
Artificial Intelligence

Augustin Cosse.

Fall 2021

November 10, 2021

So far

• Simple Reflex, Random agents, Utility based, Goal based

• Improvement through Search Methods (uninformed (DFS,
BFS), informed (BS, A∗)).

• Logical Reasoning, Propositional logic + First Order Logic,
Inference

• Learning

• Decision trees, regression, classification

• Neural Networks

• Parametric vs non parametric

• Kernels and SVMs

• Unsupervised and Clustering

• Reinforcement learning

Parametric vs Non Parametric

• Linear regression, logistic regression and neural networks use
the training data to estimate a fixed set of parameters

• Those parameters define our hypothesis hβ(x). Once we have
the hypothesis, we can just throw away the training data

• A learning model that summarizes data with a set of
parameters of fixed size is called a parametric model

• No matter how much data you throw at a parametric model,
it won’t change its mind about how many parameters it needs

• A non parametric model is one that cannot be characterized
by a bounded set of parameters

Parametric vs Non Parametric

• A example of a non parametric model for classification is the
K nearest neighbor (KNN) classifier

• Given a query xq, KNN works by first finding the k examples
that are the nearest to xq

• In classification, we then simply take the majority vote across
the neighbors

• In regression, we can take the mean, or median of the
neighbors, or solve a regression problem on the neighbors

Parametric vs Non Parametric

• Another popular non parametric approach in classification are
Support Vector Machines (or Max Margin Classifiers).

• SVMs is currently the most popular approach for ’off the
shelf’ supervised learning. If you don’t have any specialized
prior knowledge about a domain, the SVM is an excellent
method to try first

Parametric vs Non Parametric

• There are three properties that make SVM attractive:

• SVM constructs a maximum margin separator (decision
boundary with the largest possible distance to example points)

• SVM creates a linear separating plane but they have the ability
to embed the data into a higher dimensional space using the
so called kernel trick

• SVM are a nonparametric method (they retain training
examples and potentially need to store them all). However in
practice they often end up retaining only a small fraction of the
examples. Thus they combine the advantages of nonparametric
and parametric models: they have the flexibility to represent
complex functions but they are resistant to overfitting.

Separating Hyperplanes (quick recap)

• Consider the separating
hyperplane β0 + βTx

• x1 and x2 belong to the
plane if they satisfy

β0 + βTx1 = β0 + βTx2

• We thus have
βT (x1 − x2) = 0 for all
x1, x2 in the plane

• β (β∗ = β/‖β‖) is the
vector normal to the
hyperplane

H,T,F, Elem. of Stat. Learn.

• The signed distance of a
point x to the hyperplane is
defined as

(β∗)T (x − x0)

=
1

‖β‖
(βTx + β0)

• Points that are located
above thus lead to positive
values βTx + β0 > 0

• Points that are located
below lead to negative
values βTx + β0 < 0 H,T,F, Elem. of Stat. Learn.

• A separating plane thus
gives a natural way to
associate positive or
negative labels to points

• For a two class classification
problem, we can look for the
plane that gives positive
labels to one class and
negative labels to the other

• This idea leads to the
perceptron algorithm of
Rosenblatt H,T,F, Elem. of Stat. Learn.

Support vector machines

• Linear models have interesting computational and anlytical
properties but their practical applicability is limited by the
curse of dimensionality

• Support vector machines are also called sparse vector
machines

• SVM start by defining basis functions that are centered on the
data and then select a subset of these during training

Support vector machines

• Consider the linear regression model

y(x) = βTφ(x) + β0

• Assume we want to do classification so the labels are
tn = {±1}

• We further assume that the dataset of linearly separable in
feature space so that there exist at least one seprating
hyperplane with βTφ(xn) + β0 > 0 for the xn with tn > 0
and βTφ(xn) + β0 < 0 otherwise

• When there are multiple choices we should choose the one
that gives the smallest generalization error. SVM tries to
achieves this through the notion of margin

Support vector machines

(Bishop, Pattern recognition and Machine Learning)

SVM as Maximum Margin Classifier

• Recall from the geometry of separating hyperplanes that the
distance of a point φ(xn) to the hyperplane βTx + β0 is
defined as |y(x)|/‖β‖

• When all the points are correctly classified, the sign of tn
equals the sign of yn = βTφ(xn) + β0 and we can thus write
the distance as

tnyn
‖β‖

=
tn(βTφ(xn) + β0)

‖β‖

• The margin is the perpendicular distance of the closest point
φ(xn) to the plane

SVM as Maximum Margin Classifier

tnyn
‖β‖

=
tn(βTφ(xn) + β0)

‖β‖

• The maximum margin solution is thus given by

argmax
β,β0

{
1

‖β‖
min
n

[
tn(βTφ(xn) + β0)

]}
• We don’t want to solve this problem because deriving a direct

solution in this framework would be difficult

SVM as Maximum Margin Classifier

argmax
β,β0

{
1

‖β‖
min
n

[
tn(βTφ(xn) + β0)

]}

• First note that for any rescaling β ← αβ, β0 ← β0α, the
objective tn(βTφ(xn) + β0)/‖β‖ is unchanged

• We can thus focus on one of these solution (fix one particular
scale for [β, β0]) as all the others give the same objective

• In particular we can choose to fix the scale by setting

tn(βTφ(xn) + β0) = 1

For the point that is the closest to the boundary.

SVM as Maximum Margin Classifier

argmax
β,β0

{
1

‖β‖
min
n

[
tn(βTφ(xn) + β0)

]}

• Now all the other points will necessarily satisfy

tn(βTφ(xn) + β0) ≥ 1

• Because we fixed the distance of the closest point to the plane
the original optimization problem reduces to

argmin
β

1

2
‖β‖2

together with the constraint tn(βTφ(xn) + β0) ≥ 1

SVM as Maximum Margin Classifier

argmin
β

1

2
‖β‖2

subject to tn(βTφ(xn) + β0) ≥ 1

• This constrained optimization problem can be recast as an
unconstrained problem by introducing multipliers λn ≥ 0

L(β, β0,λ) =
1

2
‖β‖2 −

N∑
n=1

λn

{
tn
(
βTφ(xn) + β0

)
− 1
}

(see for example Appendix E in Bishop, Pattern Recognition and
Machine Learning)

SVM as Maximum Margin Classifier

L(β, β0,λ) =
1

2
‖β‖2 −

N∑
n=1

λn

{
tn
(
βTφ(xn) + β0

)
− 1
}

• To find the minimum of this function, we set the derivatives
with respect to β and β0 to zero, getting

β =
N∑

n=1

λntnφ(xn)

0 =
N∑

n=1

tnλn

• and maximize with respect to λn (large λn penalize the
constraint a lot if it becomes negative)

SVM as Maximum Margin Classifier

• Eliminating β and β0 from L(β, β0,λ), we get

L(λ) =
N∑

n=1

λn −
1

2

N∑
n=1

N∑
m=1

λnλmtntmφ(xn)Tφ(xm)

• with the constraints

N∑
n=1

λntn = 0

λn ≥ 0

• Maximizing L(λ) under the constraints above is a quadratic
programming problem for which efficient techniques exist.
Moreover when κ(xn, xm) is Mercer, there is a single solution

SVM as Sparse Kernel Machines(I)

• Given the function L(β, β0,λ), it is known
(Karush-Kuhn-Tucker conditions) that any optimal solution
must satisfy the follosing 3 conditions

λn ≥ 0

tny(xn)− 1 ≥ 0

λn {tny(xn)− 1} = 0

• The last conditions have a very important consequence on
SVM

• Either λn = 0 or tny(xn) = 1 (support vectors)

SVM as Sparse Kernel Machines (II)

• Either λn = 0 or tny(xn) = 1 (support vectors)

• In particular many λn will be zero

• Using β =
∑N

n=1 λntnφ(xn), and substituting it in
y(x) = βTφ(x) + β0, we get the prediction model

y(x) =
N∑

n=1

λntnφ(x)Tφ(xn) + β0

• Which is a combination of the λn !

SVM as Sparse Kernel Machines (III)

(Karush-Kuhn-Tucker)

λn ≥ 0
tny(xn)− 1 ≥ 0
λn {tny(xn)− 1} = 0

• Using the Karush-Kuhn-Tucker conditions, the SVM
prediction model thus reduces to

y(x) =
∑
n∈S

λntnφ(x)Tφ(xn) + β0

Where S are the support vectors (all remaining λn’s are 0)

SVM as Sparse Kernel Machines (IV)

• This sparsity property (i.e the need to only keep a small
number of support vectors) is a key property of SVM

• It guarantees efficiency of the prediction step !

• Once you know the support vectors, β and β0 can be
computed using β =

∑N
n=1 λntnφ(xn), as well as the fact that

at any of the support vectors we must have

tnyn = tn

(∑
m∈S

λmtmκ(xn, xm) + β0

)
= 1

• Sometimes we average the estimate for β0 over the support
vectors (here n) to get more stability

Short summary

• General geometry of separating hyperplane, distance to
hyperplane, perceptron

• Curse of dimensionality

• Kernels

• As a way to encode similarity rather than features

• As smooth interpolating functions

• SVM

• Maximum Margin

• Sparse Kernel machines ⇒ efficient prediction

Kernels
• In linear regression we have seen that we could generate

higher dimensional feature vectors φ(x (i)) to replace x (i)

• We can then substitute those vectors to get the expression

h(x) = sign

(∑
i∈D

αi t
(i)〈φ(x (i)), φ(x)〉 − b

)

• It turns out that the inner product 〈φ(x (i)), φ(x)〉 can often
be derived without computing the feature vectors explicitely.

• Instead of thinking in terms of feature vectors, we can think in
terms of similarity and replace the inner product by a
similarity function which we call kernel

h(x) = sign

(∑
i∈D

αi t
(i)κ(x (i), x)− b

)

Kernel

• The most popular example of such function is the Gaussian
kernel

κ(x , x ′) = exp(−‖x − x ′‖2

σ
)

• Just as the inner product, you see that κ(x , x ′) will be larger
when x is similar to x ′

• Learning a classifier with a Gaussian kernel corresponds to
centering a Gaussian with a particular width around each
sample, and weighting that Gaussian by the target

Unsupervised Learning

• So far : predictions based on training samples for which joint
values {(x i , yi)}Ni=1 are known.

• Problem: costly. Most datasets are not labeled.

• Today: Unsupervised learning = learning without a teacher

• In unsupervised Learning we are given samples (x1, x2, . . . , xN)
from a distribution P(X) and the goal is to infer the
properties of the distribution without the help of the teacher.

• There are two main types of unsupervised learning approaches:
(1) clustering the attribute vectors and (2) trying to find low
dimensional representation of those attribute vectors such that
X = X (θ) and θ reveals meaningful information.

Clustering: K-means

• The most popular clustering algorithms are combinatorial
algorithms which assign every observation to a given cluster
without regard to any predefined probabilistic model.

• The number of clusters K is usually predefined

• One approach is to introduce a loss that will drive the
assignment. If we let Ck to denote the kth cluster, we get

`(C) =
1

2

K∑
k=1

∑
i∈Ck

∑
j∈Ck

d(xi , xj)

K-means

• When the dissimilarity is chosen to be the Euclidean distance,

d(xi , x
′
i) =

p∑
j=1

(xij − xi ′j)
2 = ‖xi − xi ′‖2

• The loss then reads as

`(C) =
1

2

K∑
k=1

∑
i∈Ck

∑
j∈Ck

‖xi − xj‖2

K-means

• In particular, developing, we get

1

2

∑
k

∑
i∈Ck

∑
j∈Ck

‖xi − xj‖2

=
1

2

∑
k

∑
i∈Ck

∑
j∈Ck

〈xi , xi 〉+ 〈xj , xj〉 − 2〈xi , xj〉

=
1

2

∑
k

∑
i∈Ck

〈xi , xi 〉Nk −
1

2

∑
k

∑
i∈Ck

2〈xi ,
∑
j∈Ck

xj〉

=

 K∑
k=1

Nk

∑
i∈Ck

〈xi , xi 〉 −
K∑

k=1

Nk

∑
i∈Ck

〈xi ,
∑
j∈Ck

xj〉
1

Nk

K-means

1

2

∑
k

∑
i∈Ck

∑
j∈Ck

‖xi − xj‖2

=

 K∑
k=1

Nk

∑
i∈Ck

〈xi , xi 〉 −
K∑

k=1

Nk

∑
i∈Ck

〈xi ,
∑
j∈Ck

xj〉
1

Nk

=

K∑
k=1

Nk

∑
i∈Ck

〈xi , xi 〉 − 〈xi ,∑
j∈Ck

xj〉
1

Nk

=

K∑
k=1

Nk

∑
i∈Ck

〈xi , xi 〉 − 〈xi ,∑
j∈Ck

xj〉
1

Nk
+

1

N2
k

〈
∑
j∈Ck

xj ,
∑
j∈Ck

xj〉

−

K∑
k=1

∑
i∈Ck

 1

Nk

∑
j∈Ck

〈xj , xi 〉

K-means

1

2

∑
k

∑
i∈Ck

∑
j∈Ck

‖xi − xj‖2

=
K∑

k=1

Nk

∑
i∈Ck

〈xi , xi 〉 − 〈xi ,∑
j∈Ck

xj〉
1

Nk
+

1

N2
k

〈
∑
j∈Ck

xj ,
∑
j∈Ck

xj〉

−

K∑
k=1

Nk

∑
i∈Ck

 1

Nk

∑
j∈Ck

〈xj , xi 〉

=

K∑
k=1

Nk

∑
i∈Ck

〈xi , xi 〉 − 2〈xi ,
1

Nk

∑
j∈Ck

xj〉+ 〈 1

Nk

∑
j∈Ck

xj ,
1

Nk

∑
j∈Ck

xj〉

=
K∑

k=1

Nk

∑
i∈Ck

‖xi −
1

Nk

∑
j∈Ck

xj‖2

K-means

• In other words, when using the Euclidean distance, one can
write the clustering objective/loss as

`(C) =
K∑

k=1

Nk

∑
i∈Ck

‖xi − xk‖2

Where xk is the center of mass of the kth cluster.

• the optimal clustering in that framework is thus the clustering
that minimizes the average dissimilarity

K-means

• 1. Update the assignement by setting

xi ∈ Ck if k = argmin
k
‖xi −mk‖2

• 2. Given a cluster assignement C, compute the center of mass
of each cluster

x̄S = argmin
m

∑
i∈S
‖xi −m‖2

• Repeat Steps 1 and 2 until the assignement does not change

Reinforcement learning

• Reinforcement learning is learning what to do so as to
maximize a numerical reward signal

• ”The learner is not told which action to take but instead must
discover which action yield the most reward by trying them”

• Ex.1.: ”A chess player makes a move. The choice is informed
by planning (anticipation of possible replies and
counterreplies) and by immediate intuitive judgements of the
desirability of possible positions and moves”

• Ex.2. ”A mobile robot decides whether it should enter a room
in search of a target or start to find its way back to its battery
charging station”

source: R. Sutton, A.G. Barto, Reinforcement learning: An introduction

Reinforcement learning

• The policy defines the learning agent’s way of behaving at any
given time

• On each time step, the evironment sends to the reinforcement
learning agent a single number called the reward which
specifies what are good and bad events in an immediate sense.

• To know what is good in the long run, we use a value function
which is the total amount of reward the agent can expect to
accumulate over the future, starting from that state.

• Finally, the last element is a model for the environment which
enables inferences to be made on how the environment will
react w.r.t a particular action. The role of the model is
essentially to predict the next state and next reward given the
current state and action.

source: R. Sutton, A.G. Barto, Reinforcement learning: An introduction

Reinforcement learning

• Action are usually taken to maximize the value, not the
reward, because high value actions are those that lead to the
highest level of reward in the long run. Finding such actions is
however hard as those have to be constantly re-estimated
based on the decisions of the agent.

• An important instance of reinforcement learning in which
there is a single state is the bandit problem

source: R. Sutton, A.G. Barto, Reinforcement learning: An introduction

Environment

Inspired from https://keon.io/deep-q-learning/, Deep Q-Learning with Keras and Gym

Action

Reward

Agent

State

Reinforcement learning

• The multi-armed bandit is a simplified version of non
associative feedback problem

• In the k-armed bandit problem, you are faced repeatedly with
a choice among k different possible options or actions. After
each choice, you receive a numerical reward chosen from some
stationnary probability distribution that depends on the action
you selected.

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning
• You can think of the k-armed bandit problem as the problem

of playing one of the k levers of a slot machine. You choose
which lever you play and the reward is the payoff for hitting
the jackpot

• The value of an arbitrary action, a, which we denote v(a) is
the expected reward given that you selected a

v(a) = E {Rt |At = a}

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning

• We don’t know the exact value v∗(a) (because we don’t know
the distribution). So we would like an estimate vest,t(a)
(estimated value at time t) that would be as close as possible
to v∗(a)

• When you keep track of the estimated action values through
time, then at each time step, there is always at least one
action whose estimated value is best. We call this greedy
actions.

• When you select one of these actions, we say that you are
exploiting your current knowledge of the values of the actions

• When you select one of the non greedy actions, then we say
you are exploring. In particular, exploring enables you to
improve your estimates of the non greedy action’s values.

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning

• Exploitation will maximize your expected reward on the one
step but exploration may lead to greater total reward in the
long run.

• Intuitively, if you have many time steps ahead, it may be
better to explore.

• How do we balance exploration and exploitation when dealing
with the k-armed bandit problem?

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning: Action value estimates

• The first thing we want to do is get an estimate of the value
of an action at time t.

• The natural approach is to average over the rewards received
in the past

vest,t(a) =
sum of rewards when a taken

number of times a taken
=

∑t−1
i=1 Ri1IAi=a∑t
i=1 1IAi=a

Here 1Ipredicate is used to denote the indicator function for the
predicate. 1Ip = 1 if the predicate is verified and 0 otherwise.

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning: Action value estimates

• Then the simplest action selection procedure (known as
greedy action selection) is to select (one of) the action(s)
with the highest estimated value,

A∗ = argmax
a

vest,t(a)

• Greedy action selection always exploits current knowledge to
maximize immediate reward (i.e it does not spend time
investigating inferior actions to see if they might be better)

• A group of alternative methods known as ε-greedy methods
consist in behaving greedily most of the time, but once in a
while (with probability ε) select an action randonly (with
uniform probability) from the list of all possible actions.

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning: Action value estimates
• ε-greedy methods ensure that every action is sampled an

infinite number of times. Which in turns implies that the
estimator vest(a) converges to the v∗ (the true expected value)

• To avoid keeping each reward in memory independently,
typical implementations of greedy and ε-greedy only update
the averaged reward (a.k.a value). If Qn is used to denote the
value of a given action after the nth step,

Qn =
R1 + R2 + . . .Rn−1

n − 1

we compute Qn+1 as

Qn+1 =
1

n

n∑
i=1

Ri =
1

n

(
Rn + (n − 1)

1

n − 1

n−1∑
i=1

Ri

)

= Qn +
1

n
[Rn − Qn]

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning: greedy vs ε-greedy

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning: Simple Bandit algorithm

1. Initialize, for every action a = 1, to k

1.1 v(a)← 0

1.2 n(A)← 0 (number of times A has been chosen)

2. Repeat

2.1 A←

{
argmax

a
v(a) with probability 1− ε

a random action with probability ε

2.2 R ← bandit(a)

2.3 n(A)← n(A) + 1

2.4 q(A)← v(A) + 1
N(A) [R − v(A)]

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning: Simple Bandit algorithm

• So far we have focused on stationnary Bandit problems
(Problems for which the reward probabilities do not change
with time).

• When the problems are not stationnary, the choice of an
action will depend on the instant at which the action is taken.
In particular we will want to give more weight to the rewards
associated to more recent actions. One way to achieve this is
to add a weight in the update rule for the value Vn+1,

vn+1 = vn + α(Rn − vn)

Developing, we get

vn+1 = (1− α)nv1 +
n∑

i=1

α(1− α)n−iRi

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning: Simple Bandit algorithm

• If α = 1, 1− α = 0 and all the weight goes to the very last
reward

• This idea of associating high initial values to every action in
order to force an initial decrease of the greedy search method
is known as optimistic initial values.

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Policy gradient/gradient Bandit algorithm

• Instead of taking the action that maximizes the value at each
step (as in the greedy approach), one can instead introduce
policies (i.e. probability that one action is optimal against the
others)

• In Gradient bandit algorithms, we define policies (and the
corresponding preferences Ht) by means of a softmax
distribution (equiv. Gibbs or Boltzmann distribution),

πt(a) = Pr {At = a} =
eHt(a)∑k
b=1 e

Ht(b)

here Pr {At = a} really means ”the probability that the
optimal action at time t is a”.

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Policy gradient/gradient Bandit algorithm

• Policy gradient algorithms then increase the preference of an
action when the reward associated to this action is larger than
a baseline (Rt) which is the average of all previous rewards.

• All the other actions are updated in the opposite direction

Ht+1(At)← Ht(At) + α(Rt − Rt)(1− πt(At))

Ht+1(a)← Ht(a)− α(Rt − Rt)πt(a), for all a 6= At

• We compare the current reward for action a to the average
reward Rt(a). If Rt > Rt , the agent interpret the action as
being suboptimal compared to previous ones and hence
reduces its weight more.

• The weighting by the policies πt has a similar interpretation.

sources: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning: Associative search (contextual
bandit)

Ht+1(At)← Ht(At) + α(Rt − Rt)(1− πt(At))

Ht+1(a)← Ht(a)− α(Rt − Rt)πt(a), for all a 6= At

• When an action has a low probability of being selected, there
is no need to decrease the weight of this action anymore as it
cannot really be held responsible for the fact that the average
reward is lower than the current reward.

• On the opposite, if one action a has a relatively higher
probability of being selected but is different from the current
optimal action At , it probably contributed for most of the
(underoptimal) average Rt and should be considered as
suboptimal.

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Bandit/Policy gradient as stochastic gradient ascent

• The Bandit gradient method or policy gradient method has an
interpretation as stochastic gradient ascent

• To see this, note that to update the preferences, we will want
to follow the direction that maximizes the average reward,

Ht+1(a)← Ht(a) + α
∂E[Rt]

∂Ht(a)

Here E {Rt} is viewed as a multivariate function in the
preferences.

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Bandit/Policy gradient as stochastic gradient ascent

• In practice, we do not know the population average
E [Rt] =

∑
b πt(b)v∗(b) but let us forget that for the moment

∂E [Rt]

∂Ht(a)
=

∂

∂Ht(a)

[∑
b

πt(b)v∗(b)

]

=
∑
b

v∗(b)
∂πt(b)

∂Ht(a)

=
∑
b

(v∗(b)− Xt)
∂πt(b)

∂Ht(a)

The last line follows from the definition of the policy and the
fact that

∑
b
∂πt(b)
∂Ht(a)

= 0

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Bandit/Policy gradient as stochastic gradient ascent

• Developing further, we get

∂E [Rt]

∂Ht(a)
=

∂

∂Ht(a)

[∑
b

πt(b)v∗(b)

]

=
∑
b

πt(b)(v∗(b)− Xt)
∂πt(b)

∂Ht(a)
/πt(b)

= EAt

{
(v∗(At)− Xt)

∂πt(At)

∂Ht(a)
/πt(At)

}
= EAt

{
(Rt − Rt)

∂πt(At)

∂Ht(a)
/πt(At)

}
The last line follows from the definition of the value v∗(At) of
an action At as the average reward E[Rt].

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Bandit/Policy gradient as stochastic gradient ascent

• If we assume for now that

∂πt(At)

∂Ht(a)
/πt(At) = πt(At)(1Ia=At − πt(At)) ,

we get

∂E [Rt]

∂Ht(a)
= E

[
(Rt − Rt)π − t(At)(1Ia=At − πt(a))/πt(At)

]
= E

[
(Rt − Rt)(1Ia=At − πt(a))

]
• Stochastic gradient is used to maximize (resp. minimize) a

population average by replacing this population average with
a sample average (EV →

∑
i Vi). In its most compressed

version, it actually defines the iterates by taking one sample at
a time.

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Bandit/Policy gradient as stochastic gradient ascent

• In this framework, the gradient

∂E [Rt]

∂Ht(a)
= E

[
(Rt − Rt)(1Ia=At − πt(a))

]
is turned into the updates

Ht+1(a) = Ht(a) + a(Rt − Rt)(1Ia=At − πt(a)), for all a

source: Sutton & Barto, Reinforcement Learning: An Introduction.

• To conclude, use the quotient rule on derivatives to show the
relation ∂πt(b)

∂Ht(a)
= πt(b)

∂πt(b)

∂Ht(a)
=

∂

∂Ht(a)

[
eHt(b)∑k
c=1 e

Ht(c)

]

=

∂eHt (b)

∂Ht(a)

∑k
c=1 e

Ht(c) − eHt(b) ∂
∑k

c=1 e
Ht (c)

∂Ht(a)(∑k
c=1 e

Ht(c)
)2

=
1Ia=be

Ht(b)
∑k

c=1 e
Ht(c) − eHt(b)eht (a)(∑k

c=1 e
Ht(c)

)2
=

1Ia=be
Ht(b)∑k

c=1 e
Ht(c)

− eHt(b)eHt(a)(∑k
c=1 e

Ht(c)
)2

= 1Ia=bπt(b)− π − t(b)πt(a)

= πt(b)(1Ia=b − πt(a))

source: Sutton & Barto, Reinforcement Learning: An Introduction.

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Upper Confidence Bound Action Selection

• A downside of the ε greedy action selection approach is that
when exploring, it does not discriminate between the actions.

• One possible improvement consists in selecting among the
actions during the exploration step, according to their
potential for being optimal (and not completely randomly)

• One approach is to rely on the following upper confidence
bound (UCB)

At = argmax
a

[
vt(a) + c

√
ln(t)

Nt(a)

]

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Upper Confidence Bound Action Selection

• The idea of the UCB selection approach is to add a term (the√
log(t)/Nt term) that accounts for the uncertainty in the

value of an action a

• The objective that is maximized can be viewed as an upper
bound on the potential value of the action a

• When the action a is visited, the number Nt(a) increases. On
the opposite, when a is not selected, the numerator t
increases while the number Nt(a) remain constant, thus
making this action more likely to get selected in future steps.

• After an infinite number of iterations, as the function is
unbounded, every action will be selected at least once.

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning: Comparison of Bandit algorithms

source: Sutton & Barto, Reinforcement Learning: An Introduction.

Reinforcement learning

• So far in this chapter we have considered only nonassociative
tasks, in which there is no need to associate different actions
with different situations

• In these tasks the learner either tries to find a single best
action when the task is stationary, or tries to track the best
action as it changes over time when the task is nonstationary

• The Multi-armed bandit problem is an instance of non
associative learning.

• However, in a general reinforcement learning task there is
more than one situation, and the goal is to learn a policy: a
mapping from situations to the actions that are best in those
situation

source: Barto, Sutton, and Brouwer, Biological Cybernetics, 1981.

