
THREE MYSTERIES OF GAUSSIAN ELIMINATION

Lloyd N. Trefethen
Department of Mathematics

Massachusetts Institute of Technology

If numerical analysts understand anything, surely it must be Gaussian elimination.

This is the oldest and truest of numerical algorithms. To be precise, I am speaking of

Gaussian elimination with partial pivoting, the universal method for solving a dense,

unstructured n × n linear system of equations Ax = b on a serial computer. This algo-

rithm has been so successful that to many of us, Gaussian elimination and Ax = b are

more or less synonymous. The chapter headings in the book by Golub and Van Loan [3]

are typical -- along with "Orthogonalization and Least Squares Methods," "The Sym-

metric Eigenvalue Problem," and the rest, one finds "Gaussian Elimination," not

"Linear Systems of Equations."

Yet as I have taught Gaussian elimination in my classes, I have been surprised to

find that in basic ways it appears to be not understood why this algorithm occupies the

position it does. The closer one looks, the more subtle and remarkable Gaussian elimina-

tion appears. The purpose of this note (which is more than usually speculative) is to

sort out my own thoughts on this topic and to solicit ideas from others.

It is a pleasure to acknowledge my debt to many stimulating lectures by Gene

Golub and Jim Wilkinson, whose enthusiasm for numerical linear algebra is contagious.

Complex i ty

My first question is the broadest, having to do with whether Gaussian elimination,

or indeed any of the standard direct methods, will remain important in the long run.

QUESTION 1. Are there practical algorithms for solving A x = b in fewer than

0 (n 3) operations.~

This is a emotionally charged question among numerical analysts. Gaussian elimi-

nation and all of the other methods used in practice require O (n 3) work, but as is well

known, algorithms also exist that are faster -- at least in theory. First there was

Strussen's O(n TM) algorithm in 1968 [7], and then, beginning with Pan in 1978, a suc-

cession of improvements culminating in the current best rate of O (n 2'495) due to Cop-

persmith and Winograd [2]. See Pan's survey paper [4] for details and for a fascinating

plot of the best known exponent as a function of time. Nobody has been able to prove

that O (n a) operations are required except for the obvious value o~ ~ 2. We do know

that various basic matrix problems are theoretically equivalent as regards this mysteri-

ous exponent: solving Ax --~ b, computing A-l , computing detA, or multiplying A by

another n × n matrix B [1].

The trouble with the currently known fast algorithms is two-fold: they are

unstable, and the constant factors are enormous. This is where the emotions come in.

Perhaps because complexity theorists seem unconcerned with stability and constant fac-

tors -- perhaps even because they speak of "matrix multiplication" and "matrix inver-

sion" rather than "solution of linear systems" -- many numerical analysts have regarded

the question of fast algorithms with disdain. There is a widespread attitude that any

method that beats O (n 3) must ipso facto be impractical. But this view is unjustified.

All we really know is the impracticality of the methods devised so far.

Conceivably, a breakthrough may lie ahead in linear algebra that will be as impor-

tant as the FFT in Fourier analysis -- maybe even a simple, stable algorithm that solves

Ax ~ b in O (n 2 logn) operations. But whether or not this best of all possible situations

can be achieved, it is easy to imagine that there may be important practical ideas in

this area as yet undiscovered. Many other computational problems have seen dramatic

developments in recent years, such as prime number determination and linear program-

ming. So long as there is no clear reason for pessimism, why do numerical analysts leave

the search for fast matrix algorithms to the complexity theorists?

Orthogonality

My second question is rather philosophical, but is planted at least in the solid

ground of O (n 3) algorithms.

QUESTION 2. Why do we use non-orthogonal methods for solving A x = b , but

orthogonal ones for many other linear algebra computations?

Of course this statement is oversimplified. But broadly speaking, orthogonal operations

are favored for least-squares and eigenvalue calculations, and not for solving systems of

equations [3,9]. Where does the difference come from?

The standard reason why we use Gaussian elimination to solve Ax =-b rather than
1 3 2 3 a QR factorization is a factor of 2: ~ n vs. ~n flops.

The standard reason why we recommend a QR factorization for least-squares com-

putations rather than the normal equations is a matter of stability: the latter approach

squares the condition number. (But again it costs only half as much, and the normal

equations are very commonly used in practice.)

The standard reason why we use the QR iteration for eigenvalue computations

rather than a nonorthogonal analog is again a concern for stability (at least in the non-

symmetric case) -- which seems especially important here since a sequence of transforma-

tions must be performed rather than just one.

There are two themes in these arguments:

(a) Non-orthogonal algorithms are twice as fast;

(b) Orthogonal algorithms are more stable.

As far as I know, however, no results are available to pin down to what extent either of

these statements is generally valid. Regarding (a), it is tantalizing to realize that if a
1 3 2 3 way were discovered to compute the QR factorization in T n rather than ~ n flops, the

entire justification for Gauszian elimination would vanish. Can any theorem be esta-

blished to show that this will not happen?

Assuming (a) is generally true, the weight of the decision falls on (b). But is the

risk of instability truly inherent in nonorthogonal algorithms? Gaussian elimination is a

striking counterexample: it is stable but not orthogonal. On the other hand its stability

is much less obvious than that of alternative orthogonal algorithms. How do we know

that this is not the general pattern? Might there not be factors of 2 to be saved in other

areas at the price of more complicated stability analysis?

This seems already true in some instances. For example, EISPACK offers both an

orthogonal and a nonorthogonal reduction of a matrix to Hessenberg form, preliminary

to the determination of eigenvalues by the QR iteration [6]. There is no general con-

sensus as to which choice is best. A similar relationship holds between Givens and "fast

Givens" rotations for the element-by-element introduction of zeros [3].

S tab i l i ty

My final question is completely down-to-earth, and consequently, the one whose

unresolved status is the most perplexing.

QUESTION 8. Why is Gaussian elimination stable? Specifically, why is the growth

of elements during elimination negligible in practice?

The standard error analysis of Gaussian elimination, due to Wilkinson, quickly

reduces stability to the question of whether much growth occurs in the size of the ele-

ments as the elimination proceeds [9]. That is, if PA = L U , can the entries of U be

much larger than those of A ? In principle the answer is yes: a simple example shows

that they can be 2 n-1 times as large. But in practice, this never occurs. This empirical

conclusion is so well established that we easily forget how remarkable the situation is:

nobody knows why Gaussian elimination is stable!

Things do not happen, or fail to happen, without reasons. In this case, it is easy to

guess one kind of explanation that might be appropriate -- perhaps large growth rates

like 2 n-1 correspond to unstable "modes" that are themselves somehow unstable, in the

sense that computations tend to drift away from them towards stabler configurations.

Whatever the reason, the average-ease behavior of Gaussian elimination with partial

pivoting is evidently very different from the worst-case behavior, but nothing has been

proved. There is an interesting analogy here to the simplex method for linear program-

ming, where speed is the issue rather than accur~y, and good average-ease behavior has

only very recently been proved by Smale [5]. For some reason the question of average-

case stability of Gaussian elimination has received far less attention over the years.

Ironically, if we switch to complete pivoting, whose stability (relatively speaking) is
1 3 well understood, then -Tn additional comparisons are required. This brings the opera-

2 3 tion count up towards Tn flops, just as for the orthogonal methods that are under-

stood and stable.

These three mysteries of Gaussian elimination are enough for one brief note. But

the list need not end here. In the long run, for example, one wonders whether iterative

methods might prove better than all of the direct ones even for arbitrary matrices --

some kind of conjugate gradient iteration with automatic, adaptive preconditioning?

Many matters connected with scaling and equilibration are still poorly understood. Even

the question of forward vs. backward error analysis has recently been raised again [8].

As we enter an era of parallel computing, with the rules of the game changing fast, it is

intriguing that so many fundamental issues remain unsettled in the game we have been

playing for decades.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. UUman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1976.

[2] D. Coppersmith and S. Winograd, On the asymptotic complexity of matrix multipli-
cation, SIAM J. Comput. 11 (1982), 472-492.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University
Press, Baltimore, Maryland 1983.

[4] V. Pan, How can we speed up matrix multiplication?, SIAM Review 26 (1984), 393-
415.

[5] S. Smale, On the average number of steps in the simplex method of linear program-
ming, Math. Prog. 27 (1983), 241-262.

[6] B. T. Smith, et al., Matrix Eigensystem Routines -- EISPACK Guide, Lect. Notes.
Comp. Sci. 6, Springer, New York, 1976.

[7] V. Strassen, Gaussian elimination is not optimal, Numer. Math. 18 (1969), 354-356.

[8] F. Stummel, Forward error analysis of Gaussian elimination I, II, Numer. Math. 46
(1984), 365-415.

[9] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

