MATH-UA 9263 - Partial Differential Equations
Recitation 2: Fourier series and separation of
variables

(Partial) Solutions
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Question 1 We consider the function shown in Fig. [1 Obtain the Fourier
expansion for this periodic function.

Solution 1 The function is even and periodic with period T/2. We are thus
looking for a series of the form

> 2mne
f(z) =ao+ Z Qp, COS ( 7 >

n=1

for ag we have

T/2
[ rwa=5

1
CET T

and for any n > 0, we use

T2 2 ; T/2 Y-
/ f(x)cos ( e ) dx = / a, cos? ( e ) dx
—T/2 T 12 T




Yy
M —
| @
_:1 1
—_—
M|

Figure 2: Question 2]

Integrating by part, we get
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Question 2 We consider the function shown in Fig.[4 Ezpand this function
in a complex Fourier series.



Solution 2 To get the expansion as a complexr Fourier series, we use

with

Since we have

T/2 v T/2 ) )
_ 2milx 2nikx _ 2wilx
/ flx)e "7 dx = / g cke T e T dx

—T/2

For k # 1, we get
T/2 2milx T/2 > 2rikx 2milx
/ fl@e "1 dx= / Z cke T e T

—T/2 ~T/2 .
— T 2mitk—t)e |1/2
— E [ T
it o 2mi(k —0) ‘ -T/2

i T
2 Fomi(k— o) I°

mi(k—t) e—ﬂi(k—f)’ —0

if k =4{, we recover
T/2 2milx
/ fx)e™ T dax =T
—T/2
hence
1 /T/2 2mils
== f(x)e "1 dx
T J_ 1) (

From the lines above, we have
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Substituting into and re-arranging we get
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Figure 3: Question [3]
Question 3 Ezpand the function show in Fig.[3 into a Fourier series.

Question 4 A woltage e(t) = Epsinwt is passed through a half-wave rectifier
which clips the negative portions of the voltage. Obtain a Fourier series expan-
sion for the output voltage of the rectifier.

Question 5 Determine whether the following functions can be expanded into a
Fourier series of not and give the reasons why.

(i) sin = defined in —m <z <7

1
xT
1
(it sm; defined in 1 < x <2

)

)

(iii) 3= defined in —2 <z <2

(iv) logm defined in1 <x <4
)

(v) f(z) =1—=2"*D defined for 1 —27 " <z <1—-2""+) n=0,1,2,...

where f( ) is defined in 0 < z < 1.

Question 6 FEstablish each of the orthogonality conditions below
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where Oy 18 the Kronecker delta defined as follows
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Solution 6 We use the trigonometric identity
cos((m 4+ n)x) + cos((m —n)x)
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From which we have
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A similar reasoning holds for
/ sinma sinnx dx
for which using
cos((m —n)x) — cos((m + n)x)
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gives the desired result.
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Figure 4: Question [7}

Question 7 We consider a rectangular plate of sides a and b (see Fz'gure on
three sides of which the temperature is assumed to be zero, while the temperature
on the remaining side is a specified function of x, namely f(x). We are thus
interested in the temperature u(z,y) in the plate which satisfies the (steady state)
equation

%u  0%u
2 = — —_— =
Vou = 92 + a7 0
as well as the boundary conditions
u(0,y) =0
u(a,y) =0
u(z,b) =0
u(z,0) = f(x)

Solution 7 We start by considering solutions of the form u(x,y) = v(x)w(y).
Substituting this into the heat equation, we get

o (@)wly) + o (y)o(z) = 0
which we can separate into

V@) w(y)

@)~ wl)

As we saw during the lecture, this implies

_a= W)

for some constant \ (2)
o) w(y)



together with the boundary conditions

v(0)w(y) =0
v(a)w(y) =0
v(z)w(b) =0
v(z)w(0) = f(x)

The relation implies

e For A\ =0. v(x) = Az = b. Moreover, since v(0) = 0 we necessarily have
b =0 and since v(a) = 0, we have Aa = 0 which implies A =0

o For A\ = p? > 0, we get v(z) = Ael® + Be . Using v(0) = 0 gives
A+ B =0 and using the condition v(a) = 0 implies Aet® — Ae " = 0
which gives A =0

o Finally for A\ = —p? < 0, we get v(z) = Ae?* + Be™ ", From v(0) = 0,
we get A+ B =0. From v(a) =0 we get 2sinpa = 0. Together we thus
have p = %’“, k=1,2,...

Substituting the case X\ = —p2 in the expression of v(z), we get a collection of
solutions
k
Uk(x):cksinﬂ, E=12,... (3)
a
and using A = —pu3 in the equation for w(y), we get
w//(y) 9
= (4)
w(y) "

which gives w(y) = Aet® + Be #*. Using the boundary conditions, we get
Aetb 4 BemHrb = 0 50 that B = — Ae?Hb,

Combining the solutions for v(z) and w(y), we get
. kmx i (y—2b)
Uk($7y) = Cp SIn —— (eﬂky — e kY ) (5)
a
= ¢}, sin fre (euk(y—b) — e—uk(y—b)) (6)
a

Now combining the eigenfunctions, we can define our general solution as

> k e kxb
U(Ly)ZC;Sian(eib+e ‘ > = f(z), for0<z<a (7)

k=1
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Figure 5: Question [§]

So that provided that f(x) can be expanded as a sum of trigonometric functions,
we then have

1 “ . kmx
= (6_Mb—”b> f(z)sin o dx (8)
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Since the problem is defined for x € (0,a), we can expand f(x) into an odd
function f(x) and write

1 * s . [ kmx
¢ = ﬁ/ f(z)sin (a) dx
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Question 8 The voltage in a transmission line (of the submarine cable type),
grounded at x =0 and x = L, and with an initial voltage distribution f(z) can
be shown to satisfy the following equation

d2e 1 de 1
2 Ko k¢

with the boundary conditions

(i) Let us assume f(x) = E (constant). Find the expression of the voltage
e(z,1)



(ii) We now consider a submarine cable for which the leakage conductance is
very small and the frequencies are low enough to make the series induc-
tance negligible. In this framework, the voltage e(x,t) and current i(x,t)
in the line obey

de 0% 01 024

RO = a2 FC% = o2

where R is the series resistance in ohms per loop mile and C is the shunt
capacitance in farads per mile. Solve those equations for a current and
voltage in a cable of length l if at x = 0 and x = [ the cable is short-circuited
(zero voltage), while the initial current distribution i(x,0) is x(l —x) (The
relation between the current and the voltage is given by f% =eG+ C’%

Question 9 Another special form of the transmission line equations can be
obtained by assuming that the resistance and conductance are negligible. Such
an assumption which is reasonable at high frequencies gives the following system
of equations for the voltage and current

e 0% 0% 0%

Loz =g “log = o2

which are known as the high frequency line equations. We consider a high
frequency transmission line of length £ which is grounded at x = ¢ (e(¢,t) =0)
and open circuited at x = 0 (i(0,t) = 0). If the initial current and voltage
distributions are i(x,0) = Igsin(7n/f)x and e(x,0) = Eg ({sinhx — xsinh{),
respectively, determine the current and voltage in the line at any time t

Question 10 We wish to find the steady-state temperature distribution in a
semicircular plate of radius a, insulated in both faces, with its curved bound-
ary kept at a constant temperature Uy and its bounding diameter kept at zero
temperature (see Fig. [6).

Solution 10 Our boundary conditions in this case are given by u(a,d) = Uy
and u(r,0) = u(r,7) = 0. We use Laplace’s equation in cylindrical coordinates
which gives

0%u N 1 Ou N 1 0%u

or2  ror  r206?
We consider solutions of the form u(r,0) = v(r)w(0). Substituting this in ,
we get

=0 9)

v (r)w(0) + 11/(7“)w(0) + < v(r)w”(0) =0 (10)
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Figure 6: Question [I0]

Separating the variables gives

w(9) _ v"(r) + 7v'(r)
mwr i (11)
w(0) 7zv(r)
We start by considering the equation in r. For this equation, we have
20" (r) + ' (r)r — Mo(r) =0 (12)
The equation
d? d
2 )y =0 (13)

: dr2v(r) dr

18 an example of a linear homogeneous differential equation with non constant
coefficients. There are exceedingly few such equations that can be solved easily.
Fortunately, equation 1s an example of such equation which is known al-
ternatively as equidimensional, Cauchy or Euler equation. The simplest way to
solve this equation is to note that for the linear differential operator
d? d
2

rT—s+r— =\,

( dr? * dr )
any power v(r) = rP reproduces itself (as a comparison, for constant coefficients
linear differential operators, it is the exponential function that reproduces itself).

If we substitute v(r) =P in , we indeed get
plp— )P +prf = Ar? =0
(plp—1)+p—Nr" =0

We thus get two distinct solutions p = +p where = VX except when A =0 in
which case we have
2

d d , o C
rzﬁv(r) + rav(r) =0=(rv(r)) =1'(r) = o

10



which gives v(r) = C'logr + D.
We can thus consider two families of solutions:

v(r) =cyr? 4 cor™" (14)

v(r) =7¢1logr + ¢, when p=0 (15)

Also to see why when X\ = 0, v(r) is the general solution, note that we can always
use the change of variable r = e® (r is always non negative), from which we can
view the function v(r) as a function in s and derive the equation

2

d“v
2
T +7rv'(r) — ()

5 [ dv d?s n d?v (ds\? n dv ds \
=r|— |- — | — r———\v
ds \ dr? ds? \ dr ds dr
dv 1 Pv dv

2
=r"—|—-—= —+——A
rds( 7’2)+d52+d5 !
d*v
= @ — =0

Hence v(s) = Ae® + Be™* provided that X\ > 0 which we can always assume as
otherwise the 0 equation w"(0)/w(f) = —X would imply exponential solutions
for 0, w(f) = Aet? + Be % which does not make sense with respect to the
physics.

We also see that our BC u(r,0), r € (0,a) prevents the logr solution which
would approach 0o as r — 0 so we are left with ;. = \*> and a solution in r of
the form

v(r) =t 4+ cor (16)

the condition u(r,0) = 0 also immediately gives co = 0 as again a non zero cs
would imply that u — oo as r — 0.

For 0, we get w” (0) /w(0) = —\ hence w(d) = Ae!+Be~ . Again, u(r,0) = 0
and u(r,m) = 0 gives w(0) = A+ B = 0 and sin7p = 0 which finally give u = k,
k=1,2,...

Grouping our solutions in r and 6, we get

U(r,0) = cyr¥sinkn, k=1,2,... (17)

to enforce our last boundary condition, we combine the eigenfunctions as

U(r,0) = ch,krk sinkf, onO,m (18)
k=1

11



Applying the last condition, we thus get

U(a,0) = Z Cara®sinkl = Uy (19)
k=1

the difficulty here stems from the fact that we required U(r,0) = 0 so we can’t
Just add a constant to the Fourier series. we must express the constant with
the Fourier series. We now use Uy to denote the (odd) extension Uo of Uy (i.e.
Up = Uy on [0,7] and —Uy on [—,0]).

Multiplying both sides of by sin kw and integrating, we get

/ Upsinkd = (217;‘7(1,]‘“/ sin® k6 do

& /'7r 1 — cos 2k
= C1k0 —
, ] 5
= Cl,k:a]€7r
Finally
2 skO|™ 4
2 ” lg COZ = TUOA When k is odd
ClLr = 7/ Upsink0 do ={ ™ 0 a
; k
mak Jo
0 When £k is even

Question 11 Solve the one dimensional heat equation

0%u 5 0u

a2~ " ot
with the adiabatic boundary conditions

0

0

u(z,0) ==z
Question 12 Solve the heat equation for one-dimensional transient flow with
the boundary conditions

u(0,t) =0
u(L,t) =0
u(z,0) = z(L — z)

12



Question 13 A ring-shaped plate (see Fig. E} of inner radius a and outer radius
b is insulated on its lateral surfaces.

1. Find the steady state temperature u(r,0) if the initial temperature on the
inner circle is A2 — 0) and the initial distribution on the outer circle
is BO?(2m — 0). A, B < oo are both constants

2. Investigate the solution as the inner radius approaches 0.

Solution 13 Using the Laplacian in cylindrical coordinates, we get

Pu 100 10h
or2  ror  r2062

we let u(r,0) = v(r)w(0) and substitute this expression in the steady state heat
equation which gives

Separating the variables, we recover the Euler/Cauchy equation in r and the
usual eigenvalue problem in 0,

(w(r) + iv’(r)) w(6) = —rlzv(r)w”(e)

Hence

r20" (r) + v’ (r) B _w”(@) B
v(r) o w(d) A

introducing the parameter X = p?, and letting r = e° the solution of the Eu-
ler/Cauchy equation are given by

v(r) = Cyrt + Cor™"  When A >0
v(r) = Aylog(r) + A2 When A =0

Note that a solution in A < 0 would give solutions that would be oscillating in r
and exponential in 0 which would not make sense in terms of the physics.

The case X = 0 leads to solution in 0 of the form w(0) = Af + B which reduce

to a multiplicative constant if we use u(0) = u(27) and 3—3(0) = g—g(Qﬂ).

The case A > 0 gives the usual complex exponentials (or sine and cosine func-
tions if we focus on real solutions),

w(f) = Acos pb + Bsin puf (20)

13



Using the boundary conditions at 0 and 2w we can immediately reduce those

solutions to

w(f) = Asin(k0)
for k € Z since we want our solutions to be 2mw-periodic.

All in all, we thus get the general solution

u(r,0) = Ay log(r) + Ay + Z (crpr® + CQ,krik) sin k0
k=1

We fix the remaining constants by expanding our boundary conditions into their

respective Fourier series,

u(a,0) = A0(2m — 0) = Ay log(a) + A + (c1,1a" + copa™") sin ko
k=1
u(b,0) = BO?(21 — 0) = A log(b) + Ay + Z (c1,1b" + czkb_k) sin k6
k=1

Using the orthogonality of the trigonometric functions, we get
1 21
Ay log(a) + Ay = — / A0(27 — 0) do
27T 0

2
Aqlog(b) + Ay = i/ BO?* (27 — 6) db
27 0

as well as

1 2
chak + czka_k = — / Af(2m — 0) sin k6 db
™ Jo

1 27
clykbk + czvkb_k = - / BHQ(QW —0)sin k0 do
™ Jo

Question 14 Solve the heat equation

0%u 5 0u

a2~ " ot
subject to the boundary conditions
(i) u(0,t) = A (a constant)
(ii) w(L,t) = B (a constant)

14



Figure 7: Question [T3]
(iii) u(z,0) = 2%(L — x)

Question 15 Solve the heat equation Ou/dt = kd*u/0x?, 0 < xz < L, t > 0,
subject to

501 =0 >0
%(L,t)=0, t>0
0 z<L/2 _  _5un T
(a) u(x,o>—{ N (©) u(r,0) = 250"
3rx 8T
ulx,0) = COoS —— u(xr,0) = —3cos ——
(b) u(z,0) =6+ 4cos — (d) u(z,0) = —3cos —

Question 16 Consider the heat equation with a known source q(x,t):

o _ o
ot 0x2
Assume that q(x,t) (for each t > 0) is a picewise smooth function of x. Also

assume that u and Ou/dx are continuous functions of x (fort > 0) and 8%*u/0x>
and du/partialt are piecewise smooth. Thus,

+q(z,t) with w(0,t)=0 and u(L,t)=0

u(z,t) = Z by, (t) sin <

15



What ordinary differential equation does b, satisfy? Do not solve this differential
equation.

Question 17 Consider the non homegeneous heat equation (with a steady heat
source):

Ou 0%u

ot~ Fagz T

Solve this equation with the initial condition
u(z,0) = f(z)
and the boundary conditions
u(0,t) =0 and u(L,t)=0

Assume that a continuous solution exists (with continuous derivatives). [Hints:
Expand the solution as a Fourier sine series (i.e. use the eigenfunction expan-
sion). Expand g(x) as a Fourier sine series. Solve for the Fourier sine series of
the solution. Justify all differentiation with respect to x.]
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