
Artificial Intelligence

Augustin Cosse.

Fall 2021

November 24, 2021

MDPs and RL: short recap

• Remember that a Markov Decision Process (MDP) is a
sequential decision problem (where the utility depends on a
sequence of decisions) in a fully observable, stochastic
environment with a Markovian transition model (that is the
probability of reaching state s ′ from s depends only on s and
not the history of earlier states)

• Recall that we (reasonably) assumed that the preferences of
the agent between sequences was stationnary

• This assumption reduces the set of possible definitions of the
utility to definitions based either on additive or discounted
rewards.

Uπ = E

[∞∑
t=0

γtR(st)

]

MDPs and RL: short recap

• We also saw that we could define a Maximum Expected
Utility (MEU) policy by selecting our actions as

π∗(s) = argmax
π

Uπ(s)

= argmax
a∈A(s)

∑
s′

P(s ′|s, a)U(s ′)

• And that if we assumed our agent selected the optimal actions
in the future, the utility obeyed the Bellman equation

U(s) = R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)U(s ′)

MDPs and RL: short recap

• To find the utility of all states, given a transition model
P(s ′|s, a) and the rewards associated to each states, we saw
that we could solve the MDP (i.e. get the utility at all states)
through value iteration, updating the utilities through the
Bellman update

Ui+1 ← R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)Ui (s
′)

which was guanranteed to converge to a fixed point, solution
to the Bellman equation.

MDPs and RL: short recap

• We also saw that it might be a good idea, after a few steps,
to use our current knowledge to define a policy and update
our estimate of the utility based on this policy. This gave the
policy iteration based on alternating between two steps

• Policy evaluation which updates the utility U i based on a
policy πi

• Policy improvement which calculates a new MEU policy πi+1

based on the utility U i

We saw that in the framework of policy iteration, we could
either solve the Bellman system directly or (for large state
spaces) iteratively through the update

U i+1(s)← R(s) + γ
∑
s′

P(s ′|s, πi (s))Ui (s
′)

MDPs and RL: short recap

• When discussing MDPs, we assumed that the environment
was fully known (the transition model P(s ′|s, a) as well as the
rewards for each state were given).

• In practice, this is rarely the case and we saw that learning in
the general framework in which the environment is unknown
(i.e. where the transition model has to be learned alongside
the utilities and policy) is the objective of Reinforcement
Learning.

• In Reinforcement Learning, we saw that one makes the
distinction between two main types of agents:

• Passive reinforcement learning (where the agent’s policy is
fixed and the task is to learn the utilities of the states)

• Active reinforcement learning (where the agent must also learn
what to do)

MDPs and RL: short recap

• In passive reinforcement learning, we have discussed three
approaches at learning the utility :

• Direct Utility Estimation (where each completion of an episode
provide a set of samples for the ”expected reward to go”
expression). We saw that this approach however misses the
connections between states

• Adaptive Dynamic Programming where the agent learns the
transition model P(s ′|s, a) by keeping track of how each action
outcome

• Finally, Temporal Difference Learning relies on correcting the
current utility estimate through the temporal difference update

Uπ(s)← Uπ(s) + η (R(s) + γUπ(s ′)− Uπ(s))

Reinforcement learning (continued)

• We saw that an efficient agent should always achieve a
tradeoff between exploitation and exploration.

• In particular, we saw that pure exploitation risks getting stuck
in a rut and that pure exploration to improve one’s knowledge
is of no use if one never puts that knowledge into practice.
But can we be a little more precise? Is there an optimal
exploration policy?

• This question of an optimal exploration policy has been
studied within the framework of the Bandit problem.

• Although Bandit problems are extremely difficult to solve
exactly, it is nonetheless possible to come up with a
reasonable scheme that will ultimately lead to an optimal
behavior by the agent.

Reinforcement learning (continued)

• Technically, any such scheme needs to be greedy in the limit
of infinite exploration or GLIE

• A GLIE scheme must also try each action in each state an
unbouded number of times to avoid having an infinite
probability that an action is missed because of an usually bad
series of outcomes.

• An ADP (Active Dynamic Programming) agent using such a
scheme will eventually learn the true environment model.

• A GLIE scheme must also eventually become greedy, so that
the agent’s actions become optimal with respect to the
learned (and hence the true) model

Reinforcement learning (continued)

• There are several GLIE schemes. One of them is to have the
agent choose a random action a fraction 1/t of the time and
to follow the greedy policy otherwise.

• While this does eventually converge to an optimal policy, it
can be extremely slow.

• A more sensible approach would give some weight to actions
that the agent has not tried very often, while tending to avoid
actions that are believed to be of low utility.

• This can be done by altering the Bellman update so that it
assigns higher utility estimates to relatively unexplored
state-action pairs.

Reinforcement learning (continued)

• Essentially, this altering of the Bellman update amounts to an
optimistic prior over the possible environments and causes the
agent to behave initially as if there were wonderful rewards
scattered all around the place

• Let us use U+(s) to denote the optimistic estimate (expected
reward to go) of the utility of the state s and let N(s, a) be
the number of times action a has been tried in state s

• Suppose we are using value iteration in an ADP learning
agent; then the update equation can be rewritten as

U+(s)← R(s) + γmax
a

f

(∑
s′

P(s ′|s, a)U+(s ′),N(s, a)

)

where f (u, n) is called the exploration function.

Reinforcement learning (continued)

• The exploration function determines how greed (i.e.
preference for higher values of U) is traded off against
curiosity (preference for actions that have not been tried often
and have low n).

• The function f (u, n) should be increasing in u and decreasing
in n. Among the many possible functions that fit these
conditions, one particularly simple definition is

f (u, n) =

{
R+ if n < Ne

u u otherwise

where R+ is an optimistic estimate of the best possible reward
obtained in any state and Ne is a fixed parameter.

• Such a function will have the effect of making the agent try
each action-state pair at least Ne times

Reinforcement learning (continued)

• Consider the modified Bellman update

U+(s)← R(s) + γmax
a

f

(∑
s′

P(s ′|s, a)U+(s ′),N(s, a)

)

• The fact that U+ rather than U appears on the RHS of this
update is very important

• As exploration proceeds, the states and actions near the start
state might well be tried a large number of times

• If we used U, the more pessimistic utility estimate, then the
agent would soon become desinclined to explore further afield.

• The use of U+ means that actions that lead toward
unexplored regions are weighted more highly than just actions
that are themselves unfamiliar

Reinforcement learning (continued)

• Now that we have seen how we could design an active ADP
agent, let us consider how to design an active temporal
difference (TD) learning agent

• The first difference with the passive case is that the agent is
not equipped with a fixed policy anymore, so, if it learns a
utility function U, it will need to learn a model in order to be
able to choose an action based on U.

• The model acquisition problem for the TD agent is identical to
that for the ADP agent: What of the TD update rule itself?

• In active TD learning, there is a alternative TD method,
called Q-learning which learns an action-utility representation
instead of learning utilities

Reinforcement learning (continued)
• In Q-learning, we will use the notation Q[s, a] to denote the

value of doing action a in state s. Q-values are directly
related to utility values as follows

U(s) = max
a

Q[s, a] (1)

• Q functions may seem like just another way of storing utility
information, but they have a very important property: a TD
agent that learns a Q-function does not need a model of the
form P(s ′|s, a), either for learning or for action selection

• For this reason, Q-learning is called a model-free method.

• As with utilities, we can write a constraint equation that must
hold at equilibrium when the Q values are correct

Q[s, a] = R[s] + γ
∑
s′

P(s ′|s, a) max
a′

Q[s ′, a′]

Reinforcement learning (continued)
• As in the ADP learning agent, we can use the update

equation on Q[s ′, a′] directly as an update equation for an
iterative process that calculates exact Q-values given an
estimated model.

• This does however, require that a model also be learned as
the equation uses P(s ′|s, a)

• If you remember, the temporal difference approach however
required no model for state transitions (all it needed were the
Q values)

• The update equation for TD Q-learning is

Q[s, a]← Q[s, a] + α

(
R[s] + γmax

a′
Q[s ′, a′]− Q[s, a]

)
which is calculated whenever action a is executed in state s
leading to state s ′

Function Q-learning-Agent(percept):
input : percept, a percept indicating the current state s ′

and reward signal r ′

persistent : Q, a table of action values indexed by state and action,
initially zero
Nsa, a table of frequencies for state action pairs,
initially zero
s, a, r , the previous state, action, and reward,
initially null

if s is not null then
increment Nsa[s, a]
Q[s, a]← Q[s, a] + α(Nsa[s, a]) (R + γmaxa′ Q[s ′, a′]− Q[s, a])

end
s, a, r ← s ′, argmax

a′
f (Q[S ′,A′],Nsa[s ′, a′]) , r ′

return a

Reinforcement learning (continued)

• Q-learning has a close relative called SARSA (for
State-Action-Reward-State-Action). The update rule for
SARSA is very similar to traditional Q-learning

Q[s, a]← Q[s, a] + α
(
R[s] + γQ[s ′, a′]− Q[s, a]

)
where a′ is the action actually taken in state s ′.

• The rule is applied at the end of each s, a, r , s ′

• The difference with Q-learning is quite subtle : Whereas
Q-learning backs up the best Q-value from the state reached
in the observed transition, SARSA waits until an action is
actually taken and backs up the Q-value for that action.

Reinforcement learning (continued)

• For a greedy agent that always takes the action with the best
Q value, the two algorithms are identical.

• When exploration is happening, the two algorithms differ
significantly however

• Because Q-learning uses the best Q-value, it pays not
attention to the actual policy being followed : it is an off
policy learning algorithm whereas SARSA is an on policy
algorithm.

• Q-learning is more flexible than SARSA in the sense that a Q
learning agent can learn how to behave well even when guided
by a random or adversarial exploration policy

Reinforcement learning (continued)

• On the other hand, SARSA is more realistic : if the overall
policy is even partly controled by other agents, it is better to
learn a Q function for what it will actually happen than for
what the agent would like to happen

Generalization in RL

• So far, we have assumed that the utility functions and Q
functions learned by the agents are represented in tabular
forms with one output value for each input tuple

• Such an approach works reasonably well for small state
spaces, but the time to convergence and (for ADP) the time
to per iteration increase rapidly as the the space gets larger

• Approximate ADP methods might be able to handle maze-like
environments but more realistic worlds are out of the
question. as examples, Backgammon and chess are tiny
subsets of the real world, yet their state space contains on the
order of 1020 and 1040 states.

• In this case, it would be absurd to suppose that one must visit
all the states many times in order to learn how to play the
game

Generalization in RL

• One way to handle high dimensional state spaces is to use
function approximation (and in particular parametric models
as we saw in learning) which simply means using any sort of
representation for the Q-function other than a lookup table

• The representation is viewed as approximate because it might
not be the case that the true utility function or Q function
can be represented in the chosen form.

• As an example, we could choose to use an evaluation function
for chess and represent this function as a weighted linear
function of a set of features (or basis functions) f1, f2, . . .

Ûθ(s) = θ1f1(s) + θ2f2(s) + . . .+ θnfn(s)

Generalization in RL

• A reinforcement learning algorithm can then learn values for
the parameters θ = θ1, . . . , θn such that the evaluation
function Ûθ approximates the true utility function

Ûθ(s) = θ1f1(s) + θ2f2(s) + . . .+ θnfn(s)

• Instead of say 1040 entries in a table, this function
approximator is characterized by, say, n = 20 parameters
which represents an enormous compression

• Function approximation makes it practical to represent utility
functions for very large state spaces, but that is not its
principal benefit

• The compression achieved by a function approximator allows
the learningagent to generalize from states it has visited to
states it has not visited

Generalization in RL

• To give an example of the generalization property of
parametric representations, by examining only one in every
1012 of the possible backgammon states, it is possible to learn
a utility function that allows a program to play as well as any
human

• On the flip side, there is of course the problem that there
could fail to be any function in the chosen hypothesis space
that approximates the true utility function sufficiently well

• As in all inductive learning, there is a tradeoff between the
size of the hypothesis space and the time it takes to learn the
function

• A large hypothesis space increases the likelihood that a good
approximation can be found, but also means that convergence
is likely to be delayed.

Generalization in RL

• Let us get back to direct utility estimation where each
completed simulation provides a sample for the utility.

• If we use function approximation to represent the utility, this
becomes a supervised learning task

• As an example, suppose we represent the utilities for a simple
4× 3 world using a simple linear function

• The features of the squares are just their x and y coordinates
so we can write

Û(x , y) = θ0 + θ1x + θ2y

Given a collection of trials, we can obtain a set of sample
values for Ûθ(x , y) and we can then find the best fit

Generalization in RL

• For reinforcement learning, it makes more sense to use an
online learning algorithm that updates the parameters after
each trial.

• As with neural network learning, we can write an error
function and compute its gradient with respect to the
parameters.

• If uj(s) is the observed total reward from state s onward in
the j th trial, the the error is defined as (half) the squared
difference of the predicted total and the actual total:

Ej(s) =
1

2

(
Ûθ(s)− uj(s)

)2

Generalization in RL

• The rate of change of the error with respect to each
parameter θi is ∂Ej/∂θi so to move the parameters in the
direction of a decreasing error, we want

θi ← θi − α
∂Ej(s)

∂θi
= θi + α

(
uj(s)− Ûθ(s)

) ∂Ûθ(s)

∂θi

• In the case of a linear function approximator, we then get the
equations

θ0 ← θ0 + α(uj(s)− Ûθ(s))

θ1 ← θ1 + α(uj(s)− Ûθ(s))x

θ2 ← θ2 + α(uj(s)− Ûθ(s))y

Generalization in RL

• We can apply the ideas behind function estimation to
temporal difference learning. All we need to do is adjust the
parameters to try to reduce the temporal difference between
successive states.

• The new versions of the TD and Q-learning equations (for
utilities and Q-values) are then given by

θi ← θi + α
[
R(s) + γÛθ(s ′)− Ûθ(s)

] ∂Ûθ(s)

∂θi

θi ← θi + α

[
R(s) + γmax

a′
Q̂θ(s ′, a′)− Q̂θ(s, a)

]
∂Q̂θ(s, a)

∂θi

Generalization in RL

• For passive TD learning, the update rule can be shown to
converge to the closest possible approximation to the true
function when the function approximator is linear in the
parameters

• With active learning and non linear functions such as neural
networks, all bets are off: There are some very simple cases
where the parameters can go off to infinity even though there
are good solutions in the hypothesis space

• Function approximation can also be very helpful to learn a
model of the environment

• Remember that learning a model for an observable
environment is a supervised learning problem as the enxt
percept gives the outcome state

Policy Search

• The idea behind policy search is to twiddle the policy as long
as its performance improve, then stop

• Remember that a policy π is a function that maps states to
actions. We are again interested in parametrized
representations of π (in particular representations that have
far fewer parameters than there are states in the state space)

• For example, we could represent π by a collection of
parametrized Q-functions, one for each action, adn take the
action with the highest prediction value

π(s) = argmax
a

Q̂θ(s, a)

• Each Q-function could be a linear function of the parameters
θ, or it could be a non linear function, such as a neural
network

Policy Search

• When the policy is represented by Q functions, policy search
results in learning Q-tables. However, note that this is not the
same as Q-learning which finds the value of θ such that Q̂θ is
close to the Q table, Q∗ encoding the optimal utlities.

• A policy given by the argmax gives a discontinuous function of
the parameters when the actions are discrete (there will be
values of θ such that an infinitesimal change in θ will cause
the policy to switch from one action to another). This also
implies that gradient based search will be more difficult

• For those reasons, we often use a stochastic policy
representation πθ(s, a) which specifies the probability of
selecting action a in state s

Policy Search

• A popular representation is the softmax function

πθ(s, a) = eQ̂θ(s,a)/
∑
a′

eQ̂θ(s,a
′)

The softmax always gives a differentiable function of the θ.

• We now let ρ(θ) denote the policy value (i.e. expected reward
to go when π is executed)

• If we can get a closed form expression for ρ(θ), then we can
get the policy by following the policy gradient ∇θρ(θ)
(provided that ρ is differentiable)

• If ρ is not available, we can evaluate πθ by executing it and
and observing the accumulated reward. We can then follow
the empirical gradient by hill climbing (this process will
converge to a local optimum in policy space)

Policy Search

• For the case of a stochastic policy πθ(s, a), it is possible to
obtain an unbiased estimate of the gradient at θ, ∇θρ(θ)
directly from the results of trials executed at θ

• As an example, let us assume that the reward R(a) is
obtained directly after doing action a in the start state s0. In
this case the policy value is just the expected value of the
reward, and we have

∇θρ(θ) = ∇θ
∑
a

πθ(s0, a)R(a) =
∑
a

(∇θπθ(s0, a))R(a)

• Now we perform a simple trick so that this summation can be
approximated by samples generated from the probability
distribution defined by πθ(s0, a).

Policy Search

• Suppose that we have N trials in all and the action taken on
the j th trial is aj . Then

∇θρ(θ) =
∑
a

πθ(s0, a)
(∇θπθ(s0, a))R(a)

πθ(s0, a)

≈ 1

N

N∑
j=1

(∇θπθ(s0, aj))R(aj)

πθ(s0, aj)

Policy Search

• Thus, the true gradient of the policy value is approximated by
a sum of terms involving the gradient of the action-selection
probability in each trial. For the sequential case, this
generalizes to

∇θρ(θ) ≈
N∑
j=1

(∇θπθ(s, aj))Rj(s)

πθ(s, aj)

for each state s visited, where aj is executed in s on the j th

trial and Rj(s) is the total reward received from state s
onwards in the j th trial

• The resulting algorithm is called Reinforce

Applications of RL

• The first application of reinforcement learning was also the
first significant learning program of any kind: the checkers
program written by Arthur Samuel (1959 - 1967)

• Samuel first used a weighted linear function for the evaluation
of positions using up to 16 terms at any one time

• He applied a version of the equation

θi ← θi + α
[
R(s) + γÛθ(s ′)− Ûθ(s)

] ∂Ûθ
∂θi

to update the weights.

Applications of RL

• Gerald Tesauro (IBM research) ’s backgammon program
TD-Gammon also illustrated the potential of Reinforcement
learning techniques.

• In 1989 Tesauro and Sejnowski tried learning a neural network
representation of Q[s, a] directly from examples of moves
labeled by a human expert. This approach proved extremely
tedious for the expert but resulted in a program called
Neurogammon that was strong by computer standards
(although not competitive when considering human standard)

• The TD-Gammon project was an attempt to learn from
self-play alone. The only reward signal was given at the end of
each game.

• The evaluation function was represented by a fully connected
neural network with a single hidden layer containing 40 nodes

Applications of RL

• By repeated applications of the update

θi ← θi + α
[
R(s) + γÛθ(s ′)− Ûθ(s)

] ∂Ûθ(s)

∂θi

TD-Gammon learned to play considerably better than
NeuroGammon even though the input representation
contained just the raw board position with no computed
features

• This took around 200,000 training games and two weeks of
computer time

• Although that might seem like a lot of games, that represents
only a vanishingly small fraction of the state space.

Applications of RL
• The setup for the famous cart-pole balancing problem, also

known as the inverted pendulum is shown below

• The problem is to control the position x of the cart so that
the pole remains roughly upright (θ ≈ π/2) while staying
within the limits of the cart track.

Applications of RL
• Several thousand papers in reinforcement learning and control

theory have been published on this seemingly simple problem.

• The cart pole differs from the problems described earlier in
that the state variables x , θ, ẋ and θ̇ are continuous

Applications of RL
• The actions are usually discrete : move left or move right (the

so-called bang bang control regime)

• The earliest workon learning for this problemwas carried out
by Michie and Chambers (1968). Their algorithm was able to
balance the pole for over an hour after only about 30 trials

Applications of RL

• Still more impressive is the application of Reinforcement
learning to helicopter flight

• This work has generally used policy search (see Bagnell and
Schneider 2001) as well as the Pegasus algorithm with
simulation based on a learned transition model (see Ng et al.
2004)

