
Intro to Machine Learning

Augustin Cosse.

Fall 2021

November 30, 2021



Reinforcement learning

• Reinforcement learning is learning what to do so as to
maximize a numerical reward signal

• ”The learner is not told which action to take but instead must
discover which action yield the most reward by trying them”

• Ex.1.: ”A chess player makes a move. The choice is informed
by planning (anticipation of possible replies and
counterreplies) and by immediate intuitive judgements of the
desirability of possible positions and moves”

• Ex.2. ”A mobile robot decides whether it should enter a room
in search of a target or start to find its way back to its battery
charging station”

source: R. Sutton, A.G. Barto, Reinforcement learning: An introduction





Reinforcement learning: constitutive elements

• The policy defines the learning agent’s way of behaving at any
given time

• On each time step, the evironment sends to the reinforcement
learning agent a single number called the reward which
specifies what are good and bad events in an immediate sense.

• To know what is good in the long run, we use a value function
which is the total amount of reward the agent can expect to
accumulate over the future, starting from that state.

• Finally, the last element is a model for the environment which
enables inferences to be made on how the environment will
react w.r.t a particular action. The role of the model is
essentially to predict the next state and next reward given the
current state and action.

source: R. Sutton, A.G. Barto, Reinforcement learning: An introduction



Reinforcement learning

• Actions are usually taken to maximize the value, not the
reward, because high value actions are those that lead to the
highest level of reward in the long run. Finding such actions is
however hard as those have to be constantly re-estimated
based on the decisions of the agent.

• An important instance of reinforcement learning in which
there is a single state is the bandit problem

source: R. Sutton, A.G. Barto, Reinforcement learning: An introduction



Reinforcement learning

• We usually distinguish two types of feedbacks

• Instructive feedback which indicates the correct action to take,
given the action taken (this action is the basis of supervised
learning)

• Evaluative feedbacks indicate whether an action that was
taken was good or bad but does not indicate whether it was
the best or worst possible action

• Reinforcement learning as opposed to supervised learning
evaluates (not in an absolute sense) the action taken rather
than instructing by giving correct actions.

• Reinforcement learning is usually studied in a simplified
framework (non associative = change in the response to a
stimulus based on repeated exposure to that stimulus) known
as multi-armed bandit problem

source: R. Sutton, A.G. Barto, Reinforcement learning: An introduction



Reinforcement learning
• The Multi-armed bandit problem is an instance of non

associative learning.

• Non associative learning = no more than one situation or no
feedback on the situation (i.e no way to associate the reward
to a particular situation or state of the environment)

• >< Associative learning = different actions are best in
different environements

source: Barto, Sutton, and Brouwer, Biological Cybernetics, 1981.



Environment

Inspired from https://keon.io/deep-q-learning/, Deep Q-Learning with Keras and Gym

Action

Reward

Agent

State



Reinforcement learning

• The multi-armed bandit is a simplified version of non
associative feedback problem

• In the k-armed bandit problem, you are faced repeatedly with
a choice among k different possible options or actions. After
each choice, you receive a numerical reward chosen from some
stationnary probability distribution that depends on the action
you selected.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning
• You can think of the k-armed bandit problem as the problem

of playing one of the k levers of a slot machine. You choose
which lever you play and the reward is the payoff for hitting
the jackpot

• The value of an arbitrary action, a, which we denote v(a) is
the expected reward given that you selected a

v(a) = E {Rt |At = a}

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning

• We don’t know the exact value v∗(a) (because we don’t know
the distribution). So we would like an estimate vest,t(a)
(estimated value at time t) that would be as close as possible
to v∗(a)

• When you keep track of the estimated action values through
time, then at each time step, there is always at least one
action whose estimated value is best. We call this greedy
actions.

• When you select one of these actions, we say that you are
exploiting your current knowledge of the values of the actions

• When you select one of the non greedy actions, then we say
you are exploring. In particular, exploring enables you to
improve your estimates of the non greedy action’s values.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning

• Exploitation will maximize your expected reward on the one
step but exploration may lead to greater total reward in the
long run.

• Intuitively, if you have many time steps ahead, it may be
better to explore.

• How do we balance exploration and exploitation when dealing
with the k-armed bandit problem?

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Action value estimates

• The first thing we want to do is get an estimate of the value
of an action at time t.

• The natural approach is to average over the rewards received
in the past

vest,t(a) =
sum of rewards when a taken

number of times a taken
=

∑t−1
i=1 Ri1IAi=a∑t
i=1 1IAi=a

Here 1Ipredicate is used to denote the indicator function for the
predicate. 1Ip = 1 if the predicate is verified and 0 otherwise.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Action value estimates

• Then the simplest action selection procedure (known as
greedy action selection) is to select (one of) the action(s)
with the highest estimated value,

A∗ = argmax
a

vest,t(a)

• Greedy action selection always exploits current knowledge to
maximize immediate reward (i.e it does not spend time
investigating inferior actions to see if they might be better)

• A group of alternative methods known as ε-greedy methods
consist in behaving greedily most of the time, but once in a
while (with probability ε) select an action randonly (with
uniform probability) from the list of all possible actions.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Action value estimates
• ε-greedy methods ensure that every action is sampled an

infinite number of times. Which in turns implies that the
estimator vest(a) converges to the v∗ (the true expected value)

• To avoid keeping each reward in memory independently,
typical implementations of greedy and ε-greedy only update
the averaged reward (a.k.a value). If Qn is used to denote the
value of a given action after the nth step,

Qn =
R1 + R2 + . . .Rn−1

n − 1

we compute Qn+1 as

Qn+1 =
1

n

n∑
i=1

Ri =
1

n

(
Rn + (n − 1)

1

n − 1

n−1∑
i=1

Ri

)

= Qn +
1

n
[Rn − Qn]

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: greedy vs ε-greedy

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Simple Bandit algorithm

1. Initialize, for every action a = 1, to k

1.1 v(a)← 0

1.2 n(A)← 0 (number of times A has been chosen)

2. Repeat

2.1 A←

{
argmax

a
v(a) with probability 1− ε

a random action with probability ε

2.2 R ← bandit(a)

2.3 n(A)← n(A) + 1

2.4 q(A)← v(A) + 1
N(A) [R − v(A)]

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Simple Bandit algorithm

• So far we have focused on stationnary Bandit problems
(Problems for which the reward probabilities do not change
with time).

• When the problems are not stationnary, the choice of an
action will depend on the instant at which the action is taken.
In particular we will want to give more weight to the rewards
associated to more recent actions. One way to achieve this is
to add a weight in the update rule for the value Vn+1,

vn+1 = vn + α(Rn − vn)

Developing, we get

vn+1 = (1− α)nv1 +
n∑

i=1

α(1− α)n−iRi

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Q-learning

• How can we extend this idea to a more complex framework in
which we face multiple states (e.g. the best action on the
stock market is highly dependent on the state of the market)

• Under an important assumption (called stationnarity for
preferences), the utility associated to a sequence of states
s0, s1, . . . is known to be defined as the sequence of
discounted rewards

Uh ([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + . . .

• Given this definition, and provided that the agent chooses the
best action each time (the action that maximizes the expected
utility), our utility satisfies the Bellman equation

U[s] = R[s] + γmax
a

∑
s′

P(s ′|s, a)U[s ′]



Reinforcement learning: Q-learning

• In fact one can extend this equation to the associative
framework by introducing the notion of Q-table

• A Q-table is a way to store the value of a pair (s, a)
(corresponding to being in state s and taking action a). The
corresponding framework is known as Q-learning

• One approach in Q-learning consists in requiring the Q-table
to satisfy the equality

Q[s, a] = R[s] + γ
∑
s′

P(s ′|s, a) max
a′

Q[s ′, a′]

That is to say, we encode the value of a state-action pair as
the immediate reward of the state plus the best possible value
we will be able to achieve in the subsequent state (i.e. we
take an optimistic viewpoint)



Reinforcement learning: Q-learning

• Given the Bellman update on Q-table, we can define what is
known as a time difference update to learn the Q-table

Q[s, a]← Q[s, a] + η

(
R[s] + γmax

a′
Q[s ′, a′]− Q[s, a]

)
This update corresponds to adding to our current guess for Q
a correction (based on the difference between the right
handside and the left handside of the Q-table) for the sample
s, a, s ′ that is acquired by the agent

• Note that we replace the average on the RHS of the update
by an estimate based on a single sample (this is because we
assume that for a sufficiently long simulation, we will
ultimately add corrections corresponding to each of the terms
in the average). In short we approximate the average with an
empirical estimate based on the samples we get through the
iterations.



Reinforcement learning: Generalization

• A major problem with the Q-table approach introduced before
is the space needed to store the table and the fact that for a
large environment, most of the states will be unexplored so
that when the agent will find itself in those states, it will not
know what to do.

• A solution to this problem consists in learning a parametric
model for the Q-table

• We can then consider the learning problem as a sequential
where the objective is to reduce the gap between our current
value estimate stored in the Q-table and the right handside of
the Bellman equation

min
θ

∥∥∥∥Q̂[s, a]− (R[s] + γmax
a′

Q̂[s ′, a′])

∥∥∥∥2



Reinforcement learning: Generalization

• Considering a small learning rate η and taking a stochastic
viewpoint, we get the sequential gradient updates

θi ← θi + η

[
R[s] + γmax

a′
Q̂[s ′, a′]− Q̂[s, a]

]
∂Q̂θ[s, a]

∂θi

• Within this framework, we can then use any of the models
that were introduced in the supervised part of the course

• A popular approach (known as deep Q-learning) stores the
Q-table as a neural network and update the weights of the
network each time a new sample s, s ′, a is obtained

• See Playing Atari with Deep Reinforcement Learning by
DeepMind


