CSCI-UA 9473 - Introduction to Machine Learning Final II

Augustin Cosse

May 2022

Total: 40 points Total time: 1h30

General instructions: The exam consists of 2 parts, a first part focusing on supervised learning (including 5 questions), and a second part focusing on unsupervised learning (including 5 questions). Once you are done, make sure to write your name on each page, then take a picture of all your answers and send it by email to acosse@nyu.edu. In case you have any question, you can ask those through the chat. Answer as many questions as you can starting with those you feel more confident with.

Question 1 (Supervised Learning 20pts)

1. Indicate whether the following statements are true or false (5pts)

True / False	Gaussian discriminant Analysis can be considered as a discriminative classifier
True / False	The MLE estimator can be understood as an MAP estimator with a uniform prior
True / False	Minimizing the log loss will always find the MLE estimator in binary classification
True / False	The number of parameters in a parametric model is fixed, while the number
	of parameters in a non-parametric model grows with the amount of training data.
True / False	As model complexity increases, bias will decrease while variance will increase
True / False	In an algorithm that uses the kernel trick, the Gaussian kernel
	gives a regression function or prediction function that is a linear combination of
	Gaussians centered at the sample points
True / False	The solution of the regression problem can always be computed
	$as \boldsymbol{\beta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$
True / False	The solution of the ridge regression problem for $\lambda > 0$ can always be computed
	$as \boldsymbol{\beta} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}$

- 2. We consider a dataset $\{x^{(i)}, t^{(i)}\}_{i=1}^{N}$ of size N. We would like to learn a regression model for this dataset of the form $y(x^{(i)}) = \beta_0 + \beta_1 x^{(i)} + \beta_2 (x^{(i)})^2$. We also know that the noise has distribution $p_{\lambda}(\varepsilon)$, that is to say $t^{(i)} - \beta_0 + \beta_1 x^{(i)} + \beta_2 (x^{(i)})^2 \sim p_{\lambda}$ (p_{λ} is a given function parametrized by a (known) parameter λ). If we want to use a prior $h(\beta)$ on β_0 , β_1 and β_2 , derive the function that we need to minimize to recover the maximum likelihood estimator (all the samples $\{x^{(i)}, t^{(i)}\}$ and regression coefficients β_j are assumed to be independent). Then give the gradient steps. [5pts]
- 3. Explain why the kernel trick allows us to solve a learning problem (e.g. a regression problem) in a high dimensional feature space without significantly increasing the run time. [3pts]
- 4. [3pts] Consider the dataset shown in Fig. 1. Circle all the classifiers that will achieve zero training error on this dataset

Figure 1: Regression dataset used in Question 1

- a) Logistic regression
- b) SVM (quadratic kernel, $k(x, y) = (x^T y + c)^2$)
- c) SVM (Gaussian kernel)
- d) Perceptron
- e) Neural network with one hidden layer and two units in the hidden layer (not including the output unit)
- f) Neural network with one hidden layer and three units in the hidden layer (not including the output unit)
- 5. Derive the expression of the shortest distance from a point z to a hyperplane $w^T x$ (give all the steps and illustrate with a drawing) then deduce from it, the formulation of the Max-Margin classifier [4pts]

Question 2 (Unsupervised 20pts)

1. Indicate whether the following statements are true or false (5pts)

True / False	In PCA, the latent factors are recovered by projecting the prototypes onto the eigenvectors
	of the sample covariance matrix
True / False	The only way to fix the unidentifiability of the factor loading matrix $oldsymbol{W}$ in FA
	is to require that matrix to be orthogonal
True / False	In the A Priori Algorithm, The confidence, or "predictability" of a rule,
	is its support divided by the support of its antecedent
True / False	When merging subclusters, complete linkage clustering favors subclusters
	whose combination will have the smallest diameter
True / False	The only difference between PCA and FA is that the latent factors in PCA
	are assumed to follow a Laplace distribution
True / False	To work, Expectation Maximization (EM) requires the distributions to be Gaussian

- 2. We consider a data matrix \mathbf{X} and we want to learn the best dimension 2 subspace to represent the data. Explain how you would proceed (all details, including pseudo-code)[5pts]
- 3. Give the pseudo-code for the EM algorithm and explain each of the parameters involved [5pts] ?
- 4. Explain how to split the clusters in divisive clustering [3pts].
- 5. Explain the difference between K-means and K-medoid [2pts]