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This note was written as part of the series of lectures on partial differential
equations (MATH-UA 9263) delivered at NYU Paris in 2022. The version is
temporary. Please direct any comments or questions to acosse@nyu.edu.

Heat equation and separation of variables

We want to study the temperature evolution during an interval of time, say from
t = 0 to t = T .

As different initial configurations will lead to different evolutions of temperature, it
seems reasonable to prescribe the initial temperature profile u(x, 0) = g(x).

Specifying initial conditions is however not enough to determine a unique evolution.
It is also necessary to know how the bar interacts with its surroundings. Starting
with a given intial temperature distribution, we can indeed change the evolution of
u by controlling the temperature or the heat flux at the two ends of the bar (recall
that we assumed the bar had perfect lateral insulation). We could for example keep
the temperature at a certain fixed level or let it vary in a certain way depending on
time. This amounts to prescribing conditions of the form

u(0, t) = h1(t), u(L, t) = h2(t) (1)

at any time t ∈ (0, T ]. Such conditions are known as Dirichlet boundary conditions.

We could also prescribe the heat flux at the end points. Starting from Fourier’s law,
we get

(Inward heat flow at x = 0) − k0ux(0, t) (2)

(Inward heat flow at x = L) k0ux(L, t) (3)

The heat flux is assigned through the Neumann boundary conditions,
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−ux(0, t) = h1(t), ux(L, t) = h2(t) (4)

at any time t ∈ (0, T ].

A last common type of boundary condition is the Robin or radiation condition. Let
the surroundings of the bar be kept at temperature U and assume that the inward
heat flux from one end of the bar depends linearly on the difference U − u (such an
assumption can be related to Newton’s law of cooling according to which the heat
loss from the surface of a body is a linear function of the temperature drop U − u
from the surroundings to the surface). We then have

k0ux = γ(U − u), (γ > 0) (5)

Letting α = γ/k0 > 0 and h = γU/k0. The Robin conditions at x = L can be
summarized as

ux + αu = h (6)

Clearly, it is also possible to assign mixed conditions (for instance a Dirichlet condition
at one end and a Neumann condition at the other).

The problems associated with the above boundary conditions have a corresponding
nomenclature.

Summarizing, we can state the most common problems for the one dimensional heat
equation as follows.

Given f = f(x, t) (external source) and g = g(x) (intial or Cauchy data),
determine u = u(x, t) such that ut −Duxx = f 0 < x < L, 0 < t < T

u(x, 0) = g(x) 0 ≤ x ≤ L
+ boundary conditions 0 ≤ t ≤ T

(7)

where the boundary conditions include

• Dirichlet : u(0, t) = h1(t), u(L, t) = h2(t)

• Neumann −ux(0, t) = h1(t), ux(L, t) = h2(t)
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Figure 1: Parabolic boundary

• Robin or radiation

−ux(0, t) + αu(0, t) = h1(t) ux(L, t) + αu(L, t) = h2(t)

Or any combination. Accordingly we have the initial (or Cauchy) Dirichlet problem,
the initial Neumann problem and so on. When h1 = h2 = 0, we say that the boundary
conditions are homogeneous.

Observe that only a special part of the boundary of the rectangle QT = (0, L)× (0, T )
(shown in Fig. 1) called the parabolic boundary of QT carries the data. No Final
condition (for t = T , 0 < x < L) is required.

We will now prove that under reasonable hypotheses, the initial Dirichlet, Neumann
or Robin and mixed problems are well posed. Sometimes this can be shown using
elementary techniques like the method of separation of variables.

A before, we consider our one dimensional bar of length L. We assume that this bar
is initially (at time t = 0) kept at constant temperature u0. After that, the end point
x = 0 is kept at the same temperature while the other end, at x = L is kept at a
constant temperature u1 > u0. We want to know how the temperature evolves inside
the bar.

Before making any computation, let us try to conjecture what could happen.

• Given that u1 > u0, heat should start flowing from the hotter end, raising the
temperature inside the bar and causing a heat outflow inside the cold boundary

• On the other hand, the interior increase of temperature should cause the hot
inflow to decrease in time while the outflow increases

• We thus expect that sooner or later the two fluxes will balance each other so
that the temperature eventually reaches a steady state distribution (it would
also be interesting to know how fast the steady state is reached)
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We will see that this is exactly the behavior predicted by our mathematical model
given by the heat equation

ut −Duxx = 0, t > 0, 0 < x < L (8)

with the initial Dirichlet conditions u(x, 0) = u0 0 ≤ x ≤ L
u(0, t) = u0 t > 0
u(L, t) = u1 t > 0

(9)

To start we introduce dimensionless variables, that is variables independent of the
units of measurement. To do that, we rescale space, time and temperature with
respect to quantities that are characteristic of our problem.

• For the space variable, we can use the length L of the bar as a rescaling factor,
setting

y =
x

L
(10)

which is clearly dimensionless, being a ratio of lengths. Notice that 0 ≤ y ≤ 1.

• How can we rescale time? Observe that the physical dimensions of the diffusion

coefficient D are [length]
2 × [time]

−1
. Thus the constant τ = L2

D gives a char-
acteristic time scale for our diffusion problem. From this we can thus introduce
the dimensionless time

s =
t

τ
(11)

Finally we rescale the temperature by setting

z(y, s) =
u(Ly, τs)− u0

u1 − u0
(12)

For the dimensionless temperature z, we now get

z(y, 0) =
u(Ly, 0)− u0

u1 − u0
= 0, 0 ≤ y ≤ 1 (13)

z(0, s) =
u(0, τs)− u0

u1 − u0
= 0, z(1, s) =

u(L, τs)− u0

u1 − u0
= 1 (14)

Let us now rewrite the heat equation with these dimensionless quantities. Note that
we have

u(x, t) = (u1 − u0)z

(
x

L
,
t

τ

)
+ u0 (15)

From this, using the chain rule, we get

∂u

∂t
= (u1 − u0)

1

τ

∂z

∂s
(16)
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as well as

∂u

∂x
= (u1 − u0)

1

L

∂z

∂y
(17)

and hence

∂2u

∂x2
= (u1 − u0)

1

L2

∂2z

∂y2
(18)

Grouping those two terms, and substituting into the heat equation, we get

(u1 − u0)

(
1

τ

∂z

∂s
− D

L2

∂2z

∂y2

)
= 0 (19)

using D = L2

τ , this finally gives

zs − zyy = 0 (20)

together with the initial conditions

z(y, 0) = 0 (21)

and the Dirichlet/Boundary conditions

z(0, s) = 0, z(1, s) = 1 (22)

We see that in the dimensionless formulation, the parameters L and D have disap-
peared, emphasizing the mathematical essence of the problem.

Steady state solution

We start by solving the Cauchy/Dirichlet problem by focusing on the steady state
solution zst that satisfies the equation zyy = 0 and the boundary conditions (22).

An elementary computation gives

zst(y) = Ay +B (23)

which, with the BC’s z(0, s) = 0, z(1, s) = 1 immediately gives B = 0 and A = 1.
Hence we see that the steady state solution can be defined as zst = y.

Going back to the original variables, we thus get

ust(x, t) = (u1 − u0)z
st

(
x

L
,
t

τ

)
+ u0 (24)

= (u1 − u0)
x

L
+ u0 (25)

Corresponding to a uniform heat flux along the bar given by Fourier’s law

φ = −k0ux = −k0
u1 − u0

L
(26)
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Transient regime

Knowing the steady state solution, it is convenient to introduce the function

U(y, s) = zst(y, s)− z(y, s) = y − z(y, s) (27)

Since we expect our solution to eventually reach the steady state, U represents what
we call a transient regime that should converge to 0 as s → ∞

Furthermore, the rate of convergence to 0 of U gives information on how fast the
temperature reaches its equilibrium distribution. U satisfies the dimensionless heat
equation with the initial condition U(y, 0) = y (i.e. z(y, 0) = 0) and the homogeneous
boundary conditions

U(0, s) = 0, and U(1, s) = 0 (28)

Separation of variables

We are now in a position to find an explicit formula for U using the method of
separation of variables. The main idea is to exploit the linear nature of the problem,
constructing the solution by superposition of simpler solutions of the form w(s)v(y)
in which the variables s and y appear in separated form.

It is important to keep in mind that the reduction to homogeneous boundary condi-
tions is crucial to carry on the computations.

We start by looking for non trivial solutions in the Cauchy/Dirichlet problem of the
form

U(y, s) = w(s)v(y) (29)

with v(0) = v(1) = 0 given by the boundary conditions. Substituting this in our
dimensionless heat equation, we get

0 =
∂U

∂s
− ∂2U

∂y2
= w′(s)v(y)− w(s)v′′(y) (30)

From which we can separate the variables as

w′(s)

w(s)
=

v′′(y)

v(y)
(31)

Now the left-hand side is a function of s only while the right-hand side is a function
of y only and the equality must hold for every s > 0 and every y ∈ (0, L). Such a
relation is possible only when both sides are equal to a common constant λ. We can
thus write

v′′(y) = λv(y) (32)

w′(s) = λw(s) (33)

together with v(0) = v(1) = 0. Let us start with (33). We consider three frameworks
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(a) λ = 0

(b) λ = µ2 > 0

(c) λ = −µ2 < 0

In the first case, if λ = 0, we get

v′′(y)− λv(y) = 0 (34)

which gives v(y) = Ay +B. Using v(0) = v(1) = 0, we thus obtain A = B = 0

In the second case, if λ = µ2 > 0 we get v′′(y) = λv(y) from which

v′′(y)

v(y)
= λ ⇒ v(y) = Aeµy +Be−µy (35)

using v(0) = v(1) = 0, we get A+B = 0 as well as Aeµ+Be−µ which together imply
A(eµ − e−µ) = 0 and hence A = B = 0

Finally for λ = −µ2 < 0 we get v(y) = Aiµy + Be−iµy. Taking v(0) = v(1) = 0, we
obtain {

A+B = 0
Aeiµ +Be−iµ = 0

which together imply A(eiµ− e−iµ) = 0 and hence 2 sinµ = 0. In this last setting, for
U to satisfy the boundary conditions, the constant µ must therefore be of the form
µ = kπ, k = 1, 2, . . .. Note that k = 0 gives the trivial solution λ = 0.

All in all, we can thus write

vk(y) = A sin kπy, k = 1, 2, . . . (36)

With λ = −µ2
k = −(kπ)2, our second eigenvalue problem turns to

w′(s)

w(s)
= −(kπ)2 (37)

with corresponding solution

wk(s) = Ae−(kπ)2s, k = 1, 2, . . . (38)
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grouping (36) and (38) we get

Uk(y, s) = Ae−(kπ)2s sin kπy, k = 1, 2, . . . (39)

Although our solution satisfies the homogeneous Dirichlet conditions, they do not
match the initial condition U(y, 0) = y yet.

As we are solving a homogeneous problem

 Us − Uyy = 0
U(y, 0) = y
U(0, s) = U(1, s) = 0

, (40)

we can then try to construct the correct solution by superposing the Uk, that is to
say, by considering a general solution of the form

U(y, s) =

∞∑
k=1

Ake
−k2π2s sin kπy. (41)

From this, our initial conditions then require

U(y, 0) =

∞∑
k=1

Ak sin kπy = y, 0 ≤ y ≤ 1 (42)

A number of questions then arise:

1. Is it possible to choose the coefficients Ak in order to satisfy this initial condi-
tion?

2. Since our solution involves an infinite expansion, we should also clarify in which
sense U attains those initial conditions (as an example, do we have U(z, s) → y
when (z, s) → (y, 0) ?)

3. Any finite linear combination o the Uk is a solution of the heat equation, but
how can we make sure that the same is true for U (i.e. an infinite combination
of terms?). The answer to this question is positive if we can differentiate term
by term the infinite sum so that

(∂s − ∂yy)U(y, s) =

∞∑
k=1

(∂s − ∂yy)Uk(y, s) = 0 (43)
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4. Last but not least, even if we provide a positive answer to questions 1 and 2
above, when can we guarantee that U is the unique solution to our problem and
therefore, that it describes the correct evolution of temperature inside the rod?

Our first question is rather general (we will see that it shows up again in the treatment
of the wave equation) and involves the notion of Fourier series (which we address in
the next section) of the initial data f(y) = y on the interval (0, 1).

Fourier series

When dealing with the heat equation, and in particular, with the method of separa-
tion of variables, we discovered that our initial conditions could be satisfied only if
f(x) could be equated to an infinite linear combination of eigenfunctions of a given
boundary value problem. We will begin by investigating series of both sines and
cosines (expansions in sines and cosines can then be derived as special cases). Let u
be a 2T -periodic function in R and assume that u can be expanded in a trigonometric
series as follows

u(x) = U +

∞∑
k=1

{
ak cos

πk

T
x+ bk sin

πk

T
x

}
(44)

The first question we should ask ourselves is What is the expression of the coefficients
ak, bk and U?

To answer this question, we will use the orhogonality of the trigonometric functions
(the proof is left as an exercise). Let ω = π

T . Note that for a function that is 2T
periodic, the sines and cosines are of the form sin(kπx/T ) and cos(kπx/T ).

∫ T

−T

cos(kωx) cosmωx =

∫ T

−T

sin kωx sinmωx dx = 0, if k ̸= m (45)

∫ T

−T

cos kωx sinmωx dx = 0, for all k,m ≥ 0 (46)

and finally
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∫ T

−T

cos2 kωx dx =

∫ T

−T

sin2 kωx dx = T (47)

Now suppose that the series (44) converges uniformly in R. Multiplying this series by
cosnωx and integrating term by term over (−T, T ), the orthogonality relations (45),
(46) and (47) give∫ T

−T

u(x) cosnωx dx =

∫ T

−T

U cosnωx dx+

∞∑
k=1

ak

∫ T

−T

cos kωx cosnωx dx (48)

+

∞∑
k=1

bk

∫ T

−T

sin kωx cosnωx dx (49)

=
U

nω
|sin(nωT )− sin(−nωT )|+ Tan = Tan (50)

From which we therefore get

an =
1

T

∫ T

−T

u(x) cosnωx dx (51)

and for n = 0, we have 2UT =
∫ T

−T
u(x) dx. Then setting U = a0

2 with

a0 ≡ 1

T

∫ T

−T

u(x) dx (52)

Similarly we have for every n,

bn =
1

T

∫ T

−T

u(x) sinnωx dx (53)

From the above, we see that if u(x) has a uniformly convergent expansion, the coef-
ficients an, bn must be given by formula (51) to (53). In this case, we say that the
trigonometric series

S[f ] =
a0
2

+

∞∑
k=1

{ak cos kωx+ bk sin kωx} (54)
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is the Fourier series of u and the coefficients a0, a1, . . . , b1, . . . are the called the Fourier
coefficients of u.

• if u(x) is an odd function, i.e. u(−x) = −u(x), then clearly we have

an =
1

T

∫ T

−T

u(x) cosnωx dx = 0 (55)

and the Fourier series reduces to a sine series

u(x) =

∞∑
k=1

bk sin kωx (56)

• If u(x) is an even function, i.e. u(x) = u(−x), then we have

bn =
1

T

∫ T

−T

u(x) sinnωx dx = 0 (57)

and the Fourier series reduces to a cosine series

u(x) =

∞∑
k=1

ak cos kωx+
a0
2

(58)

if we use Euler’s identity eikωx = cos kωx + i sin kωx, the Fourier series (44) can be
written as the sum

∞∑
k=−∞

cke
ikωx (59)

where the complex coefficients are defined as

ck =
1

2T

∫ T

−T

u(z)e−ikωz dz (60)

and the relation between the real and complex coefficients is given by

c0 =
1

2
a0

ck =
1

2
(ak − bk)

c−k = ck

So far we have assumed that the function u(x) admitted a Fourier series. A couple of
questions thus remain:

1) Which conditions on u do ensure the “convergence” of its Fourier series? (and in
what sense can we guarantee convergence of the series?)

2) If the Fourier series is convergent in some sense, does it always have sum u?
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The convergence of the Fourier series is a delicate matter. We will only mention the
most popular results (see the additional note on the course website for more details).
We will successively cover the least squares (or L2), the pointwise and the uniform
convergence.

• Least squares or L2 convergence. This is perhaps the most natural form of
convergence for the Fourier series. Let SN denote the N -partial sum of the
Fourier series of u. We can then write

Theorem 1 Let u be a square integrable function
(∫ T

−T
u2 dx < ∞

)
on

(−T, T ) then

lim
N→+∞

∫ T

−T

|SN (u)− u(x)|2 dx = 0 (61)

Moreover, the following Parseval relation holds

1

T

∫ T

−T

u2 =
a20
2

+
∞∑
k=1

(a2k + b2k) (62)

Since the numerical series on the RHS of (62) is convergent, we deduce that
limk→+∞ ak = limk→+∞ bk = 0. The result is sometimes known as the Riemann-
Lebesgue lemma.

• We now discuss pointwise convergence. For this we first introduce the Dirichlet
conditions. We say that a function u(x) satisfies the Dirichlet conditions on
[−T, T ] if it is continuous on [−T, T ] except possibly at a finite number of points
of jump discontinuity and if the interval [−T, T ] can be partitioned in a finite
number of subintervals such that u is monotonic in each of them. From this we
can derive the following theorem which guarantees pointwise convergence

Theorem 2 if u satisfies the Dirichlet conditions on [−T, T ] then the
Fourier series of u converges at each point of [−T, T ]. Moreover, setting
f(x±) = limy→±x f(y),

a0
2

+

∞∑
k=1

{ak cos kωx+ bk sin kωx} =

{
u(x+)+u(x−)

2 x ∈ (−T, T )
u(T−)+u(−T+)

2 x = ±T

(63)

In particular, at every point x of continuity of u, the Fourier series
converges to u(x).

• Finally, uniform convergence can be related to the Weierstrass test. Since

|ak cos kωx+ bk sin kωx| ≤ |ak|+ |bk| (64)
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It follows that if the numerical series

∞∑
k=1

|ak|,
∞∑
k=1

|bk| (65)

are convergent, then the Fourier series of u is uniformly convergent in R with
sum u. This is the case if u ∈ C1(R) and is 2T -periodic.

Conclusion and general remarks

Now that we have introduced the notion of Fourier series and given the form of our
initial condition (42), it makes sense to wonder if we can write the RHS (Cauchy
data) in this relation as a an expansion of sinusoids. In the case of problem (40), we
thus look for a sine expansion of the 2 periodic and odd function that agrees with
f(y) = y on the [−1, 1] interval. If

f(y) =
∞∑
k=1

Ak sin kπy, (66)

the coefficients Ak are given by

Ak = 2

∫ 1

0

y sin kπy dy = − 2

kπ
|y cos kπy|10 +

2

kπ

∫ 1

0

cos kπy dy (67)

= −2 cos kπ

kπ
= (−1)k+1 2

kπ
(68)

The sine Fourier expansion of f(y) on the interval (0, 1) can therefore read as

y =

∞∑
k=1

(−1)k+1 2

kπ
sin kπy (69)

Clearly this expansion cannot be true at y = 1 since sin kπ = 0 for every k and this
would therefore lead to the contradiction 1 = 0. The theory of Fourier series implies
that the expansion (69) is true at every point y ∈ [0, 1).

In fact we can show that the relation (69) holds in the quadratic mean sense (or
L2(0, 1) sense) that is

∫ 1

0

[
y −

N∑
k=1

(−1)k+1 2

kπ
sin kπy

]2

dy → 0, as N → ∞ (70)

From the definition of the Ak’s we then obtain the final solution
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U(y, s) =

∞∑
k=1

(−1)k+1 2

kπ
e−k2π2s sin kπy (71)

The solution (71) again satisfies the IC’s in the least squares sense

lim
s→0+

∫ 1

0

[U(y, s)− y]
2
dy = 0. (72)

In fact, by Parseval’s identity we have∫ 1

0

[U(y, s)− y]
2
dy =

4

π2

∞∑
k=0

(e−k2π2s − 1)2

k2
(73)

≤ 4

π2

∞∑
k=0

1

k2
(74)

since the series
∑∞

k=1
1
k2 converges, we can pass the limit lims→0+ inside the sum

which gives

lim
s→0+

∫ 1

0

[U(y, s)− y]
2
dy = 0 (75)

The analytical expression of U is rather reassuring. Our solution is a superposition
of sinusoids of increasing frequencies k and of strongly damped amplitude because of
the negative exponential.

On top of verifying the initial conditions, the particular nature of the solution also
requires some care when discussing differentiability. The fact that each particular
solution Uk is a valid solution (with respect to differentiability) by construction (as is
any finite linear combination of those solutions), does not imply that an infinite sum
of such solutions remains differentiable. This idea (which is known as term by term
differentiation) is summarized by Theorem 3 below

Theorem 3 (Term by term differentiation) . Suppose that fk : U → R for
each k = 1, 2, . . . has continuous derivative on U (at the end point this means one-
sided derivative). Suppose further that

(i) The series
∑∞

k=1 fk(x0) converges at some point x0 ∈ U and

(ii) The series of derivatives
∑∞

k=1 f
′
k(x) converges uniformly on U , to f(x) =∑∞

k=1 f
′
k(x)

Then

1) The series
∑∞

k=1 fk(x) converges at every x ∈ U and the sum F (x) =
∑∞

k=1 uk(x)
is differentiable with F ′(x) = f(x) for each x ∈ U
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2) Moreover, the convergence of
∑∞

k=1 fk(x) to F (x) is uniform on U .

In our case, the rapid convergence to zero of each term and its derivatives allows us
to differentiate term by term. Indeed we have

∂Uk

∂s
=

∂2Uk

∂y2
= (−1)k(2πk)e−k2π2s sin kπy

so that if s ≥ s0 > 0 we get∣∣∣∣∂Uk

∂s

∣∣∣∣ , ∣∣∣∣∂2Uk

∂y2

∣∣∣∣ ≤ 2kπe−k2π2s0 (76)

since the numerical series

∞∑
k=1

ke−k2π2s0

converges1 We can conclude by the Weierstrass test that the series

∞∑
k=1

∂Uk

∂s
,

∞∑
k=1

∂2Uk

∂y2

converge uniformly in [0, 1]× [s0,∞]

we are left with checking the Dirichlet conditions

U(z, s) → 0, as (z, s) → (0, s0)

U(z, s) → 0 as (z, s) → (1, s0)

This is true because we can take the limit under the sum due to the uniform conver-
gence of the series

Uniqueness

We finally conclude with a discussion on the uniqueness of the solution (71). To show
uniqueness, we will use the energy method. Suppose W is another solution of the
Cauchy-Dirichlet problem (40). By linearity v = U − W satisfies vs − vyy = 0 and
has zero initial and boundary data.

Multiplying vs − vyy and integrating in y over the interval [0, 1] we get∫ 1

0

v vs dy −
∫ 1

0

v vyy dy = 0

1if you need to convince yourself, check the ratio

lim
k→∞

(k + 1)e−(k+1)2π62s0

ke−k2π2s0
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Observe that ∫ 1

0

v vs dy =
1

2

∫ 1

0

∂

∂s

(
v2
)
dy =

1

2

d

ds

∫ 1

0

v2 dy

Moreover, ∫ 1

0

v vyy dy = [v(1, s)vy(1, s)− v(0, s)vy(0, s)]

−
∫ 1

0

(vy)
2 dy

Since v(1, s) = v(0, s) = 0, we get

1

2

d

ds

∫ 1

0

v2 dy = −
∫ 1

0

(vy)
2 dy ≤ 0 (77)

which implies that the non negative function

E(s) =
1

2

∫ 1

0

v2 dy

is non increasing. On the other hand, recall that any solution satisfies the initial data
in the least squares sense so that both W and U satisfy

lim
s→0

∫ 1

0

(U(s, y)− y)
2
dy = 0

lim
s→0

∫ 1

0

(W (s, y)− y)
2
dy = 0

From those we get

lim
s→0

∫ 1

0

(v(s, y))
2
dy = 0

which together with (77) finally implies E(s) = 0 for all values s and hence v(s, y) = 0
for all s.
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