)∈V d(p,q)
. (8.7)

There are many other centrality metrics such as betweenness centrality [233] and
eigenvector centrality [234].

The concept of centrality helps us understand some interesting phenomena such
as the friendship paradox. Consider a network made of symmetrical friendships. The
average number of friends a person has is the average degree of the network:
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µ =
∑v∈V d(v)
|V |

. (8.8)

The average number of friends that a friend of a person has, though, can be found
by randomly choosing an edge and one of its endpoints. One endpoint is the original
person, while the other is a friend. The average degree of the latter node is the value
we seek. The probability of selecting a node with a specific degree is:

p(v) =
d(v)
2|E|

=
d(v)

∑v∈V d(v)
. (8.9)

Hence, the average number of friends of friends is:

µ f f = ∑
v∈V

p(v)d(v) = ∑
v∈V

d2(v)
∑v∈V d(v)

=
|V |

|V |∑v∈V d(v) ∑
v∈V

d2(v).
(8.10)

Figure 8.4: a) Centralized network, b) decentralized network, and c) distributed net-
work. k indicates the degree of a node, and C is its degree centrality



Agent-Based Simulations 211

Cauchy-Schwarz Inequality

Consider the polynomial function f :R→R+:

f (x) = ∑
i
(aix−bi)

2

=

(
∑

i
a2

i

)
x2−2

(
∑

i
aibi

)
x+∑

i
b2

i .
(8.11)

Since it is a nonnegative function, its determinant has to be less than
or equal to zero:

∆x = 4

(
∑

i
aibi

)2

−4

(
∑

i
a2

i

)(
∑

i
b2

i

)
≤ 0

(
∑

i
a2

i

)(
∑

i
b2

i

)
≥

(
∑

i
aibi

)2

.

(8.12)

This is known as the Cauchya-Schwarzbinequality.

aAugustin-Louis Cauchy (1789–1857) French polymath.
bKarl Hermann Amandus Schwarz (1853–1921) Prussian mathematician, advisee

of Karl Weierstrass.

According to the Cauchy-Schwarz inequality, we get:

µ f f =
1

|V |∑v∈V d(v)

(
∑
v∈V

12

)(
∑
v∈V

d2(v)

)
≥ 1
|V |(∑v∈V d(v))

(
∑
v∈V

d(v)

)2

µ f f ≥
∑v∈V d(v)
|V |

= µ

µ f f ≥ µ.
(8.13)

This implies that, on average, people tend to make friends with people who already
have a number of friends higher than the average centrality. This appears to be a
paradox since the original person that we picked could now be a friend’s friend. The
solution, however, is in the fact that we are talking about averages. This problem,
related to structure of the social network, also illustrates the class size paradox where
a person can experience a much more crowded environment than it really is.

8.1.1.3 Assortativity
In many networks, there is often a tendency of similar nodes to preferentially attach
to each other. The assortativity (or homophily) quantifies this tendency through the
correlation of nodes.
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Let’s define ei j as the probability that an edge connects a node of type i to another
node of type j, such that ∑i j ei j = 1. Also, let ai = ∑ j ei j be the probability that an
edge comes from a node of type i and b j = ∑i ei j be the probability that an edge
connects to a node of type j. The assortativity coefficient is then given as:

r =
∑i eii−∑i aibi

1−∑i aibi
=

Tr(e)−‖e2‖
1−‖e2‖

, (8.14)

where ‖a‖ is the sum of all elements of a. If there is no assortative mixing, then
ei j = aib j and, according to Eq. 8.14, r = 0. On the other hand, if there is perfect
assorativity, then ∑i eii = 1 and r = 1. If the network is perfectly disassortative (every
node connects to a node of a different type), then eii = 0 and:

r =
∑i aibi

∑i aibi−1
=
‖e2‖
‖e2‖−1

. (8.15)

The graph in Fig. 8.4a is not assortative, whereas the graphs in Fig. 8.4b and c
have assortativity coefficients of −0.6 and −0.2, respectively, implying some level
of disassortativeness. A regular graph, on the other hand, is perfectly assortative. The
following snippet computes the assortativity.

Introduction to Econophysics
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import numpy as np

def assort(A):
# Degree matrix
D = np.sum(A,1)

# Total number of edges
T = int(np.sum(D)/2)

# Number of nodes
N = np.shape(A)[0]

# Prob. edge from
e = np.array([[0.0 for i in range(max(D)+1)] for j in range(max(D)+1)])
for i in range(N-1):

for j in range(i+1,N):
e[D[i],D[j]] += A[i,j]/T

p = np.sum(np.dot(e,e))
num = np.trace(e)-p
den = 1-p

if (np.trace(e) >= 0.9999):
r = 1

else:
r = num/den

return(r)

8.1.2 RANDOM NETWORKS

One of the first attempts to understand social networks was given by the random
network model proposed by Erdös-Rényi [235]13. In this model, we start with N un-
connected nodes and pick pairs randomly, connecting them by an edge with constant
probability p.

The probability of finding a node with degree k is given by the product of three
terms: i) the possibility of selecting k links among the total number N − 1, ii) the
probability that k nodes are present, and iii) the probability that the remaining nodes
are not chosen. Mathematically, this gives us a binomial distribution:

P(k) =
(

N−1
k

)
pk(1− p)N−k. (8.16)
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The expected degree of the network can be found expanding the binomial expres-
sion:

(p+q)N = ∑
k

(
N
k

)
pkqN−k−1

∂

∂ p
(p+q)N = ∑

k

(
N
k

)
kpk−1qN−k−1

N(p+q)N−1 =
1
p ∑

k
k
(

N
k

)
pkqN−k−1

N p = ∑
k

k
(

N
k

)
pk(1− p)N−k−1, where q = 1− p

〈k〉= N p.

(8.17)

Similarly, we can find the variance of this degree:

∂ 2

∂ p2 (p+q)N = ∑
k

(
N
k

)
k(k−1)pk−2qN−k−1

= ∑
k

(
N
k

)
k2 pk−2qN−k−1−∑

k

(
N
k

)
kpk−2qN−k−1

p2N(N−1)(p+q)N−2 = 〈k2〉−〈k〉
〈k2〉= p2N(N−1)+N p

〈k2〉−〈k〉2 = p2N(N−1)+N p−N2 p2

σ
2
k = N p−N p2

= N p(1− p).

(8.18)

Therefore, the bigger the network is, the more the distribution shifts and spreads
towards larger values. Social networks, though, do not empirically show this behavior
[236].

8.1.2.1 Average Path Length
It is fair to say that between two near nodes there can be, on average, 〈k〉 paths. For
second neighbors, there may be 〈k〉2 paths, and so on. Therefore, for a distance d,
the number of paths is:

N(d) = 1+ 〈k〉+ 〈k2〉+ . . .+ 〈kd〉=
d

∑
i=0
〈ki〉= 〈k〉

d+1−1
〈k〉−1

. (8.19)

However, the maximum path length (diameter of the network) cannot be longer than
the number of nodes. Therefore, N(dmax)≈ N and we deduce that:

Introduction to Econophysics
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〈k〉dmax ≈ N

dmax log(〈k〉)≈ log(N)

dmax ≈
log(N)

log(〈N〉)
.

(8.20)

This sublinear relationship between the diameter and the number of nodes is known
as small world phenomenon. This was initially measured in 1967 by Milgram14 using
letters [237,238]. In short, a recipient would receive a letter addressed to some person
and then forward this letter to a friend who was likely to know him or her. After the
letter was received by the final contact person, the researcher would count how many
steps were necessary for completing this path. The result average path length was
about six, which gave rise to the popular expression six degrees of separation.

8.1.2.2 Clustering Coefficient
The ki neighbors of a node i can make a maximum number of connections among
themselves: (

ki

2

)
=

ki!
2(ki−2)!

=
ki(ki−1)

2
. (8.21)

Its neighbors, however, are connected with probability p, creating p
(ki

2

)
connections.

Hence, the expected number of links among the neighbors of node i is:

〈Li〉= p
ki(ki−1)

2
. (8.22)

The clustering coefficient is exactly this probability:

Ci = p =
2〈Li〉

ki(ki−1)
=
〈k〉
N

, (8.23)

as previously derived in Eq. 8.17.
This implies that the clustering coefficient should be inversely proportional to

the size of the network. However, this is not observed experimentally either. Rather,
social networks show a high clustering coefficient nearly independent on the size of
the network.

8.1.3 SCALE-FREE NETWORKS

A network is considered scale invariant if its degree distribution follows a power law
P(k) ∝ k−γ with no characteristic scale. Thus, when rescaling its distribution, we get
the same distribution (except for a multiplicative factor):

P(ak) ∝ a−γ k−γ
∝ P(k). (8.24)

This distribution can be normalized as:
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P(k) =Ck−γ . (8.25)

Since, it is a distribution:

∑
k

P(k) =C∑
k

k−γ = 1→C =

(
∑
k

k−γ

)−1

= ζ
−1(γ), (8.26)

where ζ (γ) is the Riemann15 zeta function.
One way of producing scale-free networks is using a preferential attachment pro-

cedure such as the Yule-Simon’s urn process [239, 240] in which the probability of
adding a ball to a growing number of urns is linearly proportional to the number
of balls already in an urn. In the preferential attachment process in networks pro-
posed by Barabasi16 and Albert17 [241,242] we start with m0 nodes and a node with
m < m0 links is progressively added to the network. Every new node is connected
to an existing node with probability proportional to the number of connections it
already has:

pi =
ki

∑n kn
. (8.27)

8.1.3.1 Degree Distribution
The sum in the denominator of the last equation can be computed with the degree
sum formulae.

Degree sum formula

Consider a pair (v,e), where v is a node and e is an edge. The number
of edges that connect to a node v is simply its degree: deg(v). There-
fore, the sum of all degrees is the sum of all incident pairs (v,e).
Each edge, though, is connected to two nodes. Therefore, the total
number of pairs is twice the number of edges. Since both sums are
the same, we conclude that the sum of all degrees of a graph is twice
the number of edges:

∑
v

deg(v) = 2|E|. (8.28)

This implies that the sum of degrees of all nodes (even if they are
odd) is always even. Consequently, if we imagine a group of people,
the number of those who have shaken hands with people from a
subgroup with an odd number of individuals is always even. Hence,
this is also known as the handshaking lemma.

eA nice derivation of the properties of scale-free networks can be found in [243].

Introduction to Econophysics



Agent-Based Simulations 217

If a new node makes m connections at every instant, then the number of edges is
mt. If we discount this new node and use the degree sum formula, we find that the
denominator gives:

∑
n

kn = 2mt−m. (8.29)

The temporal change of the degree of a node has to be propotional to the number
of connections that are added and the probability that we find a node with this degree:

dki

dt
= mpi ≈

mki

2mt
for large t∫ t

ti

dki

ki
=
∫ t

ti

dt
2t

ln
(

ki

m

)
=

1
2

ln
(

t
ti

)
, since ki(t) = m

ki(t) = m
(

t
ti

)1/2

.

(8.30)

The probability of finding a node with degree smaller than k is:

P(ki(t)< k) = P

(
m
(

t
ti

)1/2

< k

)
, from the previous equation.

= P
(

ti >
m2t
k2

)
= 1−P

(
ti ≤

m2t
k2

)
.

(8.31)

Since we are adding a node at fixed time steps, the number of nodes with degree
smaller than k is just N< = t m2

k2 . On the other hand, the total number of nodes grows
linearly as NT = m0 + t ≈ t for t → ∞. Therefore, the probability of finding a node
with a degree smaller than k is:

P(ki(t)< k) = 1− m2

k2 . (8.32)

Therefore, the probability of finding a node with degree k is:

p(k) =
∂P(ki(t)< k)

∂k
= 2m2k−3. (8.33)

Most of real social networks show a power-law behavior similar to this.
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8.1.3.2 Clustering Coefficient
Let’s define the preferential attachment of a new node j to an existing node i with
degree ki as:

Π(ki( j)) =
ki( j)

∑n kn( j)
. (8.34)

If the new node makes m connections, then:

pi j = mΠ(ki( j)) = m
ki( j)

∑l kl( j)
=

ki( j)
2 j

. (8.35)

Considering that the arrival time of the ith node is i and using the result from Eq.
8.30:

pi j =
m
(

j
i

)1/2

2 j
=

m
2
(i j)−1/2. (8.36)

Assuming now a continuum, the number of connections among neighbors is given
by:

N4 =
∫ N

i=1

∫ N

j=1
P(i, j)P(i, l)P( j, l)did j

=
m3

8

∫ N

i=1

∫ N

j=1
(i j)−1/2(il)−1/2( jl)−1/2did j

=
m3

8l

∫ N

i=1

di
i

∫ N

j=1

d j
j

=
m3

8l
(ln(N))2 .

(8.37)

Therefore, the clustering coefficient is given by:

Cl =
2N4

kl(kl−1)

=
m3

4l (ln(N))2

kl(kl−1)
.

(8.38)

Using once again the result from Eq. 8.30:

kl = m
(

N
l

)1/2

kl(kl−1)≈ k2
l = m2 N

l
,

(8.39)

we get:

Cl ≈
m

4N
(ln(N))2 . (8.40)
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Therefore, the Barabasi-Albert network has a higher clustering coefficient when
compared to the random network. The clustering behavior found in real social net-
works, on the other hand, tends to be higher.

8.1.4 SMALL WORLD NETWORKS

The small world property of social networks is well captured by the Watts18-
Strogatz19 model [244].

This network can be constructed from a regular ring network composed of N
nodes connected to K neighbors symmetrically to each side. A node is picked ran-
domly and K/2 neighboring nodes are reconnected with any other node of the ring
with probability β f. Hence, for β = 0, we end up with a regular network, whereas
for β = 1 the resulting network is random, as shown in Fig. 8.5. Intermediate values
of β generate networks with high clustering coefficients, small diameter, and small
world property. The degree distribution for this model, however, does not reflect that
of real social networks.

Randomness (β)

Regular Small-World Random

Figure 8.5: Varying parameter β in the Watts-Strogatz model, it is possible to gener-
ate regular, small-world, and random networks

8.2 SOCIOECONOMIC MODELS
The Ising20 model [245, 246] is a popular tool in statistical mechanics used to study
ferromagnetic systems. In this model, we have a Hamiltonian21 given by:

H =−h∑
i

si−∑
i, j

Ji jsis j, (8.41)

where h and J are coupling constants, and s is a spin state. Typically Ji j, which
represents a spin-spin interaction, is such that it is a constant for nearest neighbors
and 0 otherwise. The constant h can represents the presence of an external field, and
the first sum is related to this field trying to align the spins in a specific direction.

fThis model is also known as the beta model because of this parameter.
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In a typical algorithm to find the equilibrium state of a Ising model, single spin
states are randomly created and tested in a Monte Carlo approach (see Appendix B).
This is generally a slow process, but alternatives such as the Swendsen22 [247] and
Wolff23 algorithms [248] are available. In the latter, for example, we create clusters
of spins as test states.

In this section we will study how similar ideas using agents instead of spins can
be used to model some socioeconomic models. We will start with a model for social
segregation and then move to opinion dynamics and will finish the chapter with a
simple, yet elegant, model for the formation of prices in a market.

8.2.1 SCHELLING’S MODEL OF SEGREGATION

The Schelling24 model [249] is an Ising-like agent-based model [250–252] proposed
to study social segregation. It is based on an automaton with a Z ⊂ Z2 lattice of
size N and a neighborhood (originally Moore). The states of the automaton are S =
{A,B,0}, where A and B are two types of agents that may occupy a grid cell, and 0
indicates an empty one. Only one agent may occupy a grid cell at a time.

The simulation starts with a fraction ρ = N0/N2 of unoccupied cells. The re-
maining fraction 1− ρ is randomly occupied by agents of either group with equal
probability. This can be created with the following snippet:

def createGrid(rho,N):
return np.array([[np.random.choice([0,-1,1],p=[rho,(1-rho)/2,(1-rho)/2]) \

for i in range(N)] for j in range(N)])

At each round, the agents study their neighborhoods and check the fraction of
neighbors that are of the same type:

def neighborhood(t):
p = np.zeros(np.shape(t))

# Von Neumann neighborhood
p[:,:-1] = t[:,1:]
p[:,1:] = p[:,1:] + t[:,:-1]
p[:-1,:] = p[:-1,:] + t[1:,:]
p[1:,:] = p[1:,:] + t[:-1,:]

p = np.where(t != 0, p*t,0)

return p
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If this fraction is below a certain threshold f , then the agent is unsatisfied and
relocates to an empty grid cellg. If only unsatisfied agents are allowed to migrate,
then we say that is a constrained (or solid) simulation, whereas if all agents are
allowed to migrate (as long as they do not worsen their situations), then we say that
it is an unrestricted (or liquid) simulation. Note that the agents can improve their
satisfaction even if their migration may reduce the satisfaction of their neighbors
(see Pareto efficiency—Sec. 7.1.4.1). Also, even though the global polarization of
the lattice is preserved, the local polarization is not.

We can define two other functions, one for moving an agent to a new destination
and another one that finds a new destination:

def move(t,frm,to):
k = t[frm]
t[frm] = 0
t[to] = k

def destination(t):
unoccupied = np.where(t == 0)
l = len(unoccupied[0])
p = np.random.randint(l)

m = unoccupied[0][p]
n = unoccupied[1][p]

return(m,n)

Given these functions, the simulation itself is performed by:

grid = createGrid(0.3,80)

for it in range(50000):
nbr = neighborhood(grid)
frm = np.unravel_index(nbr.argmin(),nbr.shape)
to = destination(grid)
move(grid,frm,to)

gSee homophily in Sec. 8.1.1.3.
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Type A Type B Empty

Figure 8.6: Initial grid configuration (left) and steady state grid configuration (right)
for the Schelling model with ρ = 0.3 on a 80×80 lattice

The result of this simulation is shown in Fig. 8.6. It is clear that the steady state
solution exhibits the formation of clusters with agents of different types.

In order to quantify the formation of clusters, we can use the segregation coef-
ficient S [253]. This is an order parameter corresponding to the weighted average
cluster size:

S = ∑
{i}

ni pi, (8.42)

where pi = ni/M is the probability of finding a cluster of mass ni, and M =N2(1−ρ)
is the total number of agents. A normalized segregation coefficient is often calculated
as:

s =
S

M/2
=

2
M ∑
{i}

ni
ni

M
=

2

[N2(1−ρ)]2
∑
{i}

n2
i , (8.43)

where we have used the fact that the biggest cluster can only be M/2. In the extreme
situation where there are only two clusters, the normalized segregation coefficient is
1, whereas it is 1/M if there is no cluster formation.

Clusters can be identified with the following flood fill algorithm:
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def cluster(t,y,x,c):
L = np.shape(t)[0]
mass = 0

candidates = [(y,x)]
while(len(candidates)>0):

y,x = candidates.pop()
if (t[y,x] == c):

if (y > 0):
candidates.append((y-1,x))

if (y < L-1):
candidates.append((y+1,x))

if (x > 0):
candidates.append((y,x-1))

if (x < L-1):
candidates.append((y,x+1))

mass = mass + 1
t[y,x] = 3

return mass

The segregation coefficient can be found with:

def segregation(t):
L = np.shape(t)[0]
n = []

for j in range(L):
for i in range(L):

mass = cluster(t,j,i,1)
if (mass > 0):

n = np.append(n,mass)
mass = cluster(t,j,i,-1)
if (mass > 0):

n = np.append(n,mass)

return 2*np.sum(n**2)/np.sum(t!=0)**2
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Figure 8.7: Single shot simulation of the segregation coefficient as a function of the
tolerance level for the Schelling model on a 80×80 grid and different values of ρ

A single shot simulation of the segregation coefficient as a function of the tol-
erance levelh is shown in Fig. 8.7. The tolerance level can only assume four values
when using von Neumann neighborhood: 1/4, 2/4, 3/4, and 4/4. It is interesting to
note that a tolerance level higher than 1/4 is enough to cause a significant lowering
of the segregation coefficient.

Although Schelling model does not capture many restrictions such as financial
barriers, it is supported by many empirical evidence (see [254, 255], for instance).

8.2.2 OPINION DYNAMICS

In 1951 Asch25 proposed the following experiment [256]: given a card A with a
single line drawn on it and another card B with three lines, a college student would
have to answer which of the three lines in card B had the same length as the one
in card A. The participant would be in a group with seven confederates that would
purposefully choose a wrong answer. Asch also had a control condition where the
participant would be tested alone. The experiment showed that approximately 75 %
of the participants conformed at least once with the group even if the answer was
completely wrong, whereas less than 1 % of the participants gave wrong answers in
the control condition. This is a classic experiment that shows the tendency of humans
to conform with a group.

When the coordination of behaviors occurs spontaneously without a central au-
thority, we call it herd behavior. This is widely seen in nature as a form of collective
behaviori. This happens, for example, during an information cascade when investors

hThe fraction of neighbors of a different type one tolerates before moving.
iOne of the most popular models for collective motion is the Vicsek26 model.
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tend to follow the investment strategies of other agents rather then their own [257].
This partially explains the dot-com bubble of 2001, for example. After seeing the
commercial potential of the internet, investors put aside their personal believes and
conformed with a common tendency of investing in e-commerce start-ups. Between
1995 and 2000, the Nasdaq index rose more than 400 %, but after this irrational
exuberance27, the index lost all its gains leading to the liquidation of a vast number
of companies and a general glut in the job market for programmers.

The Hegselmann28-Krause29 (HK) is an agent-based model [258] that tries to
capture this behavior. The simulation starts with an opinion profile xi ∈ [0;1], i =
1, . . . ,N, where N is the number of agents:

import numpy as np
import matplotlib.pyplot as pl

NA = 50
NI = 10

x = np.zeros((NA,NI))
x[:,0] = [np.random.uniform() for i in range(NA)]

At each simulation step, a neighborhood for each individual is formed with agents
that have similar opinions:

Nt(n) = {m : |xt(m)− xt(n)| ≤ ε}, (8.44)

where ε is a confidence level. Therefore, the neighborhood is bounded by this level
and the model is often known as a bounded confidence model. The following snippet
finds the neighborhood and calculate the average opinion:

def neighborhood(S,el):
ac = 0
z = 0.0
for y in S:

if abs(y-el) <= 0.05:
z = z + y
ac = ac + 1

return z/ac
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Figure 8.8: The evolution of the opinion profile in the HK model (left) and the final
number of clusters as a function of the confidence level

The opinion profile is updated by the average opinion of the neighborhood of each
agent:

xt+1
n =

1
|Nt(n)| ∑

m∈Nt (n)
xt

m. (8.45)

for t in range(NI-1):
for i in range(NA):

x[i,t+1] = neighborhood(x[:,t],x[i,t])

The result for a simulation with 50 agents in shown in Fig. 8.8. Regardless of the
initial distribution, clusters of agents tend to be formed and opinions tend to a small
set. The final number of clusters approximately depends on the confidence level as
N f inal ∼ ε−1. In other words, more groups are formed as the agents restrict their
neighborhood of individuals with similar opinions.

A variant of the HK is the Deffuant30 model [259]. There, pairs of agents are
picked randomly and adjust their opinions if they are relatively close. Otherwise,
communication is believed not to be possible and they keep their old believes. The
update rule is given by:

xi(t +∆) = xi(t)−µ [xi(t)− x j(t)]

x j(t +∆) = x j(t)−µ [x j(t)− xi(t)] ,
(8.46)

where µ ∈ [0,1/2] is a convergence parameter.
The initialization for this simulation is identical to that of the HK model, but the

dynamics is now given by:
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Figure 8.9: The evolution of the opinion profile in the Deffuant model (left) and the
final number of clusters as a function of the confidence level

for t in range(NI-1):
i = np.random.randint(NA)
j = np.random.randint(NA)

x[:,t+1] = x[:,t]
if abs(x[i,t]-x[j,t]) < 0.1:

x[i,t+1] = x[i,t] - mu*(x[i,t]-x[j,t])
x[j,t+1] = x[j,t] - mu*(x[j,t]-x[i,t])

The result of a simulation with 50 agents and µ = 0.35 is shown in Fig. 8.9.
As in the HK model, the final number of clusters approximately depends on the

confidence level as N f inal ∼ ε−0.9.

8.2.2.1 Kirman Model
Imagine two nearly identical securities. It is not uncommon that a large majority of
investors end up choosing one rather than the other. The same happens, for instance,
with ants presented with two sources of similar foods. Instead of the ants exploring
both sources equally, one source is consumed first. The Kirman31 model [260] is a
Markov chain agent-based model created to answer this kind of problem.

Let’s start with two distinct sources A and B and a total population of N agents.
At each simulation step, two random agents meet and one is converted to the other’s
opinion with a chance 1− δ . There is also a probability ε that an agent changes its
opinion independently of meeting another agent. This could happen, for instance, as
a reaction to an exogenous information.
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The state of the system k ∈ (0,1, . . . ,N) is defined as the number of agents that
prefer source A. Therefore, the probability p1 that k increases by one agent is given
by:

p1 = p(k,k+1) =
(

1− k
N

)(
ε +(1−δ )

k
N−1

)
, (8.47)

whereas the probability that k is decreased by one agent is given by:

p2 = p(k,k−1) =
k
N

(
ε +(1−δ )

N− k
N−1

)
. (8.48)

There is also a probability p3 = 1− p1− p2 that k remains unchanged. Note that
this model resembles a Polya urn process (see Sec. 3.1.2). If ε = 1/2 and δ = 1 then
it is just an Ehrenfest32 urn process where the agents change opinions without any
interaction. Also, when ε = δ = 0, the expected value of k is:

〈kn+1|Fn〉= (kn +1)p0 +(kn−1)p0 + kn(1−2p0) = kn, (8.49)

where

p0 =

(
1− k

N

)
k

N−1
=

k
N

N− k
N−1

. (8.50)

Therefore, under these parameters, the process becomes a martingale (see Sec. 3.1).
The Kirman model can easily be simulated with the following snippet:

N = 100
eps = 0.15
delta = 0.3
k = N/2
x = []

for it in range(10000):
p1 = (1-float(k)/N)*(eps+(1-delta)*float(k)/(N-1))
p2 = (float(k)/N)*(eps+(1-delta)*(N-k)/(N-1))

r = np.random.rand()

if (r <= p1):
k = k + 1

if (r > p1 and r <= p1+p2):
k = k - 1

x.append(k)
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Figure 8.10: The number of agents k that prefer source A as a function of the sim-
ulation step (top) and their respective histograms for ε = 5×10−3, δ = 10−2 (left),
ε = 10−2, δ = 2×10−2 (center), and ε = 0.15, δ = 0.3 (right)

Some results of this simulation are shown in Fig. 8.10. It is interesting to note that
it is possible to adjust the type of distribution of k by changing the values of ε and δ .

8.2.3 MARKET SPIN MODELS

The Bornholdt model33 [261] is another Ising-like automaton on a Z ⊂ Z2 lattice
of size N and a Von Neumann neighborhood. The states of this automaton are S =
{+1,−1}, where +1 corresponds to a buyer, and −1 corresponds to a seller state.

The simulation starts with a random field and the dynamics is given by a stochastic
transition function that assigns the state +1 to a cell with probability pi, and the state
−1 with a probability 1− pi. The probability pi is given by:

pi = [1+ exp(−2βhi(t))]
−1 , (8.51)

where β is the inverse temperature. hi(t) is a local field representing the influence
to conform with the majority of nearest neighbors in accordance with earlier models
[262, 263]:

hi(t) = J ∑
j∈N1

V N(i)

S j(t)−αCi(t)〈S〉, (8.52)

where J is a disagreement constant that indicates the tendency for the agent to con-
form, and α > 0 is a demagnetizing constant that indicates the tendency for the agent
to seek an anti-ferromagnetic order. This latter term represents the preference to-
wards the minority group (see Sec. 7.1.1.1). Ci is a second spin available to each
cell that relates to the strategy of the agent with respect to the global magnetization.
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Ci = 1, for instance, designates a desire for the agent to join the global minority
group that is interested in future returns, a fundamentalist behavior. The other situ-
ation Ci = −1 points to the desire to follow the majority group, a chartist behavior.
Thus, the dynamics of the strategy spin is given by:

Ci(t +1) =
{
−Ci(t) if αSi(t)Ci(t)∑ j S j(t)< 0,

Ci(t) otherwise. (8.53)

If, however, the strategy spin is allowed to change instantaneously, then Eq. 8.52
becomes:

hi(t) = J ∑
j∈N1

V N(i)

S j(t)−αSi(t) |〈S(t)〉| . (8.54)

The magnetization of the system M(t) = 〈S(t)〉 is identified as the price, from
which it is possible to obtain the logarithmic returns.

To simulate the Bornholdt model we start with the following snippet:

import numpy as np
import random as rd
import matplotlib.pyplot as pl

N = 32
J = 1
beta = 1.0/1.5
alpha = 4

S = np.array([rd.choices([1,-1],k=N) for i in range(N)])
Sn = np.zeros((N,N))

r = []
M = 1

The simulation itself is an update loop:
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for it in range(2000):
Ml = M
M = np.average(S)
for i in range(N):

for j in range(N):
sm = 0
for x in neig(i,j,N):

sm = sm + S[x[0],x[1]]
h = J*sm - alpha*S[i,j]*abs(M)
p = 1.0/(1+np.exp(-2*beta*h))

if (rd.random() < p):
Sn[i,j] = 1

else:
Sn[i,j] = -1

S = Sn
r = np.append(r,np.log(abs(M))-np.log(abs(Ml)))

In the snippet, neig is a function that returns the Von Neumann neighborhood:

def neig(i,j,N):
z = []
if (i > 0):

z.append([i-1,j])
if(i < N-1):

z.append([i+1,j])
if (j > 0):

z.append([i,j-1])
if (j < N-1):

z.append([i,j+1])

return np.array(z)

The result of the simulation shows metastable phases as shown in Fig. 8.11. More-
over, the log-returns in Fig. 8.12 show fat tails as indicated by the CCDF. Bornholdt
also showed that his model also shows some stylized facts such as volatility cluster-
ing.
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Figure 8.11: Grid configuration on a 32×32 lattice at undercritical temperature after
t=100, 200, and 300 simulation steps (from left to right)
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Figure 8.12: Left: Log-returns for the Bornholdt model with α = 4.0, J = 1.0, and
β = 2/3. Right: The corresponding complementary cumulative distribution function
(CCDF)
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8.3 KINETIC MODELS FOR WEALTH DISTRIBUTION
In the case of socioeconomic problems, we can use ad hoc models [264] where
particles maps to agents, energy maps to wealthj, and the binary collisions map to
trade interactions. Under this scheme, we can invoke the famous Boltzmann equation
to model the interaction among agents (see Appendix F).

In simulations of wealth distribution, for instance, two traders with initial posses-
sions v1,v2 ∈Ω⊆R meet randomly and are distributed as:[

v′1(t)
v′2(t)

]
=

[
p1 q1
p2 q2

][
v1(t)
v2(t)

]
, (8.55)

where v′1,v
′
2 ∈Ω as well.

In order to work with the framework of random processes, we can adopt associ-
ated independent random variables X and Y that are distributed in accordance with:

P(X ∈ S) = P(Y ∈ S) =
∫

S
f (v, t)dv, ∀S⊆Ω. (8.56)

Their interaction rules are: [
X ′(t)
Y ′(t)

]
=

[
p1 q1
p2 q2

][
X(t)
Y (t)

]
, (8.57)

After a small period ∆, the random variables are updated to X(t + ∆) = X ′(t) if
there was a binary interaction and X(t +∆) = X(t) otherwise. The probability of
interaction can be assigned to a Bernoulli distributed random variable T such that
P(T = 1) = 1−P(T = 0) = µ∆, where µ is an interaction kernel.

Therefore, we can write:

X(t +∆) = T X ′(t)+(1−T )X(t)

Y (t +∆) = TY ′(t)+(1−T )Y (t).
(8.58)

For any linear observable ϕ we can calculate expected values:

〈ϕ (X(t +∆))〉=
〈
T ϕ
(
X ′(t)

)〉
+ 〈(1−T )ϕ (X(t))〉

〈ϕ (Y (t +∆))〉=
〈
T ϕ
(
Y ′(t)

)〉
+ 〈(1−T )ϕ (Y (t))〉

. (8.59)

This can be rewritten as:

〈ϕ (X(t +∆))−ϕ (X(t))〉= µ∆
[〈

ϕ
(
X ′(t)

)〉
−〈ϕ (X(t))〉

]
〈ϕ (Y (t +∆))−ϕ (Y (t))〉= µ∆

[〈
ϕ
(
Y ′(t)

)〉
−〈ϕ (Y (t))〉

] . (8.60)

Taking the limit when ∆→ 0:

∂

∂ t
〈ϕ (X(t))+ϕ (Y (t))〉= µ

[〈
ϕ
(
X ′(t)

)〉
+
〈
ϕ
(
Y ′(t)

)〉
−〈ϕ (X(t))〉−〈ϕ (Y (t))〉] .

(8.61)

jNot to be confused with income, which is an inflow of resources.
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We are assuming that the possessions are uncorrelated (Stosszahlansatz). There-
fore, we take the joint probability distribution as the product of the individual ones
(see Appendix G). Thus,

2∂t

〈∫
Ω

ϕ(v) f (v, t)dv
〉
=

= µ

〈"
Ω×Ω

[
ϕ(v′1)+ϕ(v′2)−ϕ(v1)−ϕ(v2)

]
f (v1, t) f (v2, t)dv1dv2

〉
p1,q1p2,q2

.

(8.62)
It is possible to obtain a more physics-friendly equation considering a constant in-
teraction kernel and a Dirac34 delta observable ϕ(?) = δ (v−?) in this weak form of
the Boltzmann equation:

∂t f (v, t) =
1
2

〈"
Ω×Ω

[δ (v− v1)+δ (v− v2)] f (v1, t) f (v2, t)dv1dv2

〉
− f (v, t).

(8.63)
This equation can be written as:

∂t f + f = Q+( f , f ), (8.64)

where Q+( f , f ) is the collision operator given by:

Q+( f , f ) =
1
2

〈"
Ω×Ω

[δ (v− v1)+δ (v− v2)] f (v1, t) f (v2, t)dv1dv2

〉
. (8.65)

8.3.1 CONSERVATIVE MARKET MODEL

Some models assume that trade is conservative [265, 266], implying that the wealth
is preserved in a transaction. This considers wealth as having an objective nature
quantifiable by the stock of some scarce resource such as gold. In this case we have:∫

Ω

f (v, t)dv = m, (8.66)

where m is a finite and constant wealth. Also, we have that the collisions are perfectly
elastic: 〈p1+ p2〉= 〈q1+q2〉= 1. In the Chakraborti-Chakrabarti35 model [265], for
example, the distribution of wealth is given by:[

v′1
v′2

]
= 1/2

[
1+λ 1−λ

1−λ 1+λ

][
v1
v2

]
, (8.67)

where λ ∈ [0,1] is a parameter that relates to the saving tendency of the agents.
According to this rule, we have conservation since v′1 + v′2 = v1 + v2.
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The variance of the wealth in this model can be found using the observable ϕ(v) =
(v−m)2 in the weak form (Eq. 8.62):

∂t

〈∫
Ω

(v−m)2 f (v, t)dv
〉
=

=
1
2

〈"
Ω×Ω

[
(v′1−m)2 +(v′2−m)2− (v1−m)2− (v2−m)2]

f (v1, t) f (v2, t)dv1dv2〉

=−
(
1−λ 2

)
4

〈"
Ω×Ω

(v1− v2)
2 f (v1, t) f (v2, t)dv1dv2

〉
=−

(
1−λ 2

)
4

〈"
Ω×Ω

[(v1−m)− (v2−m)]2 f (v1, t) f (v2, t)dv1dv2

〉
=−

(
1−λ 2

)
4

〈"
Ω×Ω

[
(v1−m)2 +(v2−m)2−2(v1−m)(v2−m)

]
f (v1, t) f (v2, t)dv1dv2〉 .

Since the two processes are uncorrelated, we end up with:

∂t

∫
Ω

(v−m)2 f (v, t)dv =−
(
1−λ 2

)
2

∫
Ω

(v−m)2 f (v, t)dv. (8.68)

Hence, the variance of the distribution approaches zero at an exponential rate −(1−
λ 2)/2. This implies that every agent ends up with the same wealth, which is not what
is observed in real scenarios.

8.3.2 NON-CONSERVATIVE MARKET MODEL

If wealth is preserved in a transaction, why would anyone engage in trade? People
trade because they give more value to the good they are receiving rather than the one
that is being given. This imposes big limitations to the use of conservative models
(see, for instance: [267]).

Value is subjectivek [268]. Thus, making a cardinal measurement of wealth trou-
blesome. Rather, one usually resorts to ordinal descriptions, or in a wider context,
wealth could be defined as the ability to have one’s desires fulfilled. Therefore, trade
can only occur if there is an increase in wealth for both players, producing a positive
sum game. The quantification of marginal utility and possession, nonetheless, has to
be accepted and some non-conservative models that try to incorporate an increase of
wealth in economic transactions have been devised [269, 270].

Slalina’s36 model, for instance, is a model inspired by dissipative gases where the
exchange rule is given by:

kConsider this famous paradox attributed to Adam Smith: What would the values of water and diamond
be for a person who is dying of dehydration in a desert?
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v′1(t)
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]
=

[
1−β + ε β

β 1−β + ε

][
v1(t)
v2(t)

]
, (8.69)

where ε is a positive growth rate parameter, and β ∈ [0,1] plays the role of the saving
propensity.

The evolution of the average wealth can be found using ϕ(v) = v in Eq. 8.62:

2∂t

〈∫
Ω

v f (v, t)dv
〉
=〈"

Ω×Ω

[(1−β + ε)v1 +βv2 +βv1 +(1−β + ε)v2− v1− v2]

f (v1, t) f (v2, t)dv1dv2〉
∂ v̄
∂ t

=
1
2

〈"
Ω×Ω

ε(v1 + v2) f (v1, t) f (v2, t)dv1dv2

〉
∂ v̄
∂ t

= ε

〈∫
Ω

v f (v, t)dv
〉
= ε v̄.

(8.70)
Consequently, the average wealth grows as v̄ = v̄0eεt . The GDPl per capita indeed
shows an exponential growth as illustrated in Fig. 8.13.

Since the wealth grows exponentially, there is no steady state solution. Nonethe-
less, it is possible to seek self-similar solutions rescaling the wealth distribution as:

f (v, t) =
1

v̄(t)
g
(

v
v̄(t)

, t
)
. (8.71)

lGross domestic product, a measure of all goods and services produced during a specific period in an
economy.

Introduction to Econophysics

Figure 8.13: Real global GDP per capita adjusted for the value of money in 2011-
US$ (created with data from [1] through ourworldindata.org; the dashed line is an
exponential fit)
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The temporal derivative of this equation is given by:

d f
dt

=− 1
v̄2

dv̄
dt

g+
1
v̄

(
∂g
∂ t

+
∂g
∂x

∂x
∂ v̄

∂ v̄
∂ t

)
, x =

v
v̄

=−ε

v̄
g+

1
v̄

[
∂g
∂ t

+ v̄
∂g
∂v

(
− v

v̄2

)
ε v̄
]

=
ε

v̄
g+

1
v̄

(
∂g
∂ t
− εv

∂g
∂v

)
=

1
v̄

[
∂g
∂ t
− ε

(
g+ v

∂g
∂v

)]
=

1
v̄

[
∂g
∂ t
− ε

∂

∂v
(vg)

]
.

(8.72)

Using this result in Eq. 8.64 we get:

1
v̄

[
∂g
t
− ε

∂

∂v
(vg)

]
+ f = Q+( f , f )

∂g
∂ t

= Q+(g,g)−g+ ε
∂

∂v
(vg),

(8.73)

which now shows a drift term related to the growth of wealth.
Following the steps showed at the beginning of this section backwards, we get the

equation:

〈
∂

∂ t

∫
Ω

ϕ(v)g(v, t)dv
〉
− ε

〈∫
Ω

ϕ(v)
∂

∂v
(vg)dv

〉
=

=
1
2

〈∫
Ω×Ω

[
ϕ(v′1)+ϕ(v′2)−ϕ(v1)−ϕ(v2)

]
g(v1, t)g(v2, t)dv1dv2

〉
.

(8.74)
Making ϕ(v) = e−sv/v̄Θ(v)m, the integrals become Laplace transforms and we

get, according to the transition rule (Eq. 8.69):

∂

∂ t
G(s)+ εs

∂

∂ s
G(s) = G([1−β + ε]s)G(β s)−G(s). (8.75)

In steady state:

εs
∂

∂ s
G(s) = G([1−β + ε]s)G(β s)−G(s). (8.76)

By expanding the parameters β and ε in Taylor series and taking the inverse
Laplace transform, Slalina showed that the asymptotic wealth distribution for the
tails displays a Pareto power-law behavior [264, 269]. This is observed in real data
(see for instance [271]).

mΘ is the Heaviside37 function defined as Θ(x) =
{

1 if x > 0
0 otherwise.
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