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Question 1 Solve the first order equation 2u; + 3u, = 0 with the auziliary
condition u = sinx when t =0

Question 2 We consider the following PDE for u(zx,y):
ou Ju

We consider the Cauchy problem with the initial curve defined by x(s) = s and
y(s) = s (with s > 0). On this curve, we specify the following function

u(s,s) = f(s)

for a given f(s).

a) Derive the set of characteristics and sketch the curves in the region x >
0,y > 0. Verify that the Cauchy problem is well posed.

b) Compute the solution for the following cases
i) u(x,y) for R=0
it) R=U (U constant)
i) R=U% (U and L constant)
iv) R=U%Z (U and L constants)

Question 3 Solve aug,+buy, = 0 where a, b are constants, a # 0, with the initial
condition u(0,y) = e¥

Question 4 We consider the transport equation for u(x,t)



with

72

c=c(z) = COW

where cg and L are constants with respectively speed and length units. We con-
sider the initial value problem for which the initial curve is defined as x(s) = s
with s > 0 and t(s) = 0 on which we specify the function

u(s,0) = f(s) = Ue™>/t
where U 1is constant.

a) Sketch c(x). Assuming limg_, 1o u(z,t) = 0, using the PDE and the ex-
pression of c(x), show that the integral [~ w(xz,t) dt is conserved through
time.

b) Obtain and sketch (for x > 0, t > 0) the set of characteristics. Check that
the Cauchy problem is well posed.

¢) Explain why we can’t enforce a boundary condition of the form u(0,t) = h(t)
atx =0

d) Compute the solution u(x,t)

e) Sketch the solution u/U as a function of /L and for a couple of distinct
time steps cot/L. Now that you have the expression of u(z,t), make sure
that the integral from a) is conserved.

Question 5 Solve u, + yu, = y? with the initial condition u(0,y) = siny
Question 6 Solve u, + yu, = u? with the initial condition u(0,y) = siny
Question 7 (Burger’s equation) Solve u; + uu, = —z, u(z,0) = ¢(z).
Question 8 Solve the quasilinear initial value problem

(y+uwu, +yuy, =2 —y, u(z,1)=1+2z

Question 9 a) Solve the equation

u3
w(5) -0

fort >0, —co < x < co with initial data

u(z,0) = h(z) = { :ZEZ _ Zi)r) N

where a > 0 is constant. Solve until the first appearance of discontinuous
derivative and determine the critical time.



b) Consider the equation

Uy + u—g = —cu
t 3 I—

How large does the constant ¢ > 0 have to be so that a smooth solution (with
no discontinuities) exists for allt > 07 Ezplain.

Question 10 Solve the equation (1 + z*)u, + u, = 0. Sketch some of the
characteristic curves

Question 11 Using Duhamel’s method, solve the problem

et +vey = f(z,t) x€RE>0
c(x,0)=0 zeR

Find an explicit formula when f(x,t) = e“'sinz [Hint: for a fived s > 0 and
t > s, solve

{ wy +vw, =0
w(x,s;8) = f(x,s)

and integrate w with respect to s over (0,t).]

0
Question 12 Determine the solution of a—? = p that satisfies p(xz,t) = 1+sinz

along x = —2t.

Question 13 Consider the traffic flow problem
dp op
o C(P)% =0

Assume u(p) = Umaz(1 — p/Pmaz)- Solve for p(x,t) if the initial conditions are
a) p(x,0) = pmaz for © <0 and p(x,0) =0 for x > 0. This corresponds
Question 14 Consider the following problem (a > 0):

us +auy = f(z,t) 0<z<R,t>0
u(0,t) =0 t>0
u(z,0) =0 0<z<R

Prove the stability estimate

R t R
/ u?(x,t) do < et/ / f*(z,s) dv ds, t>0
0 o Jo

[Hint: Multiply by u the equation. Use a > 0 and the inequality 2fu < f? + u?
to obtain

d (R R R
—/ u?(z,t) do < / f2(x,t) do +/ u?(z,t) do
dt Jo 0 0

Prove that if E(t) satisfies E'(t) < G(t)+E(t), E(0) = 0 then E(t) < et fot G(s) ds]
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