MATH-UA 9263 - Partial Differential Equations PSet 2: Laplace equation, Harmonic functions

Augustin Cosse

January 2022

Given date: March 2 Due date: March 20 Total: 25pts

Question 1 (5pts) Solve Laplace's equation inside the rectangle $0 \le x \le L$, $0 \le y \le H$ with the boundary conditions

$$\frac{\partial u}{\partial x}(0,y) = 0, \quad \frac{\partial u}{\partial x}(L,y) = 0, \quad u(x,0) = 0, \quad u(x,H) = f(x).$$

Question 2 (5pts, Schwartz reflection principle) Let

 $B_1^+ = \left\{ (x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, \quad y > 0 \right\}$

and $u \in C^2(B_1^+) \cap C(\overline{B_1^+})$ harmonic in B_1^+ , u(x,0) = 0. Show that the function

$$U(x,y) = \begin{cases} u(x,y) & y \ge 0\\ -u(x,-y) & y < 0 \end{cases}$$

obtained by odd reflection with respect to y is harmonic in all of B_1 . [Hint: You can assume and use the uniqueness of the solution to the Dirichlet problem

$$\left\{ \begin{array}{ll} \Delta u=0 & in \ \Omega \\ u=g & on \ \partial \Omega \end{array} \right.$$

for any bounded domain Ω and function $u \in C^2(\Omega) \cap C(\overline{\Omega})$

Question 3 (5pts) Let $f \in C^2(\mathbb{R}^2)$ with compact support K and

$$u(x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |\boldsymbol{x} - \boldsymbol{y}| f(\boldsymbol{y}) \, d\boldsymbol{y}$$

 $Show \ that$

$$u(\boldsymbol{x}) = -\frac{M}{2\pi} \log |\boldsymbol{x}| + O(|\boldsymbol{x}|^{-1}), \quad as \; |\boldsymbol{x}| \to +\infty$$

where $M = \int_{\mathbb{R}^2} f(\mathbf{y}) d\mathbf{y}$ [Hint: write $\log |\mathbf{x} - \mathbf{y}| = \log(|\mathbf{x} - \mathbf{y}|/|\mathbf{x}|) + \log |\mathbf{x}|$ and show that, if $\mathbf{y} \in K$ then $|\log(|\mathbf{x} - \mathbf{y}|/|\mathbf{x}|)| \le C/|\mathbf{x}|$]

Question 4 (5pts) Find the Green functions for the following domains:

- 1. The half plane $\{(x, y) | x > c\}$
- 2. The disk $\{(x,y) \mid ||(x,y) (c_1,c_2)|| < R\}$

Question 5 (5pts) Let $U \in \mathbb{R}^N$ be a bounded open set. We say that a function u is harmonic on U if $u \in C^2(U)$ and $\Delta u = 0$ on U. We say that $v \in C^2(\overline{U})$ is subharmonic on U iff $-\Delta v \leq 0$ in U.

- (a) Prove that if u is real harmonic, the zeros of u are never isolated.
- (b) Let $\phi \in C^{\infty}(\mathbb{R})$ be convex $(\phi''(x) \ge 0)$ and let u be harmonic in U. Prove that the composition $\phi(u)$ is subharmonic
- (c) Let u be harmonic in U. Prove that $|\nabla u|^2$ is subharmonic.

References

- [1] Richard Haberman, Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Fourth Edition, Pearson 2004.
- [2] Kenneth S. Miller, *Partial Differential Equations in Engineering Problems*, Dover Publications inc. 2020.
- [3] Walter A. Strauss, Partial Differential Equations An Introduction, John Wiley and Sons Ltd, 2008
- [4] Sandro Salsa, Partial Differential Equations in Action, From Modelling to Theory, Springer, 2016.