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Recitation 2: Fourier series and separation of

variables

(Partial) Solutions
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Question 1 We consider the function shown in Fig. 1. Obtain the Fourier
expansion for this periodic function.

Solution 1 The function is even and periodic with period T/2. We are thus
looking for a series of the form

f(x) = a0 +

∞∑
n=1

an cos

(
2πnx

T

)
for a0 we have

a0 =
1

T

∫ T/2

−T/2

f(x) dx =
ah

T

and for any n > 0, we use∫ T/2

−T/2

f(x) cos

(
2πnx

T

)
dx =

∫ T/2

−T/2

an cos
2

(
2πnx

T

)
dx

= an
T

2
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Figure 1: Question 1
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Figure 2: Question 2

Integrating by part, we get

an =
2

T

∣∣∣∣ha (x+ a)
T

2πn
sin

(
2πnx

T

)∣∣∣∣0
−a

− 2

T

∫ 0

−a

T

2πn
sin

(
2πnx

T

)
dx

+
2

T

∣∣∣∣ha (−x+ a)
T

2πn
sin

(
2πnx

T

)∣∣∣∣a
0

+
2

T

∫ a

0

T

2πn
sin

(
2πnx

T

)
dx

=
2

T

(
T

2πn

)2 ∣∣∣∣cos 2πnxT

∣∣∣∣0
−a

− 2

T

(
T

2πn

)2 ∣∣∣∣cos 2πnxT

∣∣∣∣a
0

=
2

T

(
T

2πn

)2
h

a

(
1− cos

2πna

T

)
− 2

T

h

a

(
T

2πn

)2(
cos

2πna

T
− 1

)
=

2

T

2h

a

(
T

2πn

)2(
1− cos

2πan

T

)

Question 2 We consider the function shown in Fig. 2. Expand this function
in a complex Fourier series.
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Solution 2 To get the expansion as a complex Fourier series, we use

f(x) =

∞∑
k=−∞

cke
2πkx

T (1)

with

ck =
1

T

∫ T/2

−T/2

f(x)e−i 2πk
T x dx

Since we have∫ T/2

−T/2

f(x)e−
2πiℓx

T dx =

∫ T/2

−T/2

∞∑
k=−∞

cke
2πikx

T e−
2πiℓx

T dx

For k ̸= ℓ, we get∫ T/2

−T/2

f(x)e−
2πiℓx

T dx =

∫ T/2

−T/2

∞∑
k=−∞

cke
2πikx

T e−
2πiℓx

T

=

∞∑
k=−∞

ck
T

2πi(k − ℓ)

∣∣∣e 2πi(k−ℓ)x
T

∣∣∣T/2

−T/2

=

∞∑
−∞

ck
T

2πi(k − ℓ)

∣∣∣eπi(k−ℓ) − e−πi(k−ℓ)
∣∣∣ = 0

if k = ℓ, we recover ∫ T/2

−T/2

f(x)e−
2πiℓx

T dx = ckT

hence

cℓ =
1

T

∫ T/2

−T/2

f(x)e−
2πiℓx

T dx

From the lines above, we have

ck =
1

T

∫ 0

−1

−Me−
2πikz

T dz +
1

T

∫ 1

0

Me−
2πikz

T dz

= −M

T

T

−2πik

(
1− e

2πik
T

)
+

M

T

1

(−2πik)

(
e−

2πik
T − 1

)
=

M

πik

(
1− cos

(
2πk

T

))

Substituting into (1) and re-arranging we get

f(x) =

∞∑
k=1

2M

πk

(
1− cos

(
2πk

T

))
sin

(
2πkx

T

)
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Figure 3: Question 3

Question 3 Expand the function show in Fig. 3 into a Fourier series.

Question 4 A voltage e(t) = E0 sinωt is passed through a half-wave rectifier
which clips the negative portions of the voltage. Obtain a Fourier series expan-
sion for the output voltage of the rectifier.

Question 5 Determine whether the following functions can be expanded into a
Fourier series of not and give the reasons why.

(i) sin 1
x defined in −π < x < π

(ii) sin 1
x defined in 1 < x < 2

(iii) 1
1+x defined in −2 < x < 2

(iv) log x defined in 1 < x < 4

(v) f(x) = 1− 2−(n+1) defined for 1− 2−n < x < 1− 2−(n+1), n = 0, 1, 2, . . . ,
where f(x) is defined in 0 < x < 1.

Question 6 Establish each of the orthogonality conditions below∫ π

−π

cosmx cosnx dx = πδm,n∫ π

−π

sinmx sinnx dx = πδm,n∫ π

−π

sinmx cosnx dx = 0

where δmn is the Kronecker delta defined as follows

δmn = 0 if m ̸= n

δmn = 1 if m = n
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Solution 6 We use the trigonometric identity

cosmx cosnx =
cos((m+ n)x) + cos((m− n)x)

2

From which we have∫ π

−π

cos((m+ n)x) + cos((m− n)x)

2
dx

=

∣∣∣∣ sin((m+ n)x)

2(m+ n)

∣∣∣∣π
−π

+

∣∣∣∣ sin((m− n)x)

2(m− n)

∣∣∣∣π
−π

= 0, when m ̸= n ̸= 0

∫ π

−π

x cosnx dx = 2π, m = n = 0

as well as∫ π

−π

cos2 nx dx =

∫ π

−π

1 + cos 2nx

2
dx

= π +

∫ π

−π

sin 2nx

4n
dx = 0, When m = n ̸= 0

A similar reasoning holds for∫ π

−π

sinmx sinnx dx

for which using

sinmx sinnx =
cos((m− n)x)− cos((m+ n)x)

2

gives the desired result.

Finally for ∫ π

−π

sinmx cosnx dx

we use

sin(mx) cosnx =
sin((m+ n)x) + sin((m− n)x)

2
, for m ̸= n ̸= 0

From which we get∫ π

−π

sinmx cosnx dx =

∣∣∣∣−cos((m+ n)x)

2(m+ n)

∣∣∣∣π
−π

+

∣∣∣∣−cos((m− n)x)

2(m− n)

∣∣∣∣π
−π

= 0, when m ̸= n∫ π

−π

sinmx cosmx dx = 0, when m = n = 0∫ π

−π

sin((m+ n)x)

2
dx =

1

2(m+ n)
|cos((m+ n)x)|π−π = 0, when m = n ̸= 0
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Figure 4: Question 7.

Question 7 We consider a rectangular plate of sides a and b (see Figure 4) on
three sides of which the temperature is assumed to be zero, while the temperature
on the remaining side is a specified function of x, namely f(x). We are thus
interested in the temperature u(x, y) in the plate which satisfies the (steady state)
equation

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0

as well as the boundary conditions

u(0, y) = 0

u(a, y) = 0

u(x, b) = 0

u(x, 0) = f(x)

Solution 7 We start by considering solutions of the form u(x, y) = v(x)w(y).
Substituting this into the heat equation, we get

v′′(x)w(y) + w′′(y)v(x) = 0

which we can separate into

v′′(x)

v(x)
= −w′′(y)

w(y)

As we saw during the lecture, this implies

v′′(x)

v(x)
= λ =

−w′′(y)

w(y)
, for some constant λ (2)
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together with the boundary conditions
v(0)w(y) = 0
v(a)w(y) = 0
v(x)w(b) = 0
v(x)w(0) = f(x)

The relation (2) implies

• For λ = 0. v(x) = Ax = b. Moreover, since v(0) = 0 we necessarily have
b = 0 and since v(a) = 0, we have Aa = 0 which implies A = 0

• For λ = µ2 > 0, we get v(x) = Aeµx + Be−µx. Using v(0) = 0 gives
A + B = 0 and using the condition v(a) = 0 implies Aeµa − Ae−µa = 0
which gives A = 0

• Finally for λ = −µ2 < 0, we get v(x) = Aeiµx + Be−iµx. From v(0) = 0,
we get A + B = 0. From v(a) = 0 we get 2 sinµa = 0. Together we thus
have µ = kπ

a , k = 1, 2, . . .

Substituting the case λ = −µ2
k in the expression of v(x), we get a collection of

solutions

vk(x) = ck sin
kπx

a
, k = 1, 2, . . . (3)

and using λ = −µ2
k in the equation for w(y), we get

w′′(y)

w(y)
= µ2

k (4)

which gives w(y) = Aeµx + Be−µx. Using the boundary conditions, we get
Aeµkb +Be−µkb = 0 so that B = −Ae2µkb.

Combining the solutions for v(x) and w(y), we get

uk(x, y) = ck sin
kπx

a

(
eµky − e−µk(y−2b)

)
(5)

= c′k sin
kπx

a

(
eµk(y−b) − e−µk(y−b)

)
(6)

Now combining the eigenfunctions, we can define our general solution as

u(x, y) =

∞∑
k=1

c′k sin
kπx

a

(
e

−kπb
a +e

kπb
a

)
= f(x), for 0 < x ≤ a (7)
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Figure 5: Question 8

So that provided that f(x) can be expanded as a sum of trigonometric functions,
we then have

c′k =
1(

e−
kπb
a + e

kπb
a

) ∫ a

−a

f(x) sin
kπx

a
dx (8)

Since the problem is defined for x ∈ (0, a), we can expand f(x) into an odd
function f̃(x) and write

c′k =
1(

e−
kπb
a + e

kπb
a

) ∫ a

−a

f̃(x) sin

(
kπx

a

)
dx

=
2(

e−
kπb
a + e

kπb
a

) ∫ a

0

f(x) sin

(
kπx

a

)
dx

Question 8 The voltage in a transmission line (of the submarine cable type),
grounded at x = 0 and x = L, and with an initial voltage distribution f(x) can
be shown to satisfy the following equation

∂2e

∂x2
=

1

K

∂e

∂t
,

1

K
= RC

with the boundary conditions

e(0, t) = 0

e(L, t) = 0

e(x, 0) = f(x)

(i) Let us assume f(x) = E (constant). Find the expression of the voltage
e(x, t)
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(ii) We now consider a submarine cable for which the leakage conductance is
very small and the frequencies are low enough to make the series induc-
tance negligible. In this framework, the voltage e(x, t) and current i(x, t)
in the line obey

RC
∂e

∂t
=

∂2e

∂x2
, RC

∂i

∂t
=

∂2i

∂x2

where R is the series resistance in ohms per loop mile and C is the shunt
capacitance in farads per mile. Solve those equations for a current and
voltage in a cable of length l if at x = 0 and x = l the cable is short-circuited
(zero voltage), while the initial current distribution i(x, 0) is x(l−x) (The
relation between the current and the voltage is given by − ∂i

∂x = eG+C ∂e
∂t )

Question 9 Another special form of the transmission line equations can be
obtained by assuming that the resistance and conductance are negligible. Such
an assumption which is reasonable at high frequencies gives the following system
of equations for the voltage and current

LC
∂2e

∂t2
=

∂2e

∂x2
, CL

∂2i

∂t2
=

∂2i

∂x2

which are known as the high frequency line equations. We consider a high
frequency transmission line of length ℓ which is grounded at x = ℓ (e(ℓ, t) = 0)
and open circuited at x = 0 (i(0, t) = 0). If the initial current and voltage
distributions are i(x, 0) = I0 sin(7π/ℓ)x and e(x, 0) = E0 (ℓ sinhx− x sinh ℓ),
respectively, determine the current and voltage in the line at any time t

Question 10 We wish to find the steady-state temperature distribution in a
semicircular plate of radius a, insulated in both faces, with its curved bound-
ary kept at a constant temperature U0 and its bounding diameter kept at zero
temperature (see Fig. 6).

Solution 10 Our boundary conditions in this case are given by u(a, θ) = U0

and u(r, 0) = u(r, π) = 0. We use Laplace’s equation in cylindrical coordinates
which gives

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0 (9)

We consider solutions of the form u(r, θ) = v(r)w(θ). Substituting this in (9),
we get

v′′(r)w(θ) +
1

r
v′(r)w(θ) +

1

r2
v(r)w′′(θ) = 0 (10)

9



θ

ra

(0, 0)

y

x

u = U0

(0, 0)

Figure 6: Question 10

Separating the variables gives

−w′′(θ)

w(θ)
=

v′′(r) + 1
rv

′(r)
1
r2 v(r)

(11)

We start by considering the equation in r. For this equation, we have

r2v′′(r) + v′(r)r − λv(r) = 0 (12)

The equation

r2
d2

dr2v(r)
+ r

dv(r)

dr
− λv(r) = 0 (13)

is an example of a linear homogeneous differential equation with non constant
coefficients. There are exceedingly few such equations that can be solved easily.
Fortunately, equation (13) is an example of such equation which is known al-
ternatively as equidimensional, Cauchy or Euler equation. The simplest way to
solve this equation is to note that for the linear differential operator

(r2
d2

dr2
+ r

d

dr
− λ),

any power v(r) = rp reproduces itself (as a comparison, for constant coefficients
linear differential operators, it is the exponential function that reproduces itself).

If we substitute v(r) = rp in (13), we indeed get

p(p− 1)rp + prp − λrp = 0

(p(p− 1) + p− λ)rp = 0

We thus get two distinct solutions p = ±µ where µ =
√
λ except when λ = 0 in

which case we have

r2
d2

dr2
v(r) + r

d

dr
v(r) = 0 = (rv(r))′ ⇒ v′(r) =

C

r

10



which gives v(r) = C log r +D.

We can thus consider two families of solutions:

v(r) = c1r
µ + c2r

−µ (14)

v(r) = c1 log r + c2, when µ = 0 (15)

Also to see why when λ = 0, v(r) is the general solution, note that we can always
use the change of variable r = es (r is always non negative), from which we can
view the function v(r) as a function in s and derive the equation

r2
d2v

dr2
+ rv′(r)− λv(r)

= r2

(
dv

ds

(
d2s

dr2

)
+

d2v

ds2

(
ds

dr

)2
)

+ r
dv

ds

ds

dr
− λv

= r2
dv

ds

(
− 1

r2

)
+

d2v

ds2
+

dv

ds
− λv

=
d2v

ds2
− λv = 0

Hence v(s) = Aes + Be−s provided that λ > 0 which we can always assume as
otherwise the θ equation w′′(θ)/w(θ) = −λ would imply exponential solutions
for θ, w(θ) = Aeµθ + Be−µθ which does not make sense with respect to the
physics.

We also see that our BC u(r, 0), r ∈ (0, a) prevents the log r solution which
would approach ∞ as r → 0 so we are left with µ = λ2 and a solution in r of
the form

v(r) = c1r
µ + c2r

−µ (16)

the condition u(r, 0) = 0 also immediately gives c2 = 0 as again a non zero c2
would imply that u → ∞ as r → 0.

For θ, we get w′′(θ)/w(θ) = −λ hence w(θ) = Aeµiθ+Be−iµθ. Again, u(r, 0) = 0
and u(r, π) = 0 gives w(0) = A+B = 0 and sinπµ = 0 which finally give µ = k,
k = 1, 2, . . .

Grouping our solutions in r and θ, we get

U(r, θ) = c1r
k sin kπθ, k = 1, 2, . . . (17)

to enforce our last boundary condition, we combine the eigenfunctions as

U(r, θ) =

∞∑
k=1

c1,kr
k sin kθ, on 0, π (18)
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Applying the last condition, we thus get

U(a, θ) =

∞∑
k=1

ca,ka
k sin kθ = U0 (19)

the difficulty here stems from the fact that we required U(r, 0) = 0 so we can’t
just add a constant to the Fourier series. we must express the constant with
the Fourier series. We now use Ũ0 to denote the (odd) extension Ũ0 of U0 (i.e.
Ũ0 = U0 on [0, π] and −U0 on [−π, 0]).

Multiplying both sides of (19) by sin kπθ and integrating, we get∫ π

−π

Ũ0 sin kθ = c1,ka
k

∫ π

−π

sin2 kθ dθ

= c1,ka
k

∫ π

−π

1− cos 2kθ

2

= c1,ka
kπ

Finally

c1,k =
2

πak

∫ π

0

U0 sin kθ dθ =


2U0

πak

∣∣∣∣cos kθk

∣∣∣∣π
0

=
4U0

kπak
When k is odd

0 When k is even

Question 11 Solve the one dimensional heat equation

∂2u

∂x2
= a2

∂u

∂t

with the adiabatic boundary conditions

∂

∂x
u(0, t) = 0

∂

∂x
u(L, t) = 0

u(x, 0) = x

Question 12 Solve the heat equation for one-dimensional transient flow with
the boundary conditions

u(0, t) = 0

u(L, t) = 0

u(x, 0) = x(L− x)
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Question 13 A ring-shaped plate (see Fig. 7) of inner radius a and outer radius
b is insulated on its lateral surfaces.

1. Find the steady state temperature u(r, θ) if the initial temperature on the
inner circle is Aθ(2π − θ) and the initial distribution on the outer circle
is Bθ2(2π − θ). A,B < ∞ are both constants

2. Investigate the solution as the inner radius approaches 0.

Solution 13 Using the Laplacian in cylindrical coordinates, we get

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0

we let u(r, θ) = v(r)w(θ) and substitute this expression in the steady state heat
equation which gives

v′′(r)w(θ) +
1

r
v′(r)w(θ) +

1

r2
v(r)w′′(θ) = 0

Separating the variables, we recover the Euler/Cauchy equation in r and the
usual eigenvalue problem in θ,(

v′′(r) +
1

r
v′(r)

)
w(θ) = − 1

r2
v(r)w′′(θ)

Hence

r2v′′(r) + rv′(r)

v(r)
= −w′′(θ)

w(θ)
= λ

introducing the parameter λ = µ2, and letting r = es the solution of the Eu-
ler/Cauchy equation are given by{

v(r) = C1r
µ + C2r

−µ When λ > 0
v(r) = A1 log(r) +A2 When λ = 0

Note that a solution in λ < 0 would give solutions that would be oscillating in r
and exponential in θ which would not make sense in terms of the physics.

The case λ = 0 leads to solution in θ of the form w(θ) = Aθ + B which reduce
to a multiplicative constant if we use u(0) = u(2π) and ∂u

∂θ (0) =
∂u
∂θ (2π).

The case λ > 0 gives the usual complex exponentials (or sine and cosine func-
tions if we focus on real solutions),

w(θ) = A cosµθ +B sinµθ (20)
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Using the boundary conditions at 0 and 2π we can immediately reduce those
solutions to

w(θ) = A sin(kθ)

for k ∈ Z since we want our solutions to be 2π-periodic.

All in all, we thus get the general solution

u(r, θ) = A1 log(r) +A2 +

∞∑
k=1

(
c1,kr

k + c2,kr
−k
)
sin kθ

We fix the remaining constants by expanding our boundary conditions into their
respective Fourier series,

u(a, θ) = Aθ(2π − θ) = A1 log(a) +A2 +

∞∑
k=1

(
c1,ka

k + c2,ka
−k
)
sin kθ

u(b, θ) = Bθ2(2π − θ) = A1 log(b) +A2 +

∞∑
k=1

(
c1,kb

k + c2,kb
−k
)
sin kθ

Using the orthogonality of the trigonometric functions, we get

A1 log(a) +A2 =
1

2π

∫ 2π

0

Aθ(2π − θ) dθ

A1 log(b) +A2 =
1

2π

∫ 2π

0

Bθ2(2π − θ) dθ

as well as

c1,ka
k + c2,ka

−k =
1

π

∫ 2π

0

Aθ(2π − θ) sin kθ dθ

c1,kb
k + c2,kb

−k =
1

π

∫ 2π

0

Bθ2(2π − θ) sin kθ dθ

Question 14 Solve the heat equation

∂2u

∂x2
= a2

∂u

∂t

subject to the boundary conditions

(i) u(0, t) = A (a constant)

(ii) u(L, t) = B (a constant)

14
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Figure 7: Question 13.

(iii) u(x, 0) = x2(L− x)

Question 15 Solve the heat equation ∂u/∂t = k∂2u/∂x2, 0 < x < L, t > 0,
subject to

∂u

∂x
(0, t) = 0, t > 0

∂u

∂x
(L, t) = 0, t > 0

(a) u(x, 0) =

{
0 x < L/2
1 x > L/2

(b) u(x, 0) = 6 + 4 cos
3πx

L

(c) u(x, 0) = −2 sin
πx

L

(d) u(x, 0) = −3 cos
8πx

L

Question 16 Consider the heat equation with a known source q(x, t):

∂u

∂t
= k

∂2u

∂x2
+ q(x, t) with u(0, t) = 0 and u(L, t) = 0

Assume that q(x, t) (for each t > 0) is a picewise smooth function of x. Also
assume that u and ∂u/∂x are continuous functions of x (for t > 0) and ∂2u/∂x2

and ∂u/partialt are piecewise smooth. Thus,

u(x, t) =

∞∑
n=1

bn(t) sin
nπx

L

15



What ordinary differential equation does bn satisfy? Do not solve this differential
equation.

Question 17 Consider the non homegeneous heat equation (with a steady heat
source):

∂u

∂t
= k

∂2u

∂x2
+ g(x)

Solve this equation with the initial condition

u(x, 0) = f(x)

and the boundary conditions

u(0, t) = 0 and u(L, t) = 0

Assume that a continuous solution exists (with continuous derivatives). [Hints:
Expand the solution as a Fourier sine series (i.e. use the eigenfunction expan-
sion). Expand g(x) as a Fourier sine series. Solve for the Fourier sine series of
the solution. Justify all differentiation with respect to x.]
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