
Artificial Intelligence

Augustin Cosse.

Fall 2021

November 17, 2021

Reinforcement learning

• Reinforcement learning is learning what to do so as to
maximize a numerical reward signal

• ”The learner is not told which action to take but instead must
discover which action yield the most reward by trying them”

• Ex.1.: ”A chess player makes a move. The choice is informed
by planning (anticipation of possible replies and
counterreplies) and by immediate intuitive judgements of the
desirability of possible positions and moves”

• Ex.2. ”A mobile robot decides whether it should enter a room
in search of a target or start to find its way back to its battery
charging station”

source: R. Sutton, A.G. Barto, Reinforcement learning: An introduction

Markov decision processs

• Consider a simple environment as shown above, where the
actions available to the agent in each state are encoded as
action(s)

• In every cell, the agent has the choice of moving up, down,
left or right.

• We assume that the environment is fully observable so that
the agent knows exactly where it is.

Markov decision processs

• In a deterministic framework, the optimal sequence of actions
would therefore be given by Up-Up-Right-Right-Right-Right

• In this case, we assume that the actions are unreliable. In
particular for any intended move, there is only a 80% chance
that the action will achieve the intended effect.

Markov decision processs

• We can then define a transition model P(s ′|s, a) that encodes
the probability of reaching state s ′ if action a is performed in
state s

• In a first approach P(s ′|s, a) can be define as a 3D table
containing probabilities. In more refined frameworks, the
model can be encoded as a dynamic Bayesian network

Markov decision processs

• We will assume that the transition model is Markovian, in the
sense that the probability of reaching state s ′ from s depends
only on s and not on the history of earlier states.

Markov decision processs

• To complete our definiton of the task environment, we must
also specify the utility function.

• Since the problem is sequential in this case, the utility will
depend on a sequence of states (known as an environment
history)

• For now, we will simply encode this utility as a reward R(s)
that the agent receives at every step, which may be positive
or negative.

• For now, the utility of environment history is just the sum of
the rewards received.

Markov decision processs

• A sequential decision problem for a fully observable stochastic
environment with a Markovian transition model and additive
rewards is called a Markov Decision Process (MDP)

• The next question we need to address is : what does a
solution to the problem look like?

• A solution should specify what the agent should specify what
the agent should do for any state that the agent might reach.
A solution of this type is called a policy. It is traditional to
denote a policy with the greek letter π. π(s) is thus the
action recommended by the policy π for state s.

• If the agent has a complete policy, no matter what the
outcome of an action is, teh agent will always know what to
do next.

Markov decision processs

• The quality of a policy is measured by the expected utility of
the possible environment history generated by that policy

• An optimal policy is a poicy that yields the highest expected
utility. We usually use the symbol π∗ to denote an optimal
policy.

• Given π∗, the agent decides what to do by consulting its
current percepts, which tells it the current state s, and then
executing the action π∗(s).

Markov decision processs

• When the optimal action in a given state could change over
time, we say that the optimal policy is nonstationnary

• When the optimal action depends only on the current state,
we say that the optimal policy is stationnary

• The next thing we need to decide is how to compute the
utility of a state sequence.

• Each state si can be viewed as an attribute of the state
sequence [s0, s1, s2, . . .]. To obtain a simple expression of our
utility as a function of the attributes, we will make some
simplifying assumption.

Markov decision processs

• We will first assume that the agent’s preferences between
state sequences are stationnary

• This implies that if two sequences [s0, s1, s2, . . .] and
[s ′0, s

′
1, s
′
2, . . .] begin with the same state (i.e. s0 = s ′0), then

the two sequences should be preference ordered the same way
as the sequences [s1, s2, . . .] and [s ′1, s

′
2, . . .].

• In other words, if you prefer one future to another starting
tomorrow, then you should still prefer that future if it were to
start today instead.

Markov decision processs

• Stationnarity seems like an innocuous assumption but it has
important consequences

• It turns out that under stationnarity there are only two
coherent ways to assign utilities to sequences:

• Additive rewards according to which the utility of a state
sequence is defined as

Uh([s0, s1, s2, . . .]) = R(s0) + R(s1) + R(s2) + . . .

• Discounted rewards according to which the utility of a
sequence is defined as

Uh([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + . . .

Where the discount factor γ is a number between 0 and 1.
The discount factor describes the preference of an agent for
current rewards over future rewards.

Markov decision processs

• When the utility of a given state sequence is the sum of
discounted rewards (hence is finite), we can compare policies
by comparing their expected utilities .

• We will assume that the agent is in some initial state s and
we will define as St (a random variable), the state that the
agent reaches at time t when executing a particular policy π.
Obviously S0 = s

• The probability distribution over state sequences S1, S2, . . . , is
determined by the initial state s, the policy π, and the
transition model for the environment.

Markov decision processs

• The expected utility obtained by executing π starting at s is
then given by

Uπ(s) = E

[∞∑
t=0

γtR(St)

]

Here the expectation is taken over state sequences determined
by s and π.

• Now out of all the policies that the agent could choose to
execute starting in s, one (or more) will have higher expected
utlity than the others. We will use π∗ to denote one of those
policies

π∗s = argmax
π

Uπ(s)

Markov decision processs

• Note that the expected utility of an action given some
evidence e (e.g. the fact that we are in a state s), is simply
the average value of the possible outcomes, weighted by the
probability that the particular outcome will occur:

π∗(s) = argmax
a

∑
s′

P(s ′|s, a)U(s ′)

• The optimal policy can be computed through an approach
known as value iteration

• Recall that the utility of being in a state can be defined as the
expected sum of the discounted rewards from that point
onwards

Markov decision processs

• From this it follows that one can decompose the utility of a
state as the immediate reward for that state (that the agent
fot when it reached that state) plus the expected discounted
utility of the next states (given that the agent always choose
its action so as to maximize this utility):

U(s) = R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)U(s ′)

The equation above is known as the Bellman equation named
after Richard Bellman (1957)

Markov decision processs: The value iteration algorithm

• The Bellman equation is the basis of the value iteration
algorithm for solving MDPs.

• If there are n possible states, there are n possible Bellman
equations, for each state

• Moreover, each equation contains n unknowns corresponding
to the utilities of each state

• The only problem is that the equations are non linear because
the ’max’ operator is not a linear operator

• Although one cannot solve the system through simple linear
algebra techniques (as we could have for a system of linear
equations), one can try to use an iterative approach

Markov decision processs: The value iteration algorithm

• As we will see, there are several approaches at solving the
MDP. The approaches most often discussed include

• Value iteration

• Policy iteration

• Temporal difference learning

• In Value iteration, we start with arbitrary initial values for the
utilities of each state, calculate the right handside of the
Bellman equation and then update the left handside with this
right handside

Value iteration algorithm

• Unlike policy iteration, Value iteration does not require any
policy evaluation (hence avoid the multiple sweeps needed in
this second approach)

• Let Ui (s) denote the utility value for the state s at the i th

iteration. The Value Iteration step, also known as Bellman
Update then reads as

Ui+1(s)← R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)Ui (s
′)

Function Value-Iteration(mdp, varepsilon):
input : mdp: an mdp with states S , actions A(s),

transition model P(s ′|s, a), reward R(s), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U,U ′: vectors of utilities for states in S , initially zero
δ: the maximum change in the utility of any state at any
iteration

while δ < ε(1− γ)/γ do
U ← U ′; δ ← 0 for each state s in S do

U ′[s]← R[s] + γmaxa∈A[s]
∑

s′ P(s ′|s, a)U[s ′]

if |U ′[s]− U[s]| > δ then
δ ← |U ′[s]− U[s]|

end

end

end
return U

Value iteration algorithm

• If we apply the Bellman update infinitely often, we are
guaranteed to reach an equilibrium in which case the final
utility values must be solutions to the Bellman equations

• To show convergence of the Value iteration, we will need the
notion of contraction.

• In this case, roughly speaking, a contraction f (x) can be
understood as a function of one argument that, when applied
to two different inputs produces outputs that are closer
together than the original inputs,

‖f (x)− f (y)‖ ≤ γ‖x − y‖

• A point that is unchanged by the application of the
contraction is called a fixed point

Value iteration algorithm

• A contraction has only one fixed point. If there were two fixed
points, those would not get closer together when the function
is applied.

• When the function is applied to any argument, the result must
be close to the fixed point (since the application of the
contraction to the fixed point gives the point itself), i.e. for
any fixed point x∗, and any y we have

‖f (x∗)− f (y)‖ = ‖x∗ − f (y)‖ ≤ γ‖x∗ − y‖

We now encode the Bellman update as

U(s) = R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)U(s ′)

U(s) = BU(s)

Value iteration algorithm

• The proof of convergence will consist in showing that for the
max norm ‖U‖ = maxs |U(s)| the Bellman update U ← BU is
a contraction

‖BUi − BU ′i ‖ ≤ γ‖Ui − U ′i ‖

• Note that once we know that B is a contraction, we can use it
to measure the speed of convergence to any fixed point. I.e.
for any fixed point U, we have

‖BUi − U‖ ≤ γ‖Ui − U‖

The equation above shows that the value iteration converges
exponentially fast to the fixed point.

Value iteration algorithm

• To prove the convergence to a fixed point, we first show that
for any two functions f and g , we have∣∣∣max

a
f (a)−max

a
g(a)

∣∣∣ ≤ max
a
|f (a)− g(a)|

To see this first note that

•
∣∣∣∣max

x
f (x)− g(argmax

x
f (x))

∣∣∣∣ ≤ max
a
|f (a)− g(a)|

•
∣∣∣∣max

x
g(x)− f (argmax

x
g(x))

∣∣∣∣ ≤ max
a
|f (a)− g(a)|

Value iteration algorithm

• Then note that if maxx f (x) ≥ maxx g(x), we can write

•
∣∣∣max

x
f (x)−max

x
g(x)

∣∣∣ ≤ ∣∣∣∣max
x

f (x)− g(argmax
x

f (x))

∣∣∣∣
• And if maxx f (x) ≤ maxx g(x), we have

•
∣∣∣max

x
g(x)−max

x
f (x)

∣∣∣ ≤ ∣∣∣∣max
x

g(x)− f (argmax
x

g(x))

∣∣∣∣
which gives the conclusion of the first claim.

Value iteration algorithm

• It then remains to apply the first claim to the Bellman update,
which gives∥∥BUi − BU ′i

∥∥
= max

s

∣∣∣∣∣γ max
a∈A(s)

∑
s′

P(s ′|s, a)Ui (s
′)− γ max

a∈A(s)

∑
s′

P(s ′|s, a)U ′i (s
′)

∣∣∣∣∣
≤ max

s
max
a∈A(s)

∣∣∣∣∣γ∑
s′

P(s ′|s, a)Ui (s
′)− γ

∑
s′

P(s ′|s, a)U ′i (s
′)

∣∣∣∣∣
≤ γmax

s
max
a∈A(s)

∑
s′

P(s ′|s, a)
∣∣Ui (s

′)− U ′i (s
′)
∣∣

≤ γmax
s

max
a∈A(s)

max
s′

∣∣Ui (s
′)− U ′i (s

′)
∣∣︸ ︷︷ ︸

‖Ui−U′
i ‖

∑
s′

P(s ′|s, a)

≤ γ‖Ui − U ′i ‖

Value iteration algorithm: Existence of fixed point

• To prove the existence of the fixed point (althgouh formally
we should be more precise), note that if recursively apply the
Bellman update to an initial utility U0, we get∥∥BnU0 − Bn−1U0

∥∥ ≤ γn−1 ‖BU0 − U0‖

In particular if we define Uu ≡ BU0, Un−1 ≡ Bn−1U0 as well
as U1 ≡ U0, this implies

‖BUn−1 − Un−1‖ ≤ γn−1‖U1 − U0‖

which for a sufficiently small γ and a sufficient number of
Bellman updates gives limn→∞ BUn−1 = limn→∞ Un−1

Value iteration algorithm
• Recall that in the value update, we repeat the update for each

possible state s ∈ S

• We could wonder how far we would be from the fixed point if
at step i , we stoped the value iterations and started executing
our estimate of the optimal policy, that is by taking each time
the action that maximizes

∑
s′∈S P(s ′|s, a)U(s ′). It turns out

that in this case, we have

‖Ui − U‖ < ε ⇒ ‖Uπi − U‖ < 2εγ/(1− γ)

Note that U i (which is the estimate of U at step i) is different
from the expected utility Uπi which, if we let S0 = s and
denote by St the state reached at step t by executing the
policy πi form step St−1 is given by

Uπi (s) = E

[∞∑
t=0

γtR(St)

]

Policy Iteration

• From the Value iteration approach, we saw that it was
possible to get an optimal policy even when our estimate of
the utility is not yet optimal.

• If one action is better than the others, then we might want to
focus on this action although our estimate of the utility might
not be optimal yet

• This suggest an alternative way to find the optimal policy, by
alternating between the following two steps:

• Policy evaluation: given a policy πi , calculate Ui = Uπi , the
utility of each state if πi were to be executed

• Policy Improvement: Calculate a new Maximum Expected
Utility policy using

π∗(s) = argmax
a∈A(s)

∑
s′

P(s ′|s, a)U(s ′)

Policy Iteration

• This second approach is known as policy iteration.

• The algorithm terminates when the policy improvement step
yields no change in the utility. At this point, we know that we
have reached a fixed point of the Bellman. As a consequence
Ui must be a solution of this equation and πi must be an
optimal policy

• The policy improvement step is easy but how do we
implement policy-evaluation?

Policy Iteration

• Note that since our actions are defined by the policy πi (s),
the Bellman equation simplifies to

Ui (s) = R(s) + γ
∑
s′

P(s ′|s, πi (s))Ui (s
′)

• In particular, this implies that the Bellman equations are now
linear in the utility. Since the ’max’ operator has been
removed, we now have a set of n linear equations in n
unknowns which can be solved in time O(n3) by relying on
linear algebra solvers.

• In general, for small state spaces, policy evaluation using
exact solution methods will be the favored approach.

Policy Iteration

• For large state space (i.e. when O(n3) becomes prohibitive,
we will instead rely on a number of simplified value iteration
steps of the form

Ui+1(s)← R(s) + γ
∑
s′

P(s ′|s, πi (s))Ui (s
′)

which we can repeat k times to get an our next utility
estimate

• This last (iterative) approach is known as modified policy
iteration.

Function Policy-Iteration(mdp):
input : mdp: an mdp with states S , actions A(s),

transition model P(s ′|s, a)
local variables: U a vector ot utilities for states in S , initially zero

π, a policy vector indexed by state, intially random
while unchanged do

U ← policy-evaluation(π,U,mdp)
unchanged? ← true
for each state s in S do

if max
a∈A(s)

∑
s′

P(s ′|s, a)U[s ′] >
∑
s′

P(s ′|s, π[s])U[s ′] then

π[s]← argmax
a∈A(s)

∑
s′

P(s ′|s, a)U[s ′]

unchanged? ← false
end

end

end
return π

Partially observable MDPs (brief intro)

• The approaches that we have just discussed both assumed
that the environment was fully observable. In other words,
the agent always knows which state it is in.

• Together with the Markov assumption on the transition model,
this means that the policy depends only on the current state

• When the environment is only partially observable, the agent
does not know which state it is in and hence cannot execute
the action π(s) corresponding to that state.

• On top of this, the utility of a state and the optimal action in
that state depends not only on the state, but also on how
much the agent knows when it is in that state.

Reinforcement Learning

• The main objective in reinforcement learning is to use
observed rewards (that we already introduced in MDPs) to
learn an optimal policy for the environment

• When discussing MDPs, we assumed that the agent had a
complete model of the environment (so that the rewards
associated to each state were known in advance), in the
general RL framework, we assume no prior knowledge at all.

• You can think of a RL agent as playing a new game whose
rule it does not know. After a hundred or so moves, its
opponents anounces that it lost the game.

• In many complex domains, reinforcement learning is the only
feasible way to train a program to perform at high levels

Reinforcement Learning

• A typical example of this is game playing. It is usually very
hard for a human to provide accuracte and consistent
evaluations of large number of positions, which could be used
to train a model from examples such as in supervised learning.

• The beauty of reinforcement learning is that in these
circumstances, the program can be told when it has won or
lost and it can then use this information to learn an evaluation
function that gives reasonably accurate estimates of the
probability of winning from any given position.

Reinforcement Learning

• Reinforcement learning can be considered to encompass all of
AI: an agent is placed in an environment and must learn to
behave successfully therein.

• When discussing RL agents, we willl focus on relatively simple
environments. In particular, we will assume that the
environment is fully observable (hence the current state is
supplied by each percept)

• We will however also assume that the agent does not know
how the environment works or what its actions do (and we
will allow for probabilitic action outcomes)

Reinforcement Learning

• Within the framework of reinforcement learning, we will
consider three of the agents designs that were introduced at
the beginning of the course:

• A utility based agent which will learn a utility function on
states and uses it to select action that maximize the expected
outcome utility

• A Q-learning agent learns an action utility function or
Q-function.

• A reflex agent learns a policy that maps directly from states to
action

Environment

Inspired from https://keon.io/deep-q-learning/, Deep Q-Learning with Keras and Gym

Action

Reward

Agent

State

Reinforcement learning

• In passive learning the agent’s policy is fixed and the task is to
learn the utilities of the states

• In active learning, the agent must also learn what to do

• The main issue is exploration: the agent must experience as
much as possible of its environment in order to learn how to
behave in it.

Passive Reinforcement learning
• In passive learning, the agent’s policy π(s) is fixed : in state
s, the agent always executes the action π(s)

• The only action of the agent is to learn how good the policy
is, that is to say to learn the utility function Uπ(s)

• Passive learning is similar to the policy evaluation part of the
policy iteration algorithm.

• The only difference is that a passive learning agent does not
know the transition model P(s ′|s, a). Nor does it know the
reward function.

• Recall that the utility is defined as the expected sum of
(discounted) rewards obtained if policy π is followed:

Uπ(s) = E

[∞∑
t=0

γtR(St)

]

Passive Reinforcement learning: Direct utility estimation

• A simple method for direct utility estimation was invented in
the area of adaptive control by Widrow and Hoff

• The idea is that the expected utility of a state is the expected
total reward from that state onward

• Each trial thus provides a sample of this quantity for each
state visited

Passive Reinforcement learning: Direct utility estimation

• As an example, a trial such as the one shown below in red
(and for γ = 1) provides a sample total reward of 0.72 for
state (1, 1), two samples of 0.76 and 0.84 for state (1, 2), two
samples of 0.8 and 0.88 for (1, 3) and so on

Passive Reinforcement learning: Direct utility estimation

• From this we can define an algorithm that, at then end of
each sequence, will calculate the expected reward to go for
each state and update the utility for that state accordingly

Passive Reinforcement learning: Direct utility estimation

• In the limit of infinitely many trials, the sample average will
converge to the true expectation

Passive Reinforcement learning: Direct utility estimation

• Direct utility estimation reduces the reinforcement learning
problemto an inductive learning problem but misses a very
important aspect : the fact that the utilities of states are not
independent

• That is, the the utility of each state equals its own reward
plus the expected utility of its successor states

Uπ(s) = R(s) + γ
∑
s′

P(s ′|s, π(s))Uπ(s)

Passive Reinforcement learning: Direct utility estimation
• By ignoring the connection between states, direct utility

estimation misses opportunities for learning

• As an example, from the second trial below, the agent will
know that the state (3, 2) has a high utility because it leads to
the state (3, 3) which itself leads to the goal state (4, 3)

Passive Reinforcement learning: Direct utility estimation
• This connection was in fact already highlighted by the

Bellman equation due to the connectivity between states but
in direct utility estimation, the agent will need to wait until
the second experiment to realize the importance of (3, 2)

• For this reason, convergence of direct utility estimation is
often slow in practice

Function Passive-ADP-Agent(percepts):
input : percept, a percept sequence indicating

the current state s ′ and the reward signal r ′

persistent : π, a fixed policy, mdp(P, R, γ)
U, a table of utilities (initially empty)
Nsa, a table of frequencies for sate-action pairs (init. zero)
Ns′|s,a, a table of outcome frequencies for state action pairs
s, a, the previous state and action

if s ′ is new then
U[s ′]← r ′, R[s ′]← r ′

end
if s is not null then

increment Nsa[s, a] and Ns|s,a
for each t such that Ns′|s,a[t, s, a] is nonzero do

P(t|s, a)← Ns′|s,a[t, s, a]/Ns,a[s, a]

end

end
U ← Policy − Evaluation(π,U,mdp)
if s ′.terminal? then

s, a← null
end
else

s, a← s ′, π[s ′]
end
return a

Adaptive dynamic programming

• An adaptive dynamic programming (ADP) agent takes
advantage of the constraints among the utilities of states, by
learning the transition model that connects them and then
solving the resulting Markov Decision Process by using a
dynamic programming method

• For a passive agent (i.e. known policy π(s)), this means
plugging the learned transition model P(s ′|s, π(s)) and the
observed reward R(s) into the Bellman equation to calculate
the utilities of the states.

• Since the equations are linear, they can be solved using any
linear algebra solver. Alternatively, as we say, we can also use
a modified policy iteration.

Adaptive dynamic programming

• The process of learning the model P(s ′|s, a) is easy, because
the environment is fully observable

• Concretely this means that we have a supervised learning task
where the input is a state-action pair and the output is the
resulting state.

• In the simplest case, we can represent the transition model as
a table of probabilities

• We keep track of how often each action outcome occurs and
estimate the transition probability P(s ′|s, a) from the
frequency with which s ′ is reached when executing a in s.

Adaptive dynamic programming

• One can in fact show that such an ADP agent uses maximum
likelihood to estimate the transition model.

• Note that by choosing a policy based solely on the estimated
model, it is acting as if the model were correct, which is not
necessarily a good idea

• As an example, a taxi agent that does not know about traffic
lights might ignore a red light once or twice with no ill effects
and then formulate a policy to ignore red lights from then on

• In order to avoid such a situation, it might be better to
choose a policy that, while not necessarily optimal for the
mode estimated by maximum likelihood, will however work
well for a whole range of models that have a reasonable
chance of being the true model.

Adaptive dynamic programming
• There are two mathematical approaches that rely on this idea:

• Bayesian reinforcement learning assumes a prior probability
P(h) for each hypothesis h about what the true model is. The
posterior P(h|evidence) is obtained using Bayes rule and the
observations to date. If the agent has decided to stop learning,
the optimal policy is the one that gives the highest expected
utility. I.e let uπh denote the expected utility, averaged over all
possible start states, obtained by executing policy π in model
h, we get

π∗ = argmax
π

∑
h

P(h|evidence)uπh

• Robust Control theory considers a set of possible models H
and defines an optimal robust policy as one that gives the best
outcome in the worst case over H

π∗ = argmax
π

min
h

uπh

Temporal Difference Learning (TD)

• Updating the transition probabilities and solving the MDP as
in ADP is not the only way to use the Bellman equations

• An alternative is to use the observed transitions to adjust the
utilities of the observed states so that they agree with the
constraint equations

• This can be done through the following update (known as
temporal difference update)

Uπ(s)← Uπ(s) + η
(
R(s) + γUπ(s ′)− Uπ(s)

)
which reduces the difference between the LHS and the RHS in
the Bellman equation. η is the learning rate.

Temporal Difference Learning (TD)

• Although this looks like an attractive approach, there is some
subtelty involved

• First, note that the update only involves the observed
successors of state s while the actual equilibrium equation
involves all the successors (Fortunately, since rare transitions
will occur only rarely, the average value of Uπ(s) will converge
to the correct value)

• Second, note that if we change α from a fixed parameter to a
function that decreases with the iterations, Uπ(s) (and not its
average) will converge to the correct value.

• Possible update rule for α include α(n) = C/(C + n) where C
is a large constant (e.g. 60)

Function Passive-TD-Agent(percepts):
input : percept, a percept sequence indicating

the current state s ′ and the reward signal r ′

persistent : π, a fixed policy, mdp(P, R, γ)
U, a table of utilities (initially empty)
Ns , a table of frequencies for states (init. zero)
s, a, r , the previous state and action and reward

if s ′ is new then
U[s ′]← r ′

end
if s is not null then

increment Ns [s]
U[s]← U[s] + η(Ns [s])(r + γU[s ′]− U[s])

end
if s ′.terminal? then

s, a, r ← null
end
else

s, a, r ← s ′, π[s ′], r ′

end
return a

Temporal Difference Learning (TD)

• The ADP and the TD approach are actually closely related.
Both try to make local adjustments to the utility estimates in
order to make each state ”agree” with its successors

• One difference, as we saw is that TD adjusts a state to agree
with its observed successor while ADP adjusts the state to
agree with all of the successors

• As we also saw this difference disappears when the effects of
TD adjustments are averaged over a large number of
transitions

• Another more important difference is that whereas TD makes
a single adjustment per observed transition, ADP makes as
many as it needs to restore consistency between the utility
estimate U and the environment model P

Active reinforcement learning

• A passive agent has a fixed policy, an active agent must
decide what actions to take

• The first difference is that the agent must now learn a
complete model with outcome probabilities for all actions
rather than just the model for the fixed policy (one approah is
to re-use the simple learning mechanism from the ADP agent)

• Next we need to take into account the fact that the agent has
a choice of actions

Active reinforcement learning

• The utilities it needs to learn are those defined by the optimal
policy. They obey the Bellman equations

U(s) = R(s) + γmax
a

∑
s′

P(s ′|s, a)U(s ′)

Those equations can be solved to obtain the utility function U
using the value iteration algorithm or the policy iteration
algorithm

• Having obtained the utility function U that is optimal for the
learned model, the agent can extract an optimal action by
one-step look ahead to maximize the expected utility.

• But is this approach always optimal ?

Active reinforcement learning

• An agent that follows the recommendations of the optimal
policy for the learned model at each step is known as a greedy
agent.

• A greedy agent very seldomly converges to the optimal policy
for a given environment because the learned model is often
suboptimal for the true environment.

Active reinforcement learning

• What can be done, then, to improve our agent?

• What the greedy agent overlooks is that actions do more than
provide rewards according to the current learned model. They
also contribute to learning the true model by affecting the
percepts that are received

• By improving its understanding of the model, the agent might
receive greater rewards in the future.

• An efficient agent should therefore always make a tradeoff
between exploitation (maximization of its immediate reward)
and exploration (which will contribute to the maximization of
its long term well being)

