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Laplace and Poisson’s equations

Laplace’s equation ∆u = 0 occurs frequently in the applied sciences, in particular in
the study of steady state phenomena. its solutions are called harmonic functions.

To be precise we say that a function u is harmonic in a domain Ω ⊆ Rn if
u ∈ C2(Ω) and ∆u = 0 in Ω.

As an example, the equilibrium position of an elastic membrane is a harmonic func-
tion as is the velocity of a homogeneous fluid. Another example is the steady state
temperature of a homogeneous and isotropic body as we saw when studying the heat
equation.

Slightly more general, Poisson’s equation plays a role in the theory of conservative
fields where the vector field is derived from the gradient of a potential. Examples
include

• Electrostatics. If we consider a potential V , the relation between the electric
field E and the potential is given by E = −grad V (the electric field is perpen-
dicular to the equipotentials). If D denotes the electric flux density, D = εE,
from the point form of Gauss law, we can write ∇ · D = ρv where ρv is the
volume charge density. Then using the fact that E is derived from the potential
V , we get

∇ · (−ε∇V ) = ρv

which for a constant permittivity ε can read as −∆V = ρv/ε
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• Similarly, if we consider a gravitational field F (x) generated from a mass density
ρ(x), and if this field can be expressed from the gravitational potential Φ(x),
Gauss law for gravity is used to express the fact that the flux of the gravitational
field F through the surface S = ∂V is equal to −4πGm where m =

´
V
ρ(x) dx

is the total mass contained in the volume V , i.e.˛
S

F · n⃗ dS = −4πGm

From the assumption that the field F can be derived from a potential Φ, as in
the electrostatic case, we then get

−
˛
S

∇Φ · n⃗ dS = −4πGm = −4πG

ˆ
V

ρ(x) dx

and applying the divergence theorem,ˆ
V

∇ · (∇Φ) dV = 4πG

ˆ
V

ρ(x) dV

As the relation holds for all volumes V , we can infer

∆Φ = ∇ · (∇Φ) = 4πGρ

In order to understand the properties of harmonic functions, let us consider a mul-
tidimensional random walk. That is to say, we fix a time step T > 0, a space step
h > 0 and use hZ2 to denote the lattice of points x = (x1, x2) whose coordinates are
integer multiples of h. If we use p = p(x1, x2, t) to denote the transition probability
function, the probability to find the the particle at position x at time t+ τ can read
as

p(x, t+ τ) =
1

4
{p(x+ he1, t) + p(x− he1, t) + p(x+ he2, t) + p(x− he2, t)} (1)

If we introduce the mean value operator Mh whose action on a function u is defined
as

Mhu(x) =
1

4
{u(x+ he1) + u(x− he1) + u(x+ he2) + u(x− he2)}

=
1

4

∑
|x−y|=h

u(y)

we get p(x, t + τ) = Mhp(x, t). Note that Mhu(x) gives the average of u over the
points of the lattice hZ2 at distance h from x (discrete neighborhood of x of radius
h). Also note that the value of p at time t+ τ is determined by the action of Mh on p
at the previous time. For this reason, we call Mh the generator of the random walk.
If u is twice continuously differentiable, taking the limit, we get

lim
h→0

Mhu(x)− u(x)

h2
→ 1

4
∆u(x)

I.e. using a Taylor expansion around x, for each of the u(x± hej), we get

Mhu = u(x) +
h2

4
ux1x1

+
h2

4
ux2x2

+O(h3).
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Such a formula suggests to introduce for any fixed h > 0 a discrete Laplace operator
of the form

∆∗
h =

4

h2
(Mh − I)

The operator ∆∗
h acts on functions u defined on the lattice hZ2 and we therefore say

that a function u is d-harmonic (the d standing for discrete) if ∆∗
hu = 0

We see that the value of a d-harmonic function at any point x is given by the average
of the values of u at the points in the discrete neighborhood of x of radius h.

Guided by this discrete characterization, we will now establish fundamental properties
of harmonic functions. Since d-harmonic functions are defined through a mean value
property, it seems natural to expect that harmonic functions will inherit a similar
mean value property. We can in fact say more as indicated by the following theorem

Theorem 1. Let u be harmonic in Ω ⊆ Rn. Then for any ball BR(x) ⊂⊂ Ωa,
the following mean value formulas hold

u(x) =
n

ωnRn

ˆ
BR(x)

u(y) dy (2)

u(x) =
1

ωnRn−1

ˆ
∂BR(x)

u(σ) dσ (3)

Where ωn is the surface measure of ∂B1 and ∂B1 is the unit sphere in Rn.

In general ωn = nπn/2

Γ(n
2 +1) where Γ(s) =

´ +∞
0

ts−1e−t dt is the Euler Gamma

function.

aFor any two open subsets U and V of Rn, we write U ⊂⊂ V and say that U is
compactly contained in V if U ⊂ U ⊂ V and U is compact

Proof. We start with the second formula. For r < R (note that y ∈ Rn, σ ∈ Rn), we
let

g(r) =
1

ωnrn−1

ˆ
∂Br(x)

u(σ) dσ

We apply the change of variables σ = x + rσ′ (i.e σ′ = σ−x
r ), then σ′ ∈ ∂B1(0),

dσ = rn−1dσ′ and

g(r) =
1

ωn

ˆ
∂B1(0)

u(x+ rσ′) dσ′

Let v(y) = u(x+ ry). From this we have

∇yv(y) = r∇u(x+ ry)

∆yv(y) = r2∆u(x+ ry)
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Then

g′(r) =
1

ωn

ˆ
∂B1(0)

d

dr
u(x+ rσ′)dσ′ =

1

ωn

ˆ
∂B1(0)

∇ξu(x+ rσ′) · σ′ dσ′

=
1

ωn

1

r

ˆ
∂B1(0)

∇σ′v(σ′) · σ′ dσ′

Using the divergence theorem, we obtain

1

ωnr

ˆ
∂B1(0)

∇v(σ′) · σ′ dσ′ =
1

ωnr

ˆ
B1(0)

∆v(y) dy =
r

ωn

ˆ
B1(0)

∆u(x+ ry) dy = 0

In the last equality we use the fact that the function u is harmonic. This shows that
the function g(r) is constant (i.e. g′(r) = 0) yet since g(r) → u(x) as r → 0, we must
have g(r) = 1

ωnRn−1

´
∂BR(x)

u(σ) dσ = u(x) for every R.

To derive the second relation, simply note that using

u(x) =
1

ωnrn−1

ˆ
∂Br(x)

u(σ) dσ,

multiplying by rn−1 and integrating both sides over r = 0 to R we get

ˆ R

0

rn−1u(x) dx =
1

ωn

ˆ R

0

dr

ˆ
∂Br(x)

u(σ) dσ

⇔ Rn

n
u(x) =

1

ωn

ˆ
Br(x)

u(y) dy

This concludes the proof.

We say that a continuous function satisfies the mean value property in Ω if the two
relations (2) and (3) hold for any ball BR(x) ⊂⊂ Ω. In fact, one can show that if u is
continuous and possesses the mean value property in a domain Ω, then u is harmonic
in Ω. From this, we see that there exists an equivalent characterization of harmonic
functions through the mean value property.

Using the mean value formula, we can derive the following maximum principle known
as Harnack’s inequality

Theorem 2 (Harnack’s inequality). For each connected open set V ⊂⊂ U ,
there exists a positive constant c depending only on V such that

sup
V
u ≤ c inf

V
u

For all non negative harmonic functions u in U .

What Harnack’s inequality is demonstrating is that the values of non negative har-
monic functions are all comparable. I.e. u(x) cannot be very small (or very large) at
any point in V unless it is very small (or very large) in all V .
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Figure 1: For any two points x, y ∈ V , the set V can be covered by a sequence of balls
of sufficiently small radius r ensuring that the non negative function u(x) remains
harmonic inside the ball. One can then relate the points inside each ball by means of
the mean value formulas.

This follows from the fact that for any x that does not lie on the boundary, one can
always find a small neighborhood in which u satisfies Laplace’s equation and thus the
mean value formulas.

Proof. Let Vn = πn/2

Γ(n/2+1) denote the volume of the unit ball in Rn. Note that this

implies |Br| = Vnr
n (i.e. the volume of the radius r ball is obtained by multiplying

Vn by rn)

Take r = 1
4dist (V, ∂U) and choose x, y ∈ V with |x − y| ≤ r. From the mean value

formula, we get

u(x) =

 
B(x,2r)

u(z) dz ≥ 1

Vn2nrn

ˆ
B(y,r)

u(z) dz

=
1

2n

 
B(y,r)

u(z) dz =
1

2n
u(y)

As this relation holds for any pair (x,y), we can replace x with y (and vice versa)
from which we get

2nu(y) ≥ u(x) ≥ 1

2n
u(y)

Since V is connected and V is compact, we can cover V by a chain of finitely many
balls {Bi}Ni=1, each of which has radius 2r and such that Bi∩Bi−1 ̸= ∅ for i = 2, . . . N
( Fig. 1). Then

u(x) ≥ 1

2n(N+1)
u(y), ∀x,y ∈ V
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Fundamental solution and invariant properties

As we did for the diffusion equation, let us start by looking at the invariant properties
characterizing the operator ∆. Those include

• Translations. Clearly, if u(x) is harmonic, we have u(x − y) harmonic for any
fixed y.

• Rotations. Invariance by rotation means that given a rotation in Rn, represented
by an orthogonal matrix M , (i.e. such that M−1 = MT ), v(x) = u(Mx) is
also harmonic in Rn. To check this, observe that if we denote byD2u the Hessian
of u (encoding the second order derivatives), we have ∆u = Tr(D2u). In partic-
ular, since D2v(x) = MTD2u(Mx)M , one can show Tr(MTD2u(Mx)M) =
Tr

(
D2u(Mx)

)
= ∆u = 0 (as M is orthogonal). Now, as for the heat equation,

one could wonder if the invariance does not arise from the particular structure of
the solutions. In this case, a typical rotation invariant quantity is the distance
function from a point, that is r = |x|. In this case, it therefore makes sense to
look for a solution of the form u = u(r). Such a solution is derived below

Substituting u = u(r) in Laplace’s equation and using the cylindrical and spherical
formulations of the Laplacian, we get

• In dimension 2,
∂2u

∂r2
+

1

r

∂u

∂r
= 0 so that u(r) = C1 log r + C2.

• In dimension 3, using spherical coordinates r, ψ, θ, r > 0, 0 ≤ ψ < π, 0 ≤ θ < 2π,
the Laplacian reads as

∆ =
∂2

∂r2
+

2

r

f∂

∂r︸ ︷︷ ︸
Radial part

+
1

r2

{
1

(sinψ)2
∂2

∂θ2
+

∂2

∂ψ2
+ cotψ

∂

∂ψ

}
︸ ︷︷ ︸

Spherical Part
Laplace Beltrami operator

For a function that only depends on r, we see that again, Laplace’s equation
reduces to

∂2u

∂r2
+

2

r

∂u

∂r
= 0

The general solution of this equation is u(r) = C1

r + C2, where C1, C2 are
arbitrary constants. Choosing C2 = 0 and C1 = (4π)−1 if n = 3, C1 = −(2π)−1

if n = 2, the function

Φ(x) =


− 1

2π
log |x| n = 2

1

n(n− 1)V (n)|x|n−2
n ≥ 3

6



is called the fundamental solution of Laplace’s equation. Note that V (n) encodes
the volume of the radius one ball in Rn. The particular choice of constants
is made to satisfy ∆Φ(x) = −δn(x) where δn(x) is the n-dimensional Dirac
measure that we introduced in previous lectures. When n = 3, 4πΦ represents
the electrostatic potential due to a unitary charge located at the origin and
vanishing at ∞.

The Newtonian potential

Suppose that (4π)−1f(x) gives the density of charge inside a compact set in R3. Then
Φ(x−y)f(y) dy represents the potential at x due to the charge (4π)−1f(y) dy inside
a small region of volume dy around y. The full potential is given by the sum of all
the contributions from the charges distributed according to f(y)

u(x) =

ˆ
R3

Φ(x− y)f(y) dy =
1

4π

ˆ
R3

f(y)

|x− y|
dy (4)

which is the convolution between f and Φ and is called the Newtonian potential of f .
Informally (we will show that this formally holds in the proof of Theorem 3 below)
we have

∆u =

ˆ
R3

∆xΦ(x− y)f(y) dy = −
ˆ
R3

δ3(x− y)f(y) dy = −f(x)

Note that (4) is not the only solution to ∆u = −f since u(x)+ c is a solution for any
constant c. However, the Newtonian potential is the only solution vanishing at ∞.
This idea is summarized by the following theorem

Theorem 3. Let f ∈ C2(Rn) with compact support. Let u be the Newtonian
potential of f defined by

u(x) =

ˆ
Rn

Φ(x− y) f(y) dy (5)

Then u is the only solution in Rn of ∆u = −f belonging to C2(Rn) and
vanishing at ∞.

Proof. As usual when we want to prove a uniqueness result, we consider another
solution v ∈ C2(R3) vanishing at infinity. Note that from an application of Theorem 2,
we get

sup(u− v) ≤ c inf(u− v)

Since both u and v vanish at ∞, this necessarily implies u − v = 0. In other words,
as soon as we have a solution, we know that this solution is unique. we are thus left
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with showing that the solution u corresponding to the Newtonian potential satisfies
Poisson’s equation and is C2(R3). Recall that we have

Φ(x) =


− 1

2π
log |x| n = 2

1

n(n− 2)V (n)

1

|x|n−2
n ≥ 3

Now note that

u(x) =

ˆ
R3

Φ(y)f(y − x) dy =

ˆ
R3

f(x− y)Φ(y) dy

To show that u is C2 we consider the ratios

u(x+ hei)− u(x)

h
=

ˆ
R3

Φ(y)

[
f(x+ hei − y)− f(x− y)

h

]
dy

Now in order to take the limit and move it inside the integral, we need to satisfy two
conditions: (i) uniform convergence of the sequence

gh ≡
[
f(x+ hei − y)− f(x− y)

h

]
and (ii) integration over a finite set. Condition (ii) is satisfied since f(x) has finite
support. For the uniform convergence, note that for the first order derivatives, we
can always use a Taylor approximation, which gives∣∣∣∣ ∂f∂xi − f(x+ hei − y)− f(x− y)

h

∣∣∣∣ ≤ h sup |D2f |

The right-hand side (which does not depend on x) is well defined since by assumption
f is twice continuously differentiable. For the uniform continuity of the sequence of
approximations of the second order partial derivatives, this is a little trickier. We can
still derive a similar result by relying on the fact that f has compact support. As
any continuous function on a compact set is automatically uniformly continuous, we
can apply the mean value theorem (the first order derivatives are all continuous and
differentiable) and we thus have

1

h

[
∂f

∂xi
(x+ hej − y)− ∂f

∂xi
(x− y)

]
=

∂2f

∂xi∂xj
(x+ thej − y)

for some t ∈ [0, 1]. From this,∣∣∣∣ 1h
{
∂f

∂xi
(x+ hej − y)− ∂f

∂xi
(x− y)

}
− ∂2f

∂xi∂xj
(x− y)

∣∣∣∣
=

∣∣∣∣ ∂2f

∂xi∂xj
(x+ thej − y)− ∂2f

∂xi∂xj
(x− y)

∣∣∣∣
In particular, since the mean value theorem holds for any value of x and since the

derivatives ∂2

∂xi∂xj
are uniformly continuous, we have that for all ε there exist H such

that for all h < H, for all x,∣∣∣∣ ∂2f

∂xi∂xj
(x+ thej − y)− ∂2f

∂xi∂xj
(x− y)

∣∣∣∣ < ε
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and hence ∣∣∣∣ 1h
{
∂f

∂xi
(x+ thej − y)− ∂f

∂xi
(x− y)

}
− ∂2f

∂xi∂xj
(x− y)

∣∣∣∣ < ε

which shows that the sequence of approximations

1

h

{
∂f

∂xi
(x+ hej − y)− ∂f

∂xi
(x− y)

}
converges uniformly to ∂2f

∂xi∂xj
. From this, we can thus move the derivatives inside

the integral which gives

∂2u

∂xi∂xj
=

ˆ
Rn

Φ(y)
∂2f

∂xi∂xj
(x− y) dy

The derivatives ∂2u
∂xi∂xj

are continuous because the function f is C2 by assumption.

Note that the fundamental solution Φ(y) is defined everywhere except at 0. We
can however still compute the integral (which should be understood as an improper
integral) as

ˆ
Rn

Φ(y)∂xixj
(x− y) dy = lim

ε→0

ˆ
Rn\Bε(0)

Φ(y)∂xixj
(x− y) dy

If we consider the integral in that same improper sense, from the fact that f is C2 on
a compact set, we have that ∂xi,xjf are uniformly continuous and we can write that
for all ε′, there exists δ such that for all |z| < δ,∣∣∣∣∣ limε→0

ˆ
Rn\Bε(0)

Φ(y)∂xixj
f(x− y + z) dy − lim

ε→0

ˆ
Rn\Bε(0)

Φ(y)∂xixj
f(x− y) dy

∣∣∣∣∣
=

∣∣∣∣∣ limε→0

ˆ
Rn\Bε(0)

Φ(y)
[
∂xixjf(x− y + z)− ∂xixjf(x− y)

]
dy

∣∣∣∣∣
≤ sup

y∈Rn\Bε(0)

∣∣∂xixjf(x− y + z)− ∂xixjf(x− y)
∣∣ lim
ε→0

ˆ
Rn\Bε(0)

Φ(y) dy

≤ ε′ lim
ε→0

ˆ
Rn\Bε(0)

Φ(y) dy, ∀ x

which shows continuity of ∂xixju.

We now need to show that u satisfies Poisson’s equation. Again we interpret our
integral in the improper sense as Φ(y) is not defined at 0. We let

∆u(x) =

ˆ
Rn\B(0,ε)

Φ(y)∆xf(x− y) dy
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Integrating by parts givesˆ
Rn\B(0,ε)

Φ(y)∆xf(x− y) dy =

ˆ
∂B(0,ε)

Φ(y) · ∂f
∂ν

(x− y) dS(y) (6)

−
ˆ
Rn\B(0,ε)

DΦ(y) ·Dyf(x− y) dy (7)

For (6) we have

(6) ≤ sup
∂B(0,ε)

|Df(x)|
ˆ
∂B(0,ε)

|Φ(y)| dS(y) ≤
{
Cε log |ε| n = 2
Cε n ≥ 3

For (7), further integrating by parts yieldsˆ
Rn\B(0,ε)

DΦ(y) ·Dyf(x− y) dy = −
ˆ
Rn\B(0,ε)

∆Φ(y)f(x− y) dy

+

ˆ
∂B(0,ε)

∂Φ

∂ν
(y)f(x− y) dS(y)

Since Φ is harmonic on Rn \ 0, this further simplifies into

(7) = −
ˆ
∂B(0,ε)

∂Φ

∂ν
(y)f(x− y) dS(y)

To control this last term, note that, from the definition of the fundamental solution,
we have

DΦ(y) = − 1

nV (n)

y

|y|n

as well as

ν =
y

|y|
=

−y

ε

From those relations, we can write the derivative ∂νΦ along the normal vector ν as

∂Φ

∂ν
= ν ·DΦ(y) =

|y|2

nV (n)|y|n+1
=

1

nV (n)εn−1

but the ball B(0, ε) has a surface S precisely given by nV (n)εn−1. Hence we have

(7) = −
 
∂B(0,ε)

f(x− y) dS(y) = −
 
∂B(x,ε)

f(y) dS(y)

= −f(x) when ε→ 0

which concludes the proof.

The Green function

Divergence formula, integration by parts and Green formulas

For any set U ⊂ Rn with boundary ∂U , let νi denote the ith component (along xi)
of the outward pointing unit normal vector at a point x of the boundary ∂U . In
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particular, for any function u ∈ C1(U), we call

∂u

∂ν
= ν ·Du

the (outward) normal derivative of u.

The Green formulas which will be used in the derivation of the Green function can
be proved from the Gauss-Green theorem which is given below

Theorem 4 (Gauss-Green). Let u ∈ C1(U). We have

(i)

ˆ
U

uxi
dx =

ˆ
∂U

u · νi dS

(ii) Applying (i) to each component uxi
and summing, we get

ˆ
U

div u =

ˆ
∂U

u · ν dS (8)

which is known as the Divergence Theorem which we used in earlier
developments.

Applying part (i) of the Gauss-Green Theorem to the product (u, v) of any two
functions u and v gives the integration by parts formula:

ˆ
U

uxiv dx = −
ˆ
U

uvxi dx+

ˆ
∂U

(uv) νi dS (9)

Finally, the Green formulas are obtained by using integration by parts on uxi
instead

of u, taking v = 1,

ˆ
U

∆u dx =

ˆ
∂U

n∑
i=1

uxi
νi dS =

ˆ
∂U

∂u

∂ν
dS,

then taking v = vxi
in the integration by parts formula, we get

ˆ
U

uxi
vxi

dx = −
ˆ
U

uvxixi
dx+

ˆ
∂U

uvxi
νi dS

Summing, we get
ˆ
U

Du ·Dv dx = −
ˆ
U

u∆v dx+

ˆ
∂U

u
∂v

∂ν
dS (10)
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Interchanging u and v in (10) we can derive a similar formula involving ∆vˆ
U

Du ·Dv dx = −
ˆ
U

v∆u dx+

ˆ
∂U

∂u

∂ν
v dS (11)

Finally, if we subtract (11) and (10) we getˆ
U

u∆v dx−
ˆ
∂U

∂v

∂ν
u dS −

ˆ
U

v∆u dx+

ˆ
∂U

∂u

∂ν
v dS = 0 (12)

Those relations are simultaneously known as Green’s formulas

Theorem 5 (Green’s formulas).

ˆ
U

∆u dx =

ˆ
∂U

∂u

∂ν
dS (13)

ˆ
U

Du ·Dv dx = −
ˆ
U

u∆v dx+

ˆ
∂U

u
∂v

∂ν
dS (14)

ˆ
U

u∆v dx−
ˆ
U

v∆u dx =

ˆ
∂U

∂v

∂ν
u dS −

ˆ
∂U

∂u

∂ν
v dS = 0 (15)

Motivation and integral formulation

Let u be an arbitrary function in C2(U). Let us fix x ∈ U and take ε > 0 small
enough so that B(x, ε) ⊂ U . Applying (15) to Vε = U \ B(x, ε) with v = Φ(y − x),
we obtain ˆ

Vε

u(y)∆Φ(y − x) dy −
ˆ
Vε

Φ(y − x)∆u(y) dy

=

ˆ
∂Vε

u(y)
∂Φ

∂ν
(y − x) dS(y)−

ˆ
∂Vε

Φ(y − x)
∂u

∂ν
(y) dS(y)

using ∆Φ(y − x) = 0 we get

−
ˆ
Vε

Φ(y − x)∆u dy =

ˆ
∂Vε

u(y)
∂Φ

∂ν
(y − x) dS(y)−

ˆ
∂Vε

Φ(y − x)
∂u

∂ν
(y) dS(y)

On the ∂B(x, ε) part of the boundary, we have∣∣∣∣∣
ˆ
∂B(x,ε)

Φ(y − x)
∂u

∂ν
(y) dS(y)

∣∣∣∣∣ ≤ Cεn−1 max
∂B(0,ε)

|Φ(y)| ≤
{
Cε log |ε| n = 2
Cε n ≥ 3

The constant follows from the fact that since u ∈ C2 the derivatives are bounded on
U .

Recall that in the proof of Theorem 3, we noted that the derivative of Φ and the
outward normal each obeyed

DΦ(y) = − 1

nVn

y

|y|n
, ν = − y

|y|
= −y

ε
, on ∂B(0, ε)
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From which

∂Φ

∂ν
= ν ·DΦ(y) =

1

nVnεn−1
=

1

|∂B(x, ε)|

From this second line we can thus writeˆ
∂Vε

u(y)
∂Φ

∂ν
(y − x) dS(y) =

 
∂B(x,ε)

u(y) dS(y) → u(x), when ε→ 0

All in all, when ε→ 0 we thus recover the integral formulation

u(x) =

ˆ
∂U

Φ(y − x)
∂u

∂ν
(y)− u(y)

∂Φ

∂ν
(y − x) dS(y)

−
ˆ
U

Φ(y − x)∆u(y) dy.

(16)

The formulation holds for every x ∈ U and any function u ∈ C2(U). Recall that we
showed that when the integral is understood as an improper integral, and as soon as
f ∈ C2

c (U), then u ∈ C2(U). Formula (16) is particularly attractive. Indeed, when
looking for a solution to Poisson’s equation for example, we know that the Laplacian
∆u is given by the source term f on U . Moreover, the value of u is also known on
the boundary ∂U by means of the Dirichlet conditions. A difficulty remains however
as we don’t know the value of ∂νu on ∂U . In order to derive a useful formula for the
solution u, we would therefore like to get rid of this first term.

Let us go back to Green’s identity
ˆ
U

∆u v −∆v u dx =

ˆ
∂U

v
∂u

∂ν
− u

∂v

∂ν
dS (17)

From this formula, if we could find a function v such that v = Φ on ∂U and ∆v = 0
on U , we could then get rid of the ∂νu term in (17). Let v = φ denote such a function,
i.e. let us assume that φ satisfies ∆φ = 0 on U as well as φ = Φ on ∂U . Substituting
this function in (17), we get

ˆ
U

∆u φ dx =

ˆ
∂U

Φ
∂u

∂ν
dx− u

∂Φ

∂ν
dS

which we can then use to get rid of the ∂νu term in (16)

u(x) =

ˆ
U

∆u φ dx+

ˆ
∂U

u
∂φ

∂ν
dS −

ˆ
U

Φ(y − x)∆u(y) dy

−
ˆ
∂U

u
Φ

∂ν
dS

Letting G(x,y) = Φ(y − x)− φ(y), this last expression can be reduced to

13



u(x) = −
ˆ
U

∆u G(x,y) dy −
ˆ
∂U

u
∂G

∂ν
dS (18)

Provided that we can compute the function G(x,y) (known as the Green function)
formula (18) is a particularly efficient formula since, as was noted earlier, it gives us a
closed form expression for the solution to any Dirichlet problem (involving Poisson’s
equation of course).

Deriving the Green function

Note that φ(y) satisfies ∆φ = 0 on all of U and φ(y) = Φ(x − y) on ∂U . φ is
thus very similar to Φ which satisfies ∆Φ = 0 everywhere except at 0 where it is not
defined. One idea to construct φ is to start from Φ and try to move the singularity
of Φ outside of the domain U of G(x,y). As an example, let us consider the half
space x = (x1, x2, x3) ∈ R3

+ (note that R3
+ = (x1, x2, x3) with x3 > 0). If we take

x̃ = (x1, x2,−x3), then the function

φx(y) = Φ(y − x̃) =
1

n(n− 2)Vn

1

|y − x̃|n−2

clearly satisfies φx(y) = Φ(y − x) on the boundary (i.e. x3 = 0). Moreover, for any
x, the singularity of φ is now located at x̃ and hence moved into the lower half space
which leads to ∆φx = 0 on R3

+ (since Laplace’s equation is translation invariant). We
can thus define our Green function as

G(x,y) = Φ(y − x)− Φ(y − x̃)

A similar idea can be applied to the open ball B0(0, 1) = {x | |x| < R = 1}. In this
case, we again want to move the singularity from inside B(0, 1) to outside this ball.
Proceeding as before, we let

φx(y) =
q

4π|x∗ − y|

and try to find x∗ (outside B(0, 1)) and q such that for |y| = R = 1,

q

4π|x∗ − y|
=

1

4π|x− y|
, (i.e. on ∂B0(0, 1)) (19)

From (19), letting |y| = 1 we get

|x∗ − y|2 = q2|x− y|2

⇔|x∗|2 + 1− 2⟨x∗,y⟩ = q∗
(
|x|2 + 1− 2⟨x,y⟩

)
14



Rearranging, we get

|x∗|2 + 1− q2
(
1 + |x|2

)
= 2y · (x∗ − q2x)

Since the LHS does not depend on y, the only possibility is to have x∗ = q2x which
gives

q4|x|2 + 1− q2(1 + |x|2) = 0

from which we get q = |x|−1. We can therefore define our Green function as

G(x,y) =
1

4π

1

|x− y|
− 1

4π

1

|x||x∗ − y|
, with x∗ =

1

|x|2
x

The mapping x 7→ x∗ = R2

|x|2x is called inversion through the sphere ∂B(0, R) and x∗

is known as dual of x with respect to ∂B(0, R).
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