
Artificial Intelligence

Augustin Cosse.

Fall 2020

September 27, 2021



Problem solving performance

• We usually evaluate the performance of an algorithm
according to four criteria:

• Completeness: Is the algorithm garanteed to find a solution
when there is one ?

• Optimality: Does the algorithm find the optimal solution ?

• Time complexity: How long does it take to find a solution?

• Space complexity: How much memeory is needed for perform
the search?



Problem solving performance

Criterion
Breadth
First

Uniform
Cost

Depth -
First

Depth -
Limited

Iterative
Deepening

Bidirectional

Complete? Yes Yes No No Yes Yes

Time O(bd) O(b1+bC
∗/εc) O(bm) O(b`) O(bd) O(bd/2)

Space O(bd) O(b1+bC
∗/εc) O(bm) O(b`) O(bd) O(dd/2)

Optimal? Yes Yes No No Yes Yes

• Recall that b is the branching factor (number of children per
node), m is the max depth of the tree and d is the depth of
the first solution.

• The difference between BFS and DFS lies in the loopy paths
that can appear in the tree search version of the algorithm. if
there is a solution at finite depth d , BFS will ultimately find it
because it escapes loops in its tree search version. the tree
version of DFS on the other hand might get stuck in a loop
until it reaches the max depth of the tree.



Optimality of A∗

• Recall that we call a heuristic admissible if it never
overestimates the cost of reaching the goal (i.e.
h(n) ≤ h∗(n)) and we call it consistent if for every node n and
every successor n′ generated by any action a, we have
h(n) ≤ c(n, a, n′) + h(n′)

• We will show that the graph search version of A∗ is optimal if
h(n) is consistent. To see this, note that :

• For any successor n′ of n, we have g(n′) = g(n) + c(n, a, n′)
for some action a

• From the definiition of f (n), we also have

f (n′) = g(n′) + h(n′) = g(n) + c(n, a, n′) + h(n′) ≥ g(n) + h(n)

• From this we see that consistency implies non decreasing
value of f along a path followed by A∗.



Optimality of A∗

• Then note that whenever A∗ selects a node for expansion, the
optimal path to that node has been found. if this was not the
case, that means there is another node n′ in the frontier, that
lies on the optimal path. However, for this node we must have
f (n′) ≤ f (n) since f is non decreasing. But this is impossible
as it would mean that n′ should have been expanded before n.



Optimality of A∗

• From those properties we see that the first goal node that is
reached by A∗ must necessarily be optimal as all other goal
nodes will have a value of f (n) that is at least as large.

• Note that for the goal nodes, f (n) = g(n) (which as we saw is
the cost of the optimal path to node n)



Optimality of A∗

• if C ∗ denotes the cost of the optimal solution path, then we
can say

• A∗ expands all nodes with f (n) < C∗

• A∗ might then expand some of the nodes right on the ”goal
contour” (where f (n) = C∗) before selecting a goal node



Uniform cost search

• When all step costs are equal, BFS is optimal because it
always expands the shallowest unexpanded node.

• By a simple extension, we can design an algorithm that
remains optimal for any step-cost function.

• Instead of expanding the shallowest node, uniform-cost
search expands the node n with the lowest path cost g(n).
This is done by storing the frontier as a priority queue ordered
by g(n)

• In our version of Uniform cost search, we add two components
on top of BFS. The first difference is that the goal test is
applied to a node when is selected for expansion and not when
it is first generated (this is because the first goal node
generated may be on a suboptimal path). The second
difference is that a test is added to discard a node in frontier
in case a better path is found to that node.



Uniform-Cost-Search

Function Uniform-Cost-Search(problem) returns solution or failure ;
node ← a node with State = problem.Initial-state, Path-Cost = 0;
frontier ← a priority queue ordered by path-cost, with node as the only element;
explored ← an empty set;
while Empty?(frontier) is false do

node ← Pop(frontier) /* choose lowest cost node in frontier */;
if problem.goal-test(node.State) then

return Solution(node)
end
;
add node.state to explored ;
for each action problem.Actions(node.state) do

child ← child-node(problem, node, action);
if child.state is not in explored or frontier then

frontier ← insert(child, frontier)
end
else if child.state is in frontier with higher path-cost then

replace that frontier node with child
end

end

end



Uniform cost search

• Consider the simple illustration below. In this case, our
problem is to go from Sibiu to Bucharest. The successors of
Sibiu are Rimnicu Vilcea and Fagaras with costs 80 and 99
respectively. The least cost node, Rimnicu Vilcea is expanded
next, adding Pitesti to the queue with total cost
80 + 97 = 177. The least cost node is now Fagaras, so it is
expanded adding Bucharest with total cost 99 + 211 = 310.



Uniform cost search

• A goal node has been generated but not yet expanded.
Uniform cost search continues to search for better path
costs and gets back to Pitesti for expansion, adding a second
path to Bucharest with total cost 80 + 97 + 101 = 278.



Uniform cost search

• The algorithm then checks to see if this new path is better
than the old one. Since it is, the old path is discarded.



Constraint Satisfaction Problems (CSPs)

• So far we have explored the idea that our problems could be
solved by searching in a space of states.

• We will now study how how to solve problems more efficiently
using a factored representation for each state (that is a set
of variables, each of which has an associated value)

• A problem is then considered to be solved when each variable
has a value that satisfies all the constraints on the variables

• A problem described this way is called a constraint
satisfaction problem or CSP



Constraint Satisfaction Problems (CSPs)

• A constraint satisfaction problem consists of three
components, X , D and C where

• X is a set of variables {X1, x2, . . . ,Xn}

• D is a set of domains {D1, . . . ,Dn}, one for each variable

• C is a set of constraints that specify allowable sets of values

• Each domain Di consists of a set of allowable values
{v1, . . . , vk} for variable Xi and each constraint Ci consists of
a pair 〈scope, rel〉 where scope is a tuple of variables that
participate in the constraint and rel is a relation that defines
the values that those variables can take on.



Constraint Satisfaction Problems (CSPs)

• relation can be represented as an explicit list of all tuples of
values that satisfy the constraints, or as an abstract operation
that supports two operations: (1) testing if a tuple is a
member of the relation and (2) enumerating all members of
the relation.

• E.g. if X1 and X2 both have the domain {A,B}, then the
constraintsaying the two variables must have different values
can read either as 〈(X1,X2), [(A,B), (B,A)]〉 or as
〈〈(X1,X2),X1 6= X2〉〉

• To solve a CSP, we need to define a state space and a notion
of solution



Constraint Satisfaction Problems (CSPs)

• Each state in a CSP is defined by an assignment of values to
some or all the variables, i.e. {Xi = vi ,Xj = vj , . . .}

• An assignment that does not violate any constraint is called a
consistent or legal assignment

• A complete assignment is one in which every variable is
assigned, and a solution to a CSP is a consistent, complete
assignment

• A partial assignment is one that assigns values to only some
of the variables.



Constraint Satisfaction Problems (CSPs)

• An example of constraint satsfaction problem is the Map
coloring problem, an instance of which is represented below.

• In this case, we are given the task of coloring each region
either in red, green or blue, such that no neighboring regions
have the same color.



Constraint Satisfaction Problems (CSPs)

• To formulate this problem as a CSP, we can define the
variables to represent the regions

X = {WA,NT ,Q,NSW ,V ,SA,T}

• The domain of each variable is the set Di = {red, green, blue}



Constraint Satisfaction Problems (CSPs)

• The constraints require neighboring regions to have distinct
colors. Since there are nine places where regions border, there
are nine constraints:

C = {SA 6= WA, SA 6= NT ,SA 6= Q, SA 6= NSW , SA 6= V ,

WA 6= NT ,NT 6= Q,Q 6= NSW ,NSW 6= V }



Constraint Satisfaction Problems (CSPs)

• Note that here, we use SA 6= WA as a shortcut for
〈(SA,WA), SA 6= WA〉 where SA 6= WA can be fully
enumerated in turn as

{(red , green), (red , blue), (green, red),

(green, blue), (blue, red), (blue, green)}



Constraint Satisfaction Problems (CSPs)

• An we have several solutions for this constraint given by

{WA = red ,NT = green,Q = red ,NSW = green,

V = red , SA = blue,T = red}

• The constraint graph representation (nodes = variables and
edges represent the existence of a constraint involving the two
nodes) of the problem is given below.



Constraint Satisfaction Problems (CSPs)

• CSP yield a natural representation for a wide variety of
problems.

• Moreover, CSP solvers can be faster than state space
searchers because the CSP solver can quickly eliminate large
swatches of the search space

• As an example, if we have chosen {SA = blue}, we know that
none of the 5 neighboring variables can take the value blue.



Constraint Satisfaction Problems (CSPs)

• The simplest kind of CSPs involve variables that have
discrete, finite domains (Map coloring problems and
scheduling with time limits are both of this kind)

•



Backtracking search for CSPs

• A crucial property common to all CSPs is commutativity i.e.
the fact that the order of application of any given set of
actions has no effect on the outcome.

• CSPs are commutative because when assigning values to
variables, we reach the same partial assignment regardless of
the order.



Backtracking search for CSPs

• Following from those ideas, we can just consider a single
variable at each node as shown below



Backtracking search for CSPs

• The CSP can then be solved through backtracking search.
Recall that the name backtracking was used to denote a
depth first search that uses one variable at a time and
backtracks when a variable has no legal value left to assign.

• For CSP, backtracking repeatedly chooses an unassigned
variable, then tries all values in the domain of that variable in
turn, trying to find a solution

• If an inconsistency is detected, it returns a failure

• Note that Backtracking search keeps only a single
representation of a state and alters that representation rather
than creating new ones.



Backtracking search for CSPs

function Backtracking-search(csp) returns a solution, or failure ;
return Backtrack({} , csp)

function Backtrack(assignment, csp) returns a solution, or failure ;
if assignment is complete then

return assignment
end
var ← select-unassigned-variable(csp, assignment)
/*see next slide*/



Backtracking search for CSPs

function BackTrack(assignment, csp) returns a solution, or failure ;
/*see previous slide*/
for each value in
order-domain-values(var, assignment, csp) do

if value is consistent with assignment then
add {var = value} to assignment
inferences ← inference(csp, var, assignment)
if inferences 6= failure then

add inferences to assignment
result ← backtrack(assignment, csp)
if result 6= failure then

return result
end

end

end
remove {var = value} and inferences from assignment

end
return failure



Inference in CSPs

• In CSPs there is a choice. an algorithm can either search
(choose a new variable assignment from seevral possibilities)
or do a specific type of inference called constraint
propagation

• The idea of constraint propagation is to use the constraints
to reduce the number of legal values for a variable which in
turn can reduce the legal values for another variable ans so on.

• Sometimes this preprocessing can solve the whole problem so
that no search is needed at all



Inference in CSPs

• The key idea behind constraint propagation is the notion of
local consistency. There are different types of local
consistency

• Node consistency

• Arc consistency

• Path consistency

• K -consistency



Node Consistency

• A single variable is Node consistent if all the values in the
variable’s domain satisfy the variable unary constraints

• As an example, in the map coloring problem, if we enforced
the constraint that South Australia could not be colored in
green and started with the domain {red, green, blue}

• It could then be made node consistent by eliminating green
from the domain, thus leaving South Australia with the
reduced domain {red, blue}

• It is always possible to eliminate all the unary constraints in a
CSP by running node consistency

• Note that it is also possible to transform all n-ary constraints
into binary ones. For this reason, it is common to define CSP
solvers as solvers working with binary constraints only.



Arc Consistency
• A variable in CSP is arc-consistent if every value in its domain

satisfies the variable’s binary constraints.

• More formally, Xi is arc-consistent with respect to another
variable Xj if for every value in the current domain Di , there is
some value in the domain Dj that satisfies the binary
constraint on the arc (Xi ,Xj)

• A network is arc-consistent if every variable is arc-consistent
with every other variable.

• As an example, consider the constraint Y = X 2 where the
domain of both X and Y is the set of digits. This constraint
can be written explicitely as

〈(X ,Y ), {(0, 0), (1, 1), (2, 4), (3, 9)}〉

To make X arc-consistent with Y , we reduced X ’s domain to
{0, 1, 2, 3}


