
Artificial Intelligence

Augustin Cosse.

Fall 2020

October 6, 2021



So far

• Simple reflex, random agents, Utility based, Goal based

• Improvement through Search Methods (uninformed (DFS,
BFS), informed (BS, A∗)).

• Logical Reasoning, Propositional logic (including syntax and
semantics)

• Propositional inference (Conjunctive Normal Forms,
Resolution rules, Resolution Algorithm),

• Horn + definite clauses, Forward and Backward chaining.



This week

• First Order Logic (Part II)

• Inference in first order logic



Reminders

• In Propositional logic every expression is a sentence which
represents a fact about the world.

• Recall that first order logic relies on a stronger ontological
commitment which postulates that the world consits of
Objects, properties.

• FOL makes it possible to define relations (such as bigger than,
inside, part of,...) on the objects. Some of the relations are
functions (relations in which there is only one possible value
for a given input) (e.g. ’father of’, ’best friend’,... ) others
are predicates (in this case the output is a Boolean value)



Inference in First Order Logic

• When discussing Propositional logic we considered a number
of inference rules including Modus Ponens, And-Elimination,
And-Introduction, Or-Elimination, Or-Introduction and
Resolution.

• The rules hold for First Order Logic as well, but we will need
additional rules to handle complex sentences with quantifiers.



Inference in First Order Logic

• Let us start with the universal quantifier. Suppose that our
knowledge base contains the following axiom stating that
every greedy king is evil

∀x King(x) ∧ Greedy(x)⇒ Evil(x)

• From this sentence, it seems permissible to infer the following
set of axioms:

King(John) ∧ Greedy(John)⇒ Evil(John)

King(Richard) ∧ Greedy(Richard)⇒ Evil(Richard)

King(Father(John)) ∧ Greedy (Father(John))⇒ Evil(Father(John))

...



Inference in First Order Logic

• The rule of Universal Instantiation (Elimination) (UI) says
that we can infer any sentence obtained by substituting (in
the universal sentence) a ground term (i.e a term without
variable) for the variable.

• To write this first inference rule, we use the notion of
substitution. Let Subst(θ, α) denote the result of applying the
substitution θ to the sentence α.

• The resulting rule reads as

∀v , α

Subst({v/g} , α)

For example, the three sentences derived before were obtained
through the substitutions {x/John} , {x/Richard} and
{x/Father(John)}



Inference in First Order Logic

• In the rule of Existential Instantiation (Elimination), the
variable is replaced by a single new constant symbol. The
formal statement is the following. For any sentence α,
variable v and constant k that does not appear elsewhere in
the knowledge base,

∃v , α

Subst({v/k} , α)

• As an example, from the sentence

∃ x Crown(x) ∧ OnHead(x , John)

we can infer the sentence

Crown(C1) ∧ OnHead(C1, John)

As long as C1 does not appear elsewhere in the knowledge
base (i.e. C1 does not represent anything yet)



Inference in First Order Logic

• The existential sentence says that there is some object
satisfying a condition and applying the existential instantiation
rule just gives a name to that object.

• Whereas universal instantiation can be applied multiple times
to produce many different consequences, Existential
Instantiation can be applied only once. Then the existential
sentence can be discarded.

• As an example, we no longer need ∃ x Kill(x ,Victim) once we
have added the sentence Kill(Murderer,Victim) to the
knowledge base.

• Stricly speaking the new knowledge base is not equivalent to
the old one but it can be shown to be Inferentially equivalent
(in the sense that it is satisfiable exactly when the original
knowledge base is satisfiable).



Inference in First Order Logic

• Once we have the rule for inferring non quantifier sentences
from quantified ones, it becomes possible to reduce first order
inference to Propositional inference

• The first idea is that just as an existentially quantified
sentence can be replaced by one instantiation, a universally
quantifier sentence can be replaced by the set of all possible
instantiations. For example, suppose our knowledge base
contains just the sentences

∀ x King(x) ∧ Greedy(x)⇒ Evil (x)

King(John)

Greedy(John)

Brother(Richard, John)



Inference in First Order Logic

• Then we can apply UI to the first sentence using all possible
ground term substitutions from the vocabulary of the
knowledge base – in this case {x/John} and {x/Richard}. We
then obtain

King(John) ∧ Greedy(John)⇒ Evil(John)

King(Richard) ∧ Greedy(Richard)⇒ Evil(Richard)

• And we can discard the universally quantifier sentence.

• This technique of propositionalization can be made completely
general. That is every first order knowledge base can be
propositionalized in such a way that entailment is preserved.



Inference in First Order Logic

• There is however a problem: When our knowledge base
contains a function symbol, then infinitely many nested terms
such as Father(Father(Father(Father(John)))) can be
constructed.

• The propositional algorithms will have difficulty with an
infinitely large set of sentences

• Fortunately there is famous theorem by Jacques Herbrand
(1930) which states that if a sentence is entailed by the
original, first order knowledge base, then there is a proof
involving just a finite subset of the propositionalized
knowledge base.



Inference in First Order Logic

• Since any such subset has a finite depth of nesting among its
gound terms, we can find the subset by first generating all the
instantiations with constant symbols (Richard and John) then
all the terms of depth 1: Father(Richard) and Father (John)
then all terms of depth 2 and so on, until we are able to
construct a propositional proof of the entailed sentence.

• The approach that we have sketched via propositionalization
is complete. That is any entailed sentence can be proved.

• This is in fact puzzling since the space of possible models is
infinite. In other words, if the sentence is not entailed by the
KB we might never know it and keep believing with a proof
method that keeps running forever.



Inference in First Order Logic

• In First Order Logic, it turns out that we will not know
whether a sentence is entailed by the KB until the proof
method has converged, which might never happen (e.g. if the
KB does not specify anything about the expression)

• The proof procedure can go on and on, generating more and
more deeply nested terms, but we will not know whether it is
stuck in a hopeless loop or whether the proof is just about to
pop up.

• Alan Turing and Alonzo Church both proved (1936) that the
question of entailment for First Order Logic is semidecidable -
That is, algorithms exist that say yes to every entailed
sentence, but no algorithm exists that also says no to every
nonentailed sentence.



Inference in First Order Logic

• There still remains some inefficiency in the
propositionalization approach we have discussed so far.

• As an example, given the query Evil(x) for x = John and the
KB given by

∀ x King(x) ∧ Greedy(x)⇒ Evil (x)

King(John)

Greedy(John)

Brother(Richard, John)

• It seems excessive to generate sentences such as

King(Richard) ∧ Greedy(Richard)⇒ Evil(Richard)

(I.e. since the premisses do not belong to the KB, such
implications are meaningless)



Inference in First Order Logic

• The Inference Evil(John) from the set of sentences

∀ x King(x) ∧ Greedy(x)⇒ Evil(x)

King(John)

Greedy(John)

seems completely obvious



Inference in First Order Logic

• Intuitively we would like to say that if there is a particular
substitution θ that makes each of the premises identical to
sentences already in the knowledge base, then we can assert
the result of the implication after applying θ

• Now assume that instead of having Greedy(John) in the KB,
we had ∀ y Greedy(y). We would still want to be able to infer
Evil(John).

• The resulting idea is known as Generalized Modus Ponens. For
atomic sentences pi , p

′
i and q, where there is a substitution θ

such that Subst(θ, p′i ) = Subst(θ, pi ), for all i , we can write

p′1, p
′
2, . . . p

′
n, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

Subst(θ, q)

In the example above p′1 = King(John), p′2 is Greedy(y), p1 is
King(x) and p2 is Greedy(x). θ is {x/John, y/John}



Inference in First Order Logic

• We say that Generalized Modus Ponens is a Lifted version of
Modus Ponens. It raises Modus Ponens from ground (i.e.
variable free) propositional logic to first order logic.

• Lifted inference rules require finding substitutions that make
different logical expressions look identical.

• This process is called Unification.

• The Unify algorithm takes two sentences and return a unifier
for them if one exists.

Unify(p,q) = θ where Subst(θ, p) = Subst(θ, q)



Inference in First Order Logic

• Let us consider a particular application of the Unification
Algorithm. Suppose that our query is to find all the
acquaintances of John. I.e. we want to find all the x ’s for
which the sentence Knows(John, x) will return True.

• An answer to this query can be obtain by finding all sentences
in the knowledge base that unify with Knows(John, x).
Examples could include

Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,Bill)) = {x/Bill, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y)))

= {y/John, x/Mother(John)}
Unify(Knows(John, x),Knows(x ,Elizabeth)) = fails



Inference in First Order Logic

• The sentence

Unify(Knows(John, x),Knows(x ,Elizabeth))

fails as it is not possible to simultaneously give the value John
and Elisabeth to x . However, you should recall that
Knows(x ,Elizabeth) really stands for ’Everybody knows
Elizabeth’.

• We should therefore be able to show that John knows
Elisabeth.

• The Misunderstanding arises because the two sentences use
the same variable x . It can be avoided by standardizing apart
one of the sentences being unified, which means renaming its
variables to avoid name clashes.



Inference in First Order Logic
• As an example, we could rename the variable x in

Knows(x ,Elisabeth) to x17 (without changing the meaning of
the sentence). We can then update the outcome of the
unification as

Unify(Knows(John, x),Knows(x17,Elisabeth))

= {x/Elizabeth, x17/John}

• There is one more difficulty. We said that Unify should
return a substitution that makes the two arguments look the
same. What if there are more than one such argument?

• As an example, consider the following call to the unify
function

Unify(Knows (John, x),Knows(y , z))

• Valid substitutions for this call could give {y/John, x/z} but
also {y/John, x/John, z/John}



Inference in First Order Logic

• The first unifier would give Knows(John, z) as the result of
the unification whether the second unifier would give
Knows(John, John)

• In fact the second result could be obtained from the first
through the additional substitution {z/John}.

• We say that the first unifier is more general than the second
because it places fewer restrictions on the values of the
variables.

• It turns out that for every unifiable pair of expressions there is
a single Most General Unifier (MGU) that is unique up to
renaming and substitution of the variables. For example
{x/John} and {y/John} are considered equivalent and so are
{x/John, y/John} and {x/John, y/x}.



Inference in First Order Logic

• In the case of the example

Unify(Knows (John, x),Knows(y , z)),

it turns out that the MGU is {y/John, x/z}



Function Unify(x , y , θ):
input : x variable, constant, list, or compound expression

y , a variable, constant, list, or compound expression
θ, the substitution built up so far (default empty)

if θ = failure then
return failure

end
else if is Variable(x) then

return Unify-Var(x , y , θ)
end
else if is Variable(y) then

return Unify-Var(y , x , θ)
end
else if is Compound(x) and is Compound(y) then

return Unify(x .Args, y .Args,Unify(x .Op, y .Op, θ))
end
else if is List(x) and is List(y) then

return Unifty(x .Rest, y .Rest,Unify(x .First, y .First, θ))
end
else

return failure
end



Function Unify-Var(var, x , θ):
if {var/val} ∈ θ then

return Unify(val, x , θ)
end
else if {x/val} ∈ θ then

return Unify(var, val, θ)
end
else if Occur-check(var, x) then

return failure

end
else

return add {var/x} to θ
end

(The call to x .Op y .Op compares the operators F (·) and G (·)
appearing in x and y . The only possibility for a unification to exist
is for the two functions to be the same.)



Unification

• In a compound expression such as F (A,B) the Op field picks
out the function F and the Args field picks out the argument
list (A,B)

• A robust unification algorithm uses the Occur-check

function, which ensures that a logic variable is not bound to a
structure that contains itself such as in x = f (x).

• Not performing the check can cause the unification to go into
an infinite loop in some cases.

• On the other hand, performing the occur-check greatly
increases the time taken by unification, even in cases that
would not require the check.



Unification

• On top of the Tell and Ask functions used to inform and
interrogate the knowledge base, we will now consider the
additional function Fetch

• Fetch is a function that returns all unifiers such that the
query q unifies with some sentence in the Knowledge base.

• The simplest way to implement the function Fetch is to
combine it with a Store routine which stores all the facts in
one long list and unify each query against every element of
the list



First Order definite clauses

• Recall that in Propositional logic, we introduced a forward
chaining algorithm for Horn clauses.

• The idea was simple: we started with the atomic sentences in
the Knowledge base, and apply Modus Ponens in the Forward
direction

• First Order definite clauses closely resemble propositional
definite clauses

• Those clauses are disjunctions of literals of which exactly one
is positive



First Order definite clauses

• A FOL definite clause is either an atomic expression (i.e.
predicate symbol followed by parenthesized list of items), or is
an implication whose antecedent is a conjunction of positive
literals and whose consequent is a single positive literal.

• Examples include

King(x) ∧ Greedy(x)⇒ Evil (x)

King(John)

Greedy(y)



First Order definite clauses: illustration

• Consider the translation of the following excerpt into First
Order Logic:

The law says that it is a crime for an American to sell
weapons to hostile nations. The country Nono, an enemy of
America, has some missiles, and all of its missiles were sold to

it by John Doe, who is American.

• Let us prove that John Doe is a criminal



First Order definite clauses: illustration

• For the first sentence ”It is a crime for an american to sell
weapons to hostile nations”

American(x)∧Weapon(y)∧Sells(x , y , z)∧Hostile(z)⇒ Criminal(x)

• ”Nono has some missiles” can be first translated to FOL as
∃x , Owns(Nono, x) ∧Missile(x)

• It is then transformed into two definite clauses by Existential
instantiation:

Owns(Nono,M1)

Missile(M1)



First Order definite clauses: illustration
• ”All of its missiles were sold to it by John Doe”

Missile(x) ∧ Owns(Nono, x)⇒ Sells(J. Doe, x ,Nono)

• We also need to encode the fact that missiles are weapons

Missile(x)⇒Weapon(x)

• We must know that an enemy of america counts as ”hostile”

Enemy(x ,America)⇒ Hostile(x)

• ”Doe, who is American”

American(J. Doe)

• And ”The country Nono, an enemy of America”

Enemy(Nono,America)



First Order definite clauses: illustration

• The Knowledge base that we just created contains no function
symbol and is therefore an instance of the class of Datalog
knowledge bases

• Datalog is a language that is restricted to first order definite
clauses with no function symbols.

• The name ’Datalog’ comes from the fact that the language
can be used to encode the statements made in relational
databases



Function FOL Forward-Chaining(KB, α):
input : KB, the knowledge base, a set of first order definite clauses

α, the query, an atomic sentence
local variables new, the new sentences inferred on each iteration
while new is not empty do

new← {}
for each rule in KB do

(p1 ∧ . . . ∧ pn ⇒ q)← Standardize-Variables(rule)

for each θ such that Subst(θ, p1 ∧ . . . ∧ pn) = Subt(θ, p′1 ∧ . . . ∧ p′n) for some
p′1, . . . p

′
n in KB do

q′ ← Subst(θ, q)
if q′ does not unify with some sentence already in KB or new then

add q′ to new

φ← Unify(q′, α)
if φ is not fail then

return φ
end

end

end
add new to KB

end

end



Forward Chaining

• Simple Forward chaining in FOL is relatively similar to
Forward Chaining in PL

• The algorithm starts with the known facts, then triggers all
the rules whose premises are satisfied, adding their conclusions
to the known facts

• The process repeats until the query is answered or no new
facts are added. Note that a fact is not new if it is just a
renaming of an old fact. E.g. Likes(x , IceCream), and
Likes(y , IceCream) are renaming of each other

• The function Standardize-Variable replaces all the
variables in its arguments with the new ones that have not
been used before.



Forward Chaining

• Let us consider our crime example.

• Implications sentences are

American(x) ∧Weapon(y) ∧ Sells(x , y , z) ∧ Hostile(z)

⇒ Criminal(x)

Missile(x) ∧ Owns(Nono, x)⇒ Sells(Doe, x ,Nono)

Missile(x)⇒Weapon(x)

Enemy(x ,America)⇒ Hostile(x)

• Two iterations are required



Forward Chaining

• On the first iteration, the first implication has unsatisfied
premises

• The second implication is satisfied with {x/M1} (following
from Existential instantiation) and we can add the sentence
Sells(Doe,M1,Nono) to the knowledge base

• The third implication is satisfied with {x/M1} and
Weapon(M1) is added

• Finally the last implication is satisfied with {x/Nono} and
Hostile(Nono) can be added.

• On the second iteration, The first rule can be satisfied with
{x/J. Doe, y/M1, z/Nono}



First Order definite clauses: Forward Chaining

Weapon(M1) Hostile(Nono)

Missile(M1) Owns(Nono, M1)

Enemy(Nono, America)

Criminal(Doe)

Sells(Doe, M1, Nono)

American(J. Doe)



Forward Chaining

• On the first iteration, the first implication has unsatisfied
premises

• After Forward chaining completed, no new inference is
possible for the obtained KB because every sentence that
could be obtained by forward chaining is already contained
explicitly in the KB

• Such a Knowledge base is called a fixed point of the inference
process

• The FOL forward chaining algorithm is sound (if FC derives α
then KB � α) because every inference is just an application of
Generalized Modus Ponens which is sound.

• The FOL forward chaining algorithm is complete (i.e answers
every query whose answers are entailed by the KB) for definite
clause knowledge bases



Function FOL Backward-Chaining(KB, query):
return FOL BackwardChaining OR(KB, query, {})

End Function

Function FOL BackwardChaining OR(KB, goal, θ):
for each rule (lhs⇒ rhs) in Fetch-Rules-For-Goal(KB,
goal) do

(lhs, rhs)← Standardize-Variables(lhs, rhs)
for each θ′ in FOL-BC AND(KB, lhs, Unify(rhs, goal, θ)
) do

yield θ′

end

end
End Function



Function FOL BackwardChaining AND(KB, goals, θ):
if θ = failure then

return
end
else if length(goals)= 0 then

yield θ
end
else

first, rest ← First(goals), Rest(goals)
for each θ′ in FOL-BC-OR(KB, Subst(θ, first), θ) do

for each θ′′ in FOL-BC-AND(KB, rest, θ′) do
yield θ′′

end

end

end
End Function



Backward Chaining

• The backward chaining FOL-BC-ASK(KB,goal) algorithm
returns a proof if the knowledge base contains a clause of the
form lhs⇒ goal. where lhs is a list of conjuncts.

• An atomic fact like American(Doe) is considered a clause
whose lhs is the empty list.

• Note that a query that contains variables might be proved in
multiple ways. For example, the query Person(x) (equivalent
to find an object satisfying the ’Person’ predicate) could be
proved with the substitution {x/John} and {x/Richard}.
FOL-BC-Ask is thus inplemented as a generator



Backward Chaining

• Backward is a kind of And/Or search. The ’Or’ part because
the goal query can be proved by any rule in the KB. The And
part because all the conjuncts on the LHS of a clause must be
proved.

• FOL-BC-Or fetches all clauses that might unify with the goal.
standardizing the variables in the clauses and then if the RHS
of the clause does unify with the Goal, proving every conjunct
in the LHS using FOL-BC-And

• That second function in turn works by proving every conjuncts
keeping track of the accumulated substitution



First Order definite clauses: Backward Chaining

Hostile(Nono)

Owns(Nono, M1)

Enemy(Nono, America)

Weapon(y)

Missile(y) Missile(M1)

{}

{} {}

{}

{y/M1}

{z/Nono}

American(J. Doe)

Criminal(Doe)

Sells(Doe, M1, z)



First Order definite clauses: Resolution

• The resolution idea from Propositional logic can also be
extended to First Order Logic as follows

• As in the Propositional case, first order resolution requires the
sentences to be in conjunctive normal form

• As an example the sentence

∀ x American(x) ∧Weapon(y) ∧ Sells(x , y , z) ∧ Hostile(z)

⇒ Criminal(x)

becomes the CNF

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x , y , z) . . .

. . . ∨ ¬Hostile(z) ∨ Criminal(x)



First Order definite clauses: Resolution

• The procedure for conversion to CNF is similar to the
propositional case. The principal difference arise from the
need to eliminate the quantifiers

• As an example, consider the sentence ’Everyone who loves
animals is loved by someone’

∀ x [∀ y Animal(y)⇒ Loves(x , y)]⇒ [∃ y Loves(y , x)]



First Order definite clauses: Resolution

∀ x [∀ y Animal(y)⇒ Loves(x , y)]⇒ [∃ y Loves(y , x)]

• Step 1: Eliminate Implications

∀x [¬∀y¬Animals(y) ∨ Loves(x , y)] ∧ [∃y Loves(y , x)]

• Step 2. Move ¬ inwards. In addition to the rules for negated
connectives used in PL, we need rules for negated quantifiers

¬∀x p becomes ∃x ¬p

¬∃x p becomes ∀x ,¬p

• Using those rules, the sentence above can then read as

∀ x [∃y ¬(¬Animal(y) ∨ Loves(x , y))] ∨ [∃ y Loves(y , x)]

∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x , y)] ∨ [∃y Loves(y , x)]

∀x [∃y Animal(y) ∧ ¬Loves(x , y)] ∨ [∃y Loves(y , x)]



First Order definite clauses: Resolution

∀ x [∀ y Animal(y)⇒ Loves(x , y)]⇒ [∃ y Loves(y , x)]

• Step 3. Standardize variables. For sentences like
(∃x P(x)) ∨ (∃x Q(x)) which use the same variable name
twice, change the name of one of the variables

∀x [∃y Animal(y) ∧ ¬Loves(x , y)] ∨ [∃z , Loves(z , x)]

• Step 4. Skolemize, Skolemization (removing existential
quantifiers). In the simplest case, it follows from the
existential Instantiation rule (i.e. translate ∃x P(x) into P(A)
where A is a new constant).



First Order definite clauses: Resolution

∀ x [∀ y Animal(y)⇒ Loves(x , y)]⇒ [∃ y Loves(y , x)]

• In this case however, we cannot blindly apply Instantiation to
our sentence because it does not match the simple pattern
∃v α. If we blindly applied Instantiation to the two parts of
our sentence, we would get

∀x [Animal(A) ∧ ¬Loves(x ,A)] ∨ Loves(B, x)

which has the wrong meaning. I.e. It says that everyone either
fails to love a particular animal A or is loved by some particular
entity B while the original sentence allows each person to fail
to love a different animal or to be loved by a different person.



First Order definite clauses: Resolution

∀ x [∀ y Animal(y)⇒ Loves(x , y)]⇒ [∃ y Loves(y , x)]

• Instead, we want the Skolem entities to depend on x and z

∀x [Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ Loves(G (x), x)

F and G are Skolem functions (Arguments of the Skolem
functions are the universally quantified variables)



First Order definite clauses: Resolution

∀ x [∀ y Animal(y)⇒ Loves(x , y)]⇒ [∃ y Loves(y , x)]

• Step 5. Drop universal quantifiers. At this point, all the
remaining variables must be universally quantified and all
universal quantifiers have been moved to the left. We can
therefore just drop the universal quantifier

[Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ Loves(G (x), x)

• Step 6. Finally, just as in Propositional Logic, we distributed
∨ over ∧

[Animal(F (x))∨Loves(G (z), x)]∧[¬Loves(x ,F (x))∨Loves(G (x), x)]



First Order definite clauses: Resolution

• Finally, once all the sentences have been translated to
Conjunctive Normal Form, The first order resolution rule is
simply a lifted version of the propositional resolution rule.

• Two clauses, which are assumed to be standardized apart so
that they share no variables can be resolved if they contain
complementary literals

• Propositional literals are complementary if one is the negation
of the other.

• First order literals are complementary if one unifies with the
negation of the other.



First Order definite clauses: Resolution

• We thus have

`1 ∨ . . . ∨ `k , m1 ∨ . . . ∨mn

Subst(θ, `1 ∨ . . . ∨ `i−1 ∨ `i+1 ∨m1 ∨ . . . ∨mj−1 ∨mj+1 ∨mn)

where Unify(`i ,¬mj) = θ

• For example, we can resolve the two clauses

[Animals(F (x)) ∨ Loves(G (x), x)] ,

and [¬Loves(u, v) ∨ ¬Kills(u, v)]

by eliminating the complementary literals Loves(G (x), x) and
¬Loves(u, v), with unifier θ = {u/G (x), v/x}, to produce the
resolvent clause

[Animal(F (x)) ∨ ¬Killls(G (x), x)]


