
Gaussian elimination without rounding

From László Lovász’s lecture notes (by Péter Gács)

February 15, 2018

The determinant

Let A = (ai j) be an arbitrary n × n matrix consisting of integers.
Let us understand, �rst of all, that the polynomial computation of det(A) is

not inherently impossible, i.e. the result can be written with polynomially many
digits. Let K = max |ai j |, then to write A we need obviously at least n2 logK bits.
On the other hand, the de�nition of determinants gives

| det(A)| ≤ n!Kn,

hence det(A) can be written using

log(n!Kn) +O(1) ≤ n(log n + logK) +O(1)

bits. Thus, det(A) can be written with polynomially many bits. Linear algebra
gives a formula for each element of det(A−1) as the quotient of two subdeter-
minants of A. This shows that A−1 can also be written with polynomially many
digits.

Exercise 1 Show that if A is a square matrix consisting of integers then to write
det(A) we need at most as many bits as to write A. [Hint: If a1, . . . , an are the row
vectors of A then | det(A)| ≤ |a1 | · · · |an | (this so-called “Hadamard-inequality” is
analogous to the statement that the area of a parallelogram is smaller than the
product of the lengths of its sides).]

Gaussian elimination.

The usual procedure to compute the determinant is the so-called Gaussian elim-
ination. We can view this as the transformation of the matrix into a lower trian-
gular matrix with column operations. These transformations do not change the
determinant but in the triangular matrix, the computation of the determinant is

more convenient: we must only multiply the diagonal elements to obtain it. (It
is also possible to obtain the inverse matrix from this form; we will not deal with
this separately.)

Suppose that for all i such that 1 ≤ i ≤ t we have achieved already that in the
ith row, only the �rst i positions hold a nonzero element. Pick a nonzero element
from the last n − t columns (if there is no such element we stop). We call this
element the pivot element of this stage. Let us rearrange the rows and columns so
that this element gets into position (t+1, t+1). Subtract column t+1, multiplied
by at+1,i/at+1,t+1, from column i for all i = t + 2, . . . , n, in order to get 0’s in the
elements (t+1, t+2), . . . , (t+1, n). It is known that the subtractions do not change
value of the determinant and the rearrangement (involving as many exchanges of
rows as of columns) also does not change the determinant.

Since one iteration of the Gaussian elimination uses O(n2) arithmetical oper-
ations and n iterations must be performed this means O(n3) arithmetical opera-
tions. But the problem is that we must also divide, and not with remainder. This
does not cause a problem over a �nite �eld but it does in case of the rational �eld.
We assumed that the elements of the original matrix are integers; but during the
running of the algorithm, matrices also occur that consist of rational numbers. In
what form should these matrix elements be stored? The natural answer is that as
pairs of integers (whose quotient is the rational number).

But do we require that the fractions be in reduced form, that is that their nu-
merator and denominator be relatively prime to each other? We could do this
but then we have to reduce each matrix element after each iteration, for which we
would have to perform the Euclidean algorithm. This can be performed in poly-
nomial time but it is a lot of extra work, desirable to avoid. (Of course, we also
have to show that in the reduced form, the occurring numerators and denomina-
tors have only polynomially many digits.)

We could also choose not to require that the matrix elements be in reduced
form. Then we de�ne the sum and product of two rational numbers a/b and c/d
by the following formulas: (ad+bc)/(bd) and (ac)/(bd). With this convention, the
problem is that the numerators and denominators occurring in the course of the
algorithm can be very large (have a nonpolynomial number of digits)!

Fortunately, we can give a procedure that stores the fractions in partially re-
duced form, and avoids both the reduction and the excessive growth of the num-
ber of digits. For this, let us analyze a little the matrices occurring during Gaussian
elimination. We can assume that the pivot elements are, as they come, in posi-
tions (1, 1), . . . , (n, n), i.e., we do not have to permute the rows and columns. Let
(a(k)i j) (1 ≤ i, j ≤ n) be the matrix obtained after k iterations. Let us denote the
elements in the main diagonal of the �nal matrix, for simplicity, by d1, . . . , dn

2

(thus, di = a(n)ii). Let D(k) denote the submatrix determined by the �rst k rows

and columns of matrix A, and let D(k)i j , for k + 1 ≤ i, j ≤ n, denote the submatrix
determined by the �rst k rows and the ith row and the �rst k columns and the jth
column. Let d(k)i j = det(D

(k)
i j). Obviously, det(D(k)) = d(k−1)kk .

Lemma 1

a(k)i j =
d(k)i j

det(D(k))
.

Proof. If we compute det(D(k)i j) using Gaussian elimination, then in its main diag-

onal, we obtain the elements d1, . . . , dk+1, a
(k)
i j . Thus

d(k)i j = d1 · · · dk+1 · a
(k)
i j and similarly det(D(k)) = d1 · · · dk+1 .

Dividing these two equations by each other, we obtain the lemma. �

By this lemma, every number occurring in the Gaussian elimination can be
represented as a fraction both the numerator and the denominator of which is a
determinant of some submatrix of the original Amatrix. In this way, a polynomial
number of digits is certainly enough to represent all the fractions obtained.

However, it is not necessary to reduce all fractions obtained in the process. By
the de�nition of Gaussian elimination we have that

a(k+1)i j = a(k)i j −
a(k)i,k+1a

(k)
k+1, j

a(k)k+1,k+1

and hence

d(k+1)i j =
d(k)i j d

(k)
k+1,k+1 − d

(k)
i,k+1d

(k)
k+1, j

d(k−1)k,k

.

This formula can be considered a recursion for computing the numbers d(k)i j . Since
the left-hand side is integer, the division can be carried out exactly. Using the
above considerations, we �nd that the number of digits in the quotient is polyno-
mial in terms of the size of the input.

Other possibilities

Here are some alternatives for exact computation.

3

Approximation We can approximate the number by binary “decimals” of limited
accuracy (as it seems natural from the point of view of computer implementa-
tion), allowing, say, p binary digits after the binary “decimal point”. Then the
result is only an approximation, but since the determinant is an integer, it would
be enough to compute it with an error smaller than 1/2. Using the methods of
numerical analysis, it can be found out how large must p be chosen to make the
error in the end result smaller than 1/2. It turns out that a polynomial number
of digits is enough (see [1]) and this leads to a polynomial algorithm.

Modular computation This possibility is probably the most practical one. If m >
| det(A)| then it is enough to determine the value of det(A) modulo m. If m
is a prime number then computing modulo m, we don’t have to use fractions.
Since we know that | det(A)| < n!Kn it would be enough to choose for m a
prime number greater than n!Kn. This is, however, not easy (see the section of
these notes on randomized algorithms), hence we can choose m as the product
of di�erent small primes: m = 2 · 3 · · · pk+1 where for k we can choose, e.g.,
the number of all digits occurring in the representation of A. Then it is easy
to compute the remainder of det(A) modulo pi for all pi using Gaussian elim-
ination in the �eld of residue classes, and then we can compute the remainder
of det(A) modulo m using the Chinese Remainder Theorem. Since k is small
(and it is known that there are su�ciently many small primes) we can a�ord to
�nd the �rst k primes simply by the sieve method and still keep the algorithm
polynomial. But the cost of this computation must be judged di�erently any-
way since the same primes can then be used for the computation of arbitrarily
many determinants.
The modular method is successfully applicable in a number of other cases. We
can consider it as a coding of the integers in a way di�erent from the binary (or
decimal) number system: we code the integer n by its remainder after division
by the primes 2,3, etc. This is an in�nite number of bits but if we know in
advance that no number occurring in the computation is larger than N then
it is enough to consider the �rst k primes whose product is larger than N . In
this coding, the arithmetic operations can be performed very simply, and even
in parallel for the di�erent primes. Comparison by magnitude is, however,
awkward.

Bibliography

[1] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford,
1965.

4

