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Introduction

Let u(x) : x ∈ U ⊆ Rn 7→ u(x) ∈ R. A partial differential equation (PDE) is an
equation involving an unknown function u(x) of two or more variables and certain of
its partial derivatives. Recall that the partial derivative of a function u(x)

∂u

∂xi
= lim

h→0

u(x+ hei)− u(x)

h
(1)

which we will sometimes write compctaly as uxi
. Similarly we have

∂2u

∂xi∂xj
= uxixj ,

∂3u

∂xi∂xj∂xk
= uxixjxk

More generally, given a multi-index α = (α1, α2, . . . , αn) ∈ Nn such that |α| =
α1 + . . .+ αn, we will consider the notation

Dα =
∂|α|u

∂xα1
1 . . . ∂xαn

n
= ∂α1

x1
. . . ∂αn

xn
u(x) (2)

If k is a non negative integer, the set {DαU(x)||α| = k} will sometimes be represented
compactly as Dku(x) (denoting the set of all partial derivatives of order k). When
k = 2, the elements of D2u can be rearranged as the matrix

D2u =

 ux1x1
. . . ux1xn

...
...

uxnx1
. . . uxnxn


known as the Hessian matrix of u(x).
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We will use the notation ∆u to denote the Laplacian of u ∈ Rn,

∆u =

n∑
i=1

uxixi
= divDu = ∇ · ∇u =

(
∂

∂x1
, . . . ,

∂

∂xn

)
·
(

∂u

∂x1
, . . . ,

∂u

∂xn

)
(3)

= tr
(
D2u

)
(4)

Now that we have all the necessary tools, we can introduce a more formal defintion
of PDEs. We call a kth order partial differential equation, an expression of the form

F
(
Dku(x), Dk−1u(x, . . . , Du(x), u(x), u(x),x)

)
= 0, x ∈ U (5)

where F : Rnk × Rnk−1 × . . .× R× U → R is an known function an u(x) : U 7→ R.

Solving the PDE (5) corresponds to finding all the solutions u(x) satisfying (5) possi-
bly among all the functions satisfying certain auxilliary boundary conditions on some
part Γ of ∂U .

By finding solutions, we mean obtaining simple explicit solutions or at least prove
properties of those solutions.

A first important distinction is between linear and non linear equations.

We call a PDE linear if F is linear with respect to u(x) and all its derivatives or
similarly if F is of the form

F (Dku, . . . , u,x) =
∑

|α|≤k

aα(x)D
αu+ f(x) (6)

for some given functions aα(x) (|α| ≤ k). Note that we call the PDE homogeneous
if f(x) = 0.

A second distinction concerns the type of non linearity. A general feature of PDEs is
that the terms with the highest number of derivatives, called principal terms matter
most typically. As a result, when moving to non linear PDEs, it makes a big difference
in which terms the non linearity shows up.

• A kth order PDE which is of the form∑
|α|=k

aα(x)∂
α
u u = F (x, u, ∂u, . . . , ∂k−1u) (7)

that is where the non linearity at most enters in all the terms of order at most
k − 1, is called semilinear.

Another way to look at this is to say that a semilinear PDE is linear in the
leading order derivatives. For instance

∆u = u2 +

n∑
j=1

(∂ju)
2
+ u2 (8)

is a semilinear equation.
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• If one allows the coefficients aα on the left-hand side to depend on u as well as
its derivatives up to order k − 1,∑

|α|=k

aα(x, u, ∂u, . . . , ∂
k−1u) (∂αu) (x) = F (x, u, ∂u, . . . , ∂k−1u) (9)

the equation is called quasilinear. An example is

(1 + u2
x)uxx + (1 + u2

y)uyy = f(x, y) (10)

• Finally, the PDE is fully non-linear, if it depends non linearly on the highest
order derivatives.

The theory of linear equations can be considered sufficiently well developed an consol-
idated, at least for what concerns the most important questions. On the contrary, the
non-linearities present such a rich variety of aspects and complications that a general
theory does not appear to be conceivable. Existing results and the new investigations
focus on more or less specific cases, especially those that are interesting in the applied
sciences.

let us now look at a couple of important linear and non linear equations:

1. Transport Equations (first order)

ut + v · ∇u = 0 (11)

The transport equation describes for instance, the transport of a solid poluting
substance along a channel. Here u is the concentration of the substance and v
is the stream speed.

2. Diffusion or Heat equation. (second order)

ut −D∆u = 0 (12)

Where ∆ = ∂x1x1
+ . . .+ ∂xnxn

is the Laplace operator. The diffusion equation
describes the conductionof heat through a homogeneous and isotropic medium;
u is the temperature and D encodes the thermal properties of the material.

3. Wave equation (second order)

utt − c2∆u = 0 (13)

describes for instance the propagation of transversal waves of small amplitude in
a perfectly elastic chord (e.g. of a violin) if n = 1, or membrane (e.g. of a drum)
if n = 2. if n = 3, it can be used to describe the propagation of electromagnetic
waves in a vacuum or of small amplitude sound waves. In those frameworks, u
may represent the wave amplitude and c denotes the propagation speed.

4. Laplace’s or potential equation (second order)

∆u = 0 (14)
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where u = u(x). The diffusion and the wave equations model evolutions phe-
nomena. The Laplace equation describes the corresponding steady state in
which the solution does not depend on time anymore. Together with its non
homogeneous version

∆u = f (15)

called Poisson’s equation, it also plays an important role in electrostatics

5. Black-Scholes equation (second order)

ut +
1

2
σ2x2uxx + rxux − ru = 0 (16)

Here u = u(x, t), x ≥ 0, t ≥ 0. Fundamental in mathematical finance, this
equation governs the evolution of the price u of a derivatie (European option)
based on some underlying asset (a stock or a currency), whose price is x.

6. Vibrating plate (fourth order)

utt −∆2u = 0 (17)

where x ∈ R2 and

∆2u = ∆(∆u) =
∂4u

∂x4
1

+ 2
∂4u

∂x2
1∂x

2
2

+
∂4u

∂x4
2

(18)

is called the biharmonic operator. In the theory of linear elasticity, it models
the transversal waves of small amplitudes of a homogeneous isotropic plate.

7. Schrödinger equation (second order)

−iut = ∆u+ V (x)u (19)

where i is the complex unit. This equation is fundamental in quantum mechanics
and governs the evolution of a particle subject to a potential V . The function
|u|2 represents a probability density.

Among the most popular non linear PDEs we should mention

1. Burgers equation (quasi-linear, first order)

ut + cuux = 0, (x ∈ R) (20)

Burger’s equation governs the one dimensional flux of a non viscous fluid but it
can be used to model traffic dynamics as well. Its viscous variant

ut + cuux = εuxx (21)

constitutes a basic example of competition between dissipation (due to the term
εuxx) and steepening (i.e. shock formation due to the term cuux)
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2. Fisher’s equation (semilinear, second order)

ut −∆u = ru(M − u) (22)

(D, r,M are positive constants). Fisher’s equation governs the evolution of a
population of density u subject to diffusion and logistic growth (represented by
the right-hand side)

3. Porous medium equation (quasi-linear, second order)

ut = kdiv (uγ∇u) (23)

where k > 0, γ > 1 are constants. This equation appears in the description of
the filtration phenomena, e.g. motion of water through the ground.

4. Minimal surface equation (quasi-linear, second order)

div

(
∇u√

1 + |∇u|2

)
= 0, (x ∈ R2) (24)

The graph of a solution u minimizes the area under all the surfaces z = v(x1, x2)
whose boundary is a given curve. For example, soap bubbles are minimal sur-
faces.

5. Eikonal equation (fully non-linear, first order)

|∇u| = c(x) (25)

The eikonal equation appears in geometrical optics. if u is a solution, its level
surfaces u(x = t) describe the position of a light wave front at time t.

Finally we describe a few important systems of equtions

1. Navier’s equation for linear elasticity (three scalar equations of second order)

ρutt = µ∆u+ (µ+ λ) grad div u (26)

where u = (u1(x, t)u2(x, t), u3(x, t)), x ∈ R3. The vector u represents the
displacement from the equilibrium of a deformable continuum body of (constant)
density ρ.

2. Maxwell’s equations in vacuum (six scalar linear equations of first order)

Et − curl B = 0, Bt + curl E = 0, (Ampère and Faraday’s laws) (27)

div E = 0, div B = 0, (Gauss laws) (28)

Here E is the electric field, B is the magnetic induction field , the light speed is
c = 1 and the magnetic permeability is µ0 = 1

5



3. Navier Stokes equations (three quasi-linear scalar equations of second order and
one linear equation of first order)

ut + (u · ∇)u = −1

ρ
∇p+ ν∆u (29)

div u = 0 (30)

where u = (u1(x, t), u2(x, t), u3(x, t)), p = p(x, t), x ∈ R3. This equation
governs the motion of a viscous, homogeneous and incompressible fluid. Here u
is the fluid speed, p is its pressure, ρ its density (constant) abd ν is the kinematic
viscosity, given by the ratio between the fluid viscosity and its density. The term
(u · ∇)u represents the inertial acceleration due to fluid transport.

In the construction of a mathematical model, only some of the general laws of contin-
uum mechanics are relevant, while the others are eliminated through the constitutive
laws or suitably simplified according tot he current situation. In general additional
information is necessary to select or to predict the existence of a unique solution. Such
additional information is commonly supplied in the form of initial and/or boundary
data although other forms are possible. For instance, typical boundary conditions
prescribe the value of the solution or of its normal derivative or a combination of the
two at the boundary of the relevant domain.

A main goal of a theory is to establish conditions on the data in order to have a
problem with the following features:

(i) There exists at least one solution

(ii) There exists at most one solution

(iii) The solution depends continuously on the data

The last condition requires some explanation. Roughly speaking, property (iii) states
that the correspondence data → solution is continuous or, in other words, that a
small error on the data entails a small error on the solution. This property extremely
important and may be expressed as a local stability of the solution with respect to
the data. Think for instance of using a computer to find an approximate solution:
the insertion of the data an the computation algorithms entail approximation errors
of various types. A significant sensitivity of the solution on small variations of the
data would produce an unacceptable result.

The notion of continuity and the error measurements, both in the data and in the
solution are made precise by introducing a suitable notion of distance. When dealing
with a numerical or a finite dimensional set of data, an appropriate distance may be
the Euclidean distance. if x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn)

dist(x,y) = ∥x− y∥ =

√√√√ n∑
k=1

(xk − yk)2 (31)
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When dealing with real functions defined on a set A, common distances are

dist(f, g) = max
x∈A

|f(x)− g(x)| (32)

which measures the maximum difference between f and g over A or

dist(f, g) =

√∫
A

(f − g)2 (33)

which is the L2 distance between the function f and g. When a problem possesses
the properties (i), (ii) and (iii) above, it is said to be well-posed.

When using a mathematical model, it is extremely useful, sometimes essential to
deal with well posed problems. Uniqueness and stability increase the possibility of
providing accurate numerical approximations.

On the other hand, well posed problems are not the only problems that are interesting.
There exist problems that are intrinsically ill-posed because of the lack of uniqueness
or of stability but are still of great interest for practical applications. An important
class of ill posed problems is the class of inverse problems.

Another important question as we will see is ”What do we mean by the term ’solu-
tion’”? Should we require our ’solution’ to be real analytic? or infinitely differen-
tiable?

Perhaps this is too much and we should only require a solution to an order k PDE
to be k times continuously differentiable. This will ensure that the derivatives which
appear in the statement of the PDE will exist and be continuous. We will call a
solution with such smoothness a classical solution. By solving a PDE in the classical
sense, we will then mean writing down a formula for a classical solution satisfying the
existence, uniqueness and well-posedness conditions.

Solving a PDE in the classical sense is however not always possible. If we consider
the scalar conservation law for example

ut + F (u)x = 0 (34)

which is used to describe the formation and propagation of shock waves. A shock wave
is a curve of discontinuity so if we want to study conservation laws, we must therefore
allow for solutions u which are not continuously differentiable or even continuous.

In general the conservation law has no classical solution. It is however well posed if we
allow for properly defined generalized or weak solutions. The search for generalized
solutions can in fact be applied more generally, including to problems which admit
classical solutions.

A good strategy is to consider as separate the existence problem and the smoothness
problem. For any given PDE, we can define at first a relatively wide notion of weak
solution with the hope that in this framework, it might be easier to establish existence,
uniqueness and continuous dependence on the data.
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For some PDEs, deriving a weak solution might be the best we can achieve. For
others, it might turn out that our weak solutions are ultimately smooth enough to
qualify as classical solutions. This idea is encoded in the notion of regularity.
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