
Artificial Intelligence

Augustin Cosse.

Fall 2020

September 22, 2021



References for this week

• Additional references for this week :

• Pearl, Heuristics, Intelligent Search Strategies for Computer
Probem Solving, Chap.

• Russell and Norvig, Artificial Intelligence, A modern Approach,
Chap. 1-3.



Knowledge Based agents (Recap I)

• Agent = entity that perceives and acts in a given environment.

• Rational Agent = agent that always chooses the action that is
expected to maximize its performance measure

• An agent is autonomous when its actions only depend on its
own experience (i.e the experience that it has accumulated
through time) and not on any knowledge that was built in by
the programmer.



Knowledge Based agents (Recap II)

• Different types of agents are usually classified based on how
they take their decisions as well as on the information they
use in the decision process. The design of an agent depends
on 4 main aspects:

• Percepts

• Actions

• Goals

• Environment

• Reflex agents respond immediately to percepts. Goal-based
agents act in order to maximize their goals, and utility based
agents try to maximize their level of happiness.



Problem solving agents

• Recall that simple reflex agents are unable to plan ahead

• Such agents are limited in what they can achieve because
their actions are determined only by the current percept

• Furthermore, they have no knowledge of what their actions do
or what they are trying to achieve.



Problem solving agents

• Now that we have discussed the main families of agents, we
will consider a special kind of goal-based agent called problem
solving agent

• Problem solving agents rely on atomic representations of the
world (each state of the world is indivisible, it has no internal
structure). Goal based agents that use more advanced
factored or structured representations are usually called
planning agents

• A goal together with a set of means to achieve this goal will
be called a problem.



Problem solving agents

• Goals help organize behavior by limiting the objectives that an
agent is trying to achieve and hence the actions it needs to
consider

• Goal formulation, based on the current situation and the
agent’s performance measure, is the first step in problem
solving.

• We will consider a goal to be a set of world states and the
agent task will be to find out how to act, now and in the
future, so that it reaches the goal state.

• In order to make sure it can meet the goal, the agent needs to
decide what sorts of actions and states it should consider.



Problem solving agents

• Problem formulation is the process of deciding what actions
and states to consider, given a goal

• The agent will not always know which of the possible actions
is best, because it does not yet know enough about the state
that results from taking each action. If the agent has no
information (i.e. if the environment is unknown), then the
agent has no other option than to try one of the actions at
random.

• But if we suppose that the agent has a map, the agent can
use this information to determine the subsequent stages it has
to consider to reach the goal state.



Problem solving agents

• A problem can be defined formally by five components:

• The initial state that the agent starts in

• A description of the possible actions available to the agent.
Given a particular state s, action(s) should return the set of
possible actions that can be executed in s (we will say that
each of those actions are applicable in s)

• A description of what each action does. The formal name for
this is a transition model specified by a function result(s, a)
that returns the state that results from doing action a in state
s. We also use the term successor to refer to any state
reachable from a given state by a single action. Together, the
initial state, actions and transition model implicitely define the
state space (set of all states reachable from the initial state by
any sequence of actions).



Problem solving agents

• A problem can be defined formally by five components
(continued):

• The goal test which determines whether a given state is a goal
state. Sometimes there is an explicit set of possible goal
states, and the test simply checks whether the given state is
one of them. Sometimes the goal is specified by an abstract
property rather than an explicitly enumerated set of states
(this is the case with chess for example where the goal is to
reach a state called ”checkmate”)

• Finally, we sometimes consider a path cost function which
assigns a numeric cost to each path. The problem solving
agent chooses a cost function that reflects its own
performance measure. The step cost of taking action a in state
s to reach state s ′ is denoted by c(s, a, s ′).



Problem solving agents

• All the preceding elements define a problem and can be
gathered into a single data structure that is given as input to
a problem solving algorithm.

• Note that the state space forms a directed network or graph
in which the nodes are used to represent the states and the
links between the nodes are used to represent the actions

• A path in the state space is a sequence of states connected by
a sequence of actions

• A solution to a problem is an action sequence that leads from
the initial state to a goal state. Solution quality is measured
by the path cost function, and an optimal solution has the
lowest path cost among all solutions.



Problem solving agents

• Assume that the environment is observable (the agent always
knows the current state), the environment is known and
discrete (the agent knows which state (among a finite set) is
reached by which action) as well as deterministic (each action
has exactly one outcome).

• Under these assumptions, the solution to any problem is a
fixed sequence of actions (if the agent knows the initial state
and the environment is known and deterministic, it knows
exactly where it will be after the first action and what it will
perceive)

• The process of looking for a sequence of actions that reaches
the goal is called a search



Problem solving agents

• A search algorithm takes a problem as input and returns a
solution in the form of an actions sequence

• Once a solution has been found, the actions it recommends
can be carried out. This is called the execution phase.

• This leads to simple formulate-search-execute design for the
agent.



Problem solving agents

Agent Simple Problem Solving Agent(percept) returns action ;
persistent: seq (action sequence, init. empty) ;

state (description of current world state);
goal (init. empty);
problem (a problem formulation);

state ← Update-state(state,percept);
if seq is empty then

goal ← formulate-goal(state);
problem ← formulate-problem(state, goal);
seq ← search(problem);
if seq = failure then

return a null action
end

end
action ← First(seq);
seq ← Rest(seq);
return action



Problem Examples

• The first example we consider is the vacuum world below.
The constitutive elements of this problem can be defined as
follows:

• States The state is determined by both the agent location and
the dirt location. The agent can be in one of two locations,
each of which might or might not contain dirt. There are thus
a total of 2 × 22 = 8 possible world states

• Initial state: Any state can be taken to be the initial state



Problem Examples

• Vacuum world (continued)

• Actions: In this simple environment, each state just has 3
actions: Left, Right and Suck

• Transition Model The actions have their expected effects,
except moving Left in the leftmost square, moving Right in
the rightmost square and Suck have no effect

• Goal test. The check is for all the cells to be clean

• Path cost: Each step costs 1 hence the past cost is the total
number of steps in the path.



State Space (Vacuum cleaner)



Problem Examples
• Another example of a simple problem is the so-called 8 puzzle

• States A state description specifies the location of each of the
8 tiles and the blank in one of them

• Initial state: Any state can be taken to be the initial state

• Actions: The simplest formulation defines the actions as
movements of the blank space (Left, Right, Up or Down)
(Different subsets of these are possible depending on where the
blank cell is)



Problem Examples
• 8 puzzle (continued)

• Transition Model: Given a state and action, this should
return the resulting state. For example, if we apply Left to the
starting state, the resulting state has the 5 and the blank
space swapped

• Goal test: This check whether the current state matches the
goal configuration

• Path cost: Each step costs 1 so the path cost is the number
of steps in the path



Problem Examples
• The 8-puzzle belongs to the family of Sliding-block puzzles

which are often used as test problems for new search
algorithms in AI

• The family is known to be NP-complete so one does not
expect to find methods significantly better in the worst case
than the search algorithms that we will cover today.

• The 8-puzzle has 9!/2 = 181 440 reachable states while the
15-puzzle has around 1.3 trillion states (note however that
random instances can be solved by the best search algorithms
in a few milliseconds)



Problem Examples

• The route finding problem is defined in terms of locations and
transitions along the links between them.

• Route finding algorithms are used in a variety of applications
including websites, in-car systems, routing video streams,
military operations planning and airline travel planning,...

• In route finding the goal is to reach the final destination

• Robot navigation is an example of a route-finding problem.
However, rather than following a discrete set of routes, a
robot can move in a continuous space with (in principle) an
infinite set of possible actions and states.



Problem Examples

• Touring problems are related to route finding problems but
with the exception that the state space now not only includes
the current location but also the set of cities that the agent
has already visited.

• The travelling salesman problem (TSP) is an example of a
touring problem in which every city must be visited exactly
once. The aim is to find the shortest tour.

• The TSP problem is NP-hard but an enormous amount of
effort has been expended to improve the capabilities of TSP
algorithms.



Search algorithms

• Given a precise definition of a problem it is relatively
straighforward to construct a search process for finding
solutions.

• We make the distinction between Blind or Uninformed Search
Strategies and Informed Search strategies:

• In Uninformed Search, there is no additional information
about states beyond that provided in the problem definition.
All the search strategy can do is generate successors and
discriminate between a goal state from a non goal state. The
uninformed search strategies are distinguished by the order in
which nodes are expanded.

• Strategies that know whether one non-goal state is “more
promising” than another are called informed search or
heuristic search strategies.



Infrastructure for search algorithms

• Search algorithms require a data structure to keep track of
the search tree that is being constructed. For each node n of
the tree, we should have a structure that contains the four
components:

• node.State: the state (in the state space) to which the node
corresponds

• node.Parent: the node in the search tree that generated this
node

• node.Action: the action that was applied to the parent to
generate the node

• node.Path-cost: the cost, traditionally denoted as g(n) of
the path from the initial state to the node, as indicated by the
parent pointers.



Infrastructure for search algorithms

• The set of nodes available for expansion at any point is called
the frontier (some authors call it the open list)

• An example of a node data structure is given below



Solving Problems by searching
• Now that we have nodes, we need somewhere to put them.

The frontier needs to be chosen in such a way that the search
algorithm can easily select the next node to expand according
to its preferred strategy. The appropriate structure for this is
a queue.

• Nodes that have been generated but haven’t yet been
explored are sometimes called open. On the contrary, the
nodes that have already been expanded are called closed.



Infrastructure for search algorithms
• The operations on a queue are as follows:

• Empty?(queue) returns true if there are no more elements in
the queue

• Pop(queue) removes the first element of the queue and
returns it

• insert(element, queue) inserts an element in the queue and
returns the resulting queue.



Infrastructure for search algorithms
• Queues are characterized by the order in which they store the

inserted nodes. Three common variants are

• FIFO queue which pops the oldest element in the queue

• LIFO queue which pops the newest element of the queue

• Priority queue which pops the element of the queue with the
highest priority



Infrastructure for search algorithms

• Note that a tree can sometimes contain repeated nodes such
as shown below. Such nodes are generated by a loopy path.
When looopy paths are present in a tree, they also imply that
the complete search tree will be infinite. because there is no
limit on how often one can traverse a loop.



Infrastructure for search algorithms

• It is possible to remove those loopy paths by relying on some
additional intuition. We note that path costs are additive and
we assume that step costs are always non negative. A loopy
path to any given state is therefore never better than the path
with the loop removed.

• Loopy paths are a special case of the general concept of
redundant paths which exists whenever there is more than one
way to get from one state to another

• As indicated above, in some cases, it is possible to define the
problem so as to eliminate redundant paths. In other cases
however, redundant paths are unavoidable. This includes
cases where the actions are reversible such as the
route-finding problems and sliding block puzzles.



Infrastructure for search algorithms

• To avoid exploring redundant paths, we can augment the
search algorithm with a data structure that stores previously
explored nodes (sometimes known as the closed list)

• Newly generated nodes that match previously generated nodes
are then discarded instead of being added to the frontier.

• The resulting two alternative implementations are respectively
named Tree Search and Graph Search



Tree Search

Agent Tree-Search(problem) returns solution or failure ;
Initialize the frontier using the initial state of problem;
while frontier is not empty do

choose a leaf node and remove it from the frontier;
if the leaf node contains a goal state then

return the corresponding solution
end
Expand the chosen node, adding the resulting nodes to the frontier

end



Graph Search

Agent Graph-Search(problem) returns solution or failure ;
Initialize the frontier using the initial state of problem;
initialize the explored set to be empty;
while frontier is not empty do

choose a leaf node and remove it from the frontier;
if the node contains a goal state then

return the corresponding solution
end
add the node to the explored set;
expand the chosen node, adding the resulting nodes to the frontier
only if not in the frontier or explored set

end



Search Space and Problem representations

• Most problems can be posed either as Optimization tasks
(e.g. Road map, travelling salesman,..) or Satisfaction tasks
(e.g 8 queens, counterfeit problem)

• In Optimization problems, the objective is not just to exhibit a
formal object satisfying an established set of criteria but also
to ascertain that this object possesses qualities unmatched by
the other objects in the candidate space

• In Satisfaction Problems, on the other hand, the only objective
is to discover a qualified object with as little search effort as
possible.



A first algorithm: Hill climbing

• Hill climbing is simply a loop that continually moves in the
direction of increasing value (that is a hill). It terminates when
it reaches a “peak”, where no neighbor has a higher value.

• The algorithm does not maintain a search tree so the data
structure for the current node needs only record the state and
the value of the objective function.

• Hill climbing does not look ahead beyond the immediate
neighbors of the current state.



A first algorithm: Hill climbing

• Hill climbing is sometimes called greedy local search because
it grabs a good neighbor state without thinking ahead about
where to go next

• Hill climbing often makes rapid progress towards a solution
because it is usually quite easy to improve a bad state.
Unfortunately, it often gets stuck for the following reasons:

• Local Maxima: a local maximum is a peak that is higher than
each of its neighboring states but lower than the global
minimum. Hill climbing algorithms that reach the vicinity of a
local maximum will be drawn upward toward the peak but will
then be stuck with nowhere to go.

• Ridges : A Ridge results in a sequence of local maximas that
are not directly connected to each other

• Plateaux: a plateau is a flat area of the state space landscape
for which no uphill exit exists.



A first algorithm: Hill climbing

• In each case, the algorithm reaches a point at which no
progress is being made.

• Many variants of hill climbing have been invented. Among
those Stochastic Hill Climbing chooses at random from
among the uphill moves (with a probability of selection that
can vary with the steepness of the uphill moves), First-choice
hill climbing imlements hill climbing by generating successors
randomly until one is generated that is better than the current
state. Random restart hill climbing adopts the well known
adage: “If at first you don’t succeed, try again”. and
conducts a series of hill-climbing strategies from randomly
generated initial states until a goal is found.



A first algorithm: Hill climbing

• The success of Hill Climbing depends very much on the shape
of the state space landscape. If there are few local maxima
and plateaux, random restart hill climbing will find a good
solution very quickly

• On the other hand, many real problems have a landscape that
is highly non convex. NP hard problems typically have
exponential number of local maxima to get stuck on.



Uninformed Search Methods: Breadth First Search

• Breadth First search is a simple strategy in which the root
node is expanded first then all the successors of the root are
expanded, then their successors and so on.

• In general, all the nodes at a given depth in the tree are
expanded before any node at the next level can be expanded



Uninformed Search Methods: Breadth First Search
• BFS is carried out using a FIFO queue for the frontier. I.e.

new nodes go to the back of the queue and older nodes get
expanded first.

• In terms of complexity, if we search a uniform tree such that
every state has b successors (the root of the tree thus
generated b nodes at the first level, each of which generated b
more nodes, for a total of b2 at the second level, ...), the total
number of nodes expanded by BFS to find a goal node
located at depth d is thus O(bd).



Uninformed Search Methods: Breadth First Search

• Consequently, if we want to keep track of the explored set,
this explored set contains O(bd) nodes when reaching the
goal state.



Function Breadth-First-Search(problem) returns a solution or failure
node ← a node with state = problem.initial-state,path-cost= 0
if problem.goal-test(node.state) then

return solution(node)
end
fontier ← a FIFO queue with node as the only element
explored ← an empty set
(see next slide)



Function Breadth-First-Search(problem) returns a solution or failure
(continued)
while empty?(frontier) do

node ← pop(frontier) /*shallowest node in frontier*/
add node.state to explored
for each action in problem.actions(node, state) do

child ← child-node(problem, node, action)
if child.state is not in explored or frontier then

if problem.goal-test(child.state) then
return solution(child)

end
frontier ← insert(child, frontier)

end

end

end



Uninformed Search Methods: DFS

• Depth First Search always expands the deepest node in the
current frontier of the search tree.

• The search proceeds immediately to the deepest level of the
search tree, where the nodes have no successors. As those
nodes are expanded they are droped from the frontier.

• Then the search “backs up” to the next deepest node that
still has unexplored successors.

• Whereas Breadth First Search uses a FIFO queue, Depth First
Search uses a LIFO stack (which means that it is the most
recently generated node that is chosen for expansion)



Uninformed Search Methods: DFS

• It is common to implement Depth First with a recursive
function that calls itself on each of its children in turn.

• The time complexity of depth first graph search is bounded by
the size of the state space (which may be infinite)

• The main advantage of Depth First Search over Breadth First
Search is space complexity. For a depth first graph search,
there is no advantage but for a depth first tree search, the
search only needs to store a single path from the root node to
a leaf node, along with the remaining unexpanded sibling
nodes for each node on the path.

• once a node has been expanded and all its descendants have
been explored, it can be removed from memory.



Uninformed Search Methods: DFS

Function Depth-Limited-Search(problem) returns solution or failure ;
return Recursive-DLS(Make-Node(problem, initial-state), problem, limit)

Function Recursive-DLS(node, problem, limit) returns a solution or failure/cutoff;
if problem.goal-test(node.state) then

return solution(node)
end
else if limit = 0 then

return cutoff
end
else

cutoff occured? ← false
(see next slide)

end



Function Recursive-DLS(node, problem, limit) returns a solution or failure/cutoff
(see previous slide)
else

cutoff occured? ← false
for each action in problem.action(node.state) do

child ← child-node(problem, node, action)
result ← recursive-DLS(child, problem, limit -1)
if result = cutoff then

cutoff occured = true
end
else if result 6= failure then

return result
end

end
if cutoff occured? then

return cutoff
end
else

return failure
end

end



Uninformed Search Methods: DFS

• The properties of Depth First Search depend strongly on
whether the graph search or tree search version is used

• A variant of depth first search called backtracking line
search uses still less memory. In backtracking, only one
successor is generated at a time rather than all successors.
Each partially expanded node remembers which successors to
generate next. If m is the maximum depth, backtracking thus
uses O(m) memory instead of O(bm)

• If the generated node meets some stopping criterion, the
program backtracks to the closest unexpanded ancestor, that
is, an ancestor still having ungenerated successors.



Uninformed Search Methods: DFS



Iterative deepening DFS

• Iterative deepening search (or iterative deepening DFS) is a
general strategy often used in combination with depth first
tree search, that finds the best depth

• It does this by gradually increasing the limit until a goal is
found.

• Iterative deepening search combines the benefits of DFS and
BFS. Like DFS, its memory requirements are modest (O(bd))
and like BFS it is complete when the branching factor is finite
and optimal when the path cost is a non decreasing function
of the depth of the nodes.



Iterative deepening DFS



Iterative deepening DFS



Iterative deepening DFS



Iterative deepening DFS

Function Iterative-Deepening-search(problem) returns a solution or failure
for depth = 0 to ∞ do

result ← depth-limited-search(problem, depth)
if result 6= cutoff then

return result
end

end



Informed Search Strategies

• Informed Search strategies use problem specific knowledge,
beyond the definition of the problem itself, to find solutions
more efficiently

• Best First Search is a particular instance of the general tree
search or graph search algorithm in which a node is
selected for expansion based on some evaluation function f (n)

• The evaluation f (n) is construed as a cost estimate so that
the node with the lowest cost estimate is expanded first.

• The choice of f (n) determines the search strategy. Most
informed search strategies include as a component of f (n) a
heuristic function denoted h(n).



Informed Search Strategies

• The heuristic function h(n) can be defined as the estimated
cost of the cheapest path from the state at node n to a goal
state.

• Heuristic functions are the most common form in which
additional knowledge of the problem is imparted to the search
algorithm

• Heuristics are usually non negative functions with the
constraint that h(n) = 0 for any goal node n.



Examples of heuristics (I): Travelling salesman

• Consider the graph below, where the two marked paths ABC
and AED represent two candidate subtours being considered
by the search procedure.

• We would like to know which of these two if properly
completed to form a circuit, is more likely to be part of the
optimal solution.

• The overall cost is given by the cost of completing the tour
added to the cost of the initial subtour



Examples of heuristics (I): Travelling salesman

• However, since the computational effort required to find the
optimal completion is almost as hard as as that of finding the
entire tour, we must settle for an estimate of the completion
cost



Examples of heuristics (I): Travelling salesman

• Possible heuristics include

• The cheapest degree 2 graph going through all the remaining
nodes (O(n3))

• The minimum spanning tree (MST) through all remaining
nodes (O(n2))

• Other simpler heuristics include taking the cost of the edge (or
the two edges) from the end of the tour to the initial node.



Examples of heuristics (II): Roadmap problem

• Given a map such as shown below, we want to find the
shortest path between city A and city B

• When given an actual map, we would like to rule out the roads
that lead away from the general direction of the destination.



Examples of heuristics (II): Roadmap problem

• A human observer, located in A, wanting to reach B, and
looking at the map exploits vision machinery to estimate the
Euclidean distances on the map and since the distance from D
to B is shorter than the distance from C to B, city D appears
as a more promising candidate.



Examples of heuristics (II): Roadmap problem

• In the absence of a map (e.g. when given a table of pairwise
distances between connected cities) we could attempt to
simulate this extra information

• For example, as we can easily estimate air distances between
cities from their coordinates, we can consider a heuristic
function h(i) which computes the air distance from city i to
the goal city B.



Examples of heuristics (III): 8 queens problem

• The goal of the 8 queens problem is to place eight queens on
a chess board such that no queen can attack the others. This
is equivalent to placing the queens so that no row, column or
diagonal contains more than one queen



Examples of heuristics (III): 8 queens problem

• As for the other problems, we can forgo the hope of obtaining
the solution in one step and proceed step by step, in an
incremental manner.



Examples of heuristics (III): 8 queens problem

• One approach could be to start from an arbitrary arrangement
of the 8 queens that we would then transform iteratively,
going from one board configuration to another, until the
queens are adequately dispersed. The transformation should
be systematic so that we do not apply the same
transformation twice.



Examples of heuristics (III): 8 queens problem

• An alternative would be to start with an empty board, then
attempt to place the queens one at a time. This way we
already rule out violations of the problem constraints. Since
there can be only one queen in each row, we can assign the
first queen to the first row, the second queen to the second
row and so on



Examples of heuristics (III): 8 queens problem

• Assume that we have positioned three queens as below and
wonder whether we should position the fourth on A, B or C. A
heuristic in this case would have to determine, at least
tentatively, which of the three positions appears to have the
highest chance of leading to a satisfactory solution.



Examples of heuristics (III): 8 queens problem

• We could define a first heuristic by preferring candidate
solutions that leaves the highest number of unattacked cells
on the board (i.e. to be able to place the remaining queens,
we want to leave as many options as possible for future
additions). If we let f (·) denote the number of unattacked
cells, we get f (A) = 8, f (B) = 9 and f (C ) = 10.



Examples of heuristics (III): 8 queens problem

• A more sophisticated heuristic would focus on the rows with
the smallest number of unattacked cells as those rows are
more likely to be blocked quicker in the future. We should
then focus our attention on number of cells left by each
option on those rows. Using this as our heuristic, we get
f ′(A) = f ′(B) = 1 and f ′(C ) = 2 (i.e C leaves two rows with
2 unattacked cells)



Properties of heuristic methods

• An algorithm is said to be complete if it terminates with a
solution when one exists

• An algorithm is admissible if it is guaranteed to return an
optimal solution whenever such a solution exists

• An algorithm A1 is said to dominate another algorithm A2 if
every node expanded by A1 is also expanded by A2. Similarly,
A1 strictly dominates A2 if A1 dominates A2 and A2 does not
dominate A1. The expression “more effcient than” is
sometimes used instead of “dominates”.

• An algorithm is said to be optimal over a class of algorithms
if it dominates all members of this class.



Bidirectional Search

• The idea behind Bidirectional Search is to run two
simultaneous searches: one forward from the initial state and
the other backward from the goal, hoping that the two
searches meet in the middle

• Bidirectional Search is implemented by replacing the goal test
with a check to see whether the frontiers of the two searches
intersect. If they do, a solution has been found.



Informed Search Methods: (Greedy) Best First

• Greedy Best First Search tries to expand the node that is the
closest to the goal, on the grounds that it is likely to lead to a
solution quickly.

• Best First Search evaluates nodes by relying solely on the
heuristic function f (n) = h(n)

• Greedy Best First Search is incomplete, even in a finite state
space, just as DFS.



Informed Search Methods: (Greedy) Best First

• To illustrate the incompleteness of Best First Search, consider
the problem of getting from Iasi to Fagaras on the Romanian
map and to rely on the straight line distance as our heuristic.

• This heuristic suggests that Neamt should be expanded first
because it is the closest to Faragas but it is a dead end.

• The next solution would be to go to Vaslui, a step that is
actually farther from the goal according to the heuristic, and
then continue to Urziceni, Bucharest and Fagaras.

• However, the algorithm will never find this solution because
expanding Neamt puts Iasi back into the frontier and Iasi is
closer to Fagaras than Vaslui. From this, Iasi will be
expanded again, leading to an infinite loop.



Informed Search Methods: (Greedy) Best First



Informed Search Methods: (Greedy) Best First

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vasui 199
Lugoj 244 Zerind 374



Informed Search Methods: (Greedy) Best First

Function Recursive-best-first-search(problem) returns a solution or failure
return RBFS(problem, make-node(problem, initial-state), ∞)

Function RBFS(problem, node, flimit)
returns a solution or failure and a new fcost limit
if problem.goal-test(node.state) then

return solution(node)
end
successors ← []
for each action in problem.actions(node.state) do

add child-node(problem, node, action) into successors
end
if successors is empty then

return failure, ∞
end
for each s in successors do

/*update f with value from previous search, if any*/
s.f ← max(s.g + s.h, node.f )

end
(See next slide)



Informed Search Methods: (Greedy) Best First

Function RBFS(problem, node, flimit)
returns a solution or failure and a new fcost limit
(See previous slide)
while ∞ do

best ← the lowest f − value node in successors
if best.f > flimit then

return failure, best.f
end
alternative ← the second-lowest f-value among successors
result, best.f ← RBFS(problem, best, min(flim, alternative))
if result6= failure then

return result
end

end



Informed Search Methods: A∗

• The most widely known form of best first search strategies is
called A∗ search (A-star search). It evaluates nodes by
combining g(n), the cost to reach the node and h(n), the cost
to get from the node to the goal. I.e. f (n) = g(n) + h(n)

• Since g(n) gives the path cost from the start node to node n
and h(n) is the estimated cost of the cheapest path from n to
the goal, we have

f (n) = estimated cost of the cheapest solution through n

• Hence, if we are trying to find the cheapest solution, a
reasonable thing to try first is the node with the lowest value
for g(n) + h(n).



Informed Search Methods: A∗

• It turns out that this strategy is more than just reasonable.
Provided that the heuristic function h(n) satisfies certain
conditions, A∗ search is both complete and optimal

• The algorithm is identical to uniform-cost-search except
that A∗ uses g + h instead of g .



Informed Search Methods: (Greedy) Best First

Function A∗ search(problem) returns a solution or failure
Put first node s on OPEN
if OPEN is empty then

exit with failure
end
Remove from OPEN and place on CLOSED a node n for which f is minimum
if n is a goal node then

exit successfully with the solution obtained by
tracing back the pointers from n to s

end
(see next slide)



Informed Search Methods: (Greedy) Best First

Function A∗ search(problem) returns a solution or failure
(see previous slide)
else

Expand n, generating all its successors, and attach to them pointers
back to n.
for every successor n′ of n do

if n′ is not already on OPEN or CLOSED then
estimate h(n′) (estimate of the cost of the best path
from n′ to some goal node) and calculate
f (n′) = g(n′) + h(n′) where
g(n′) = g(n) + c(n, n′) and g(s) = 0

end
if n′ is already on OPEN or CLOSED then

direct its pointers along the path yielding the lowest g(n′)
end
if n′ required pointer adjustment and was found on CLOSED then

reopen it
end

end

end
Go to step 2.



A∗ search

• The first condition we require for optimality is that h(n) is an
admissible heuristic. An admissible heuristic is one that never
overestimates the cost to reach the goal. Because g(n) is the
actual cost to reach n along the current path and
f (n) = g(n) + h(n), we have as an immediate consequence
that f (n) never overestimates the true cost of a solution along
the current path through n

• Admissible heuristics are by nature optimistic as they assume
that the cost of solving the problem is less than it actually is.

• An obvious example of admissible heuristic is the straight line
distance that we used to navigate through Romania.



A∗ search

• A second condition, called consistency (or sometimes
monotonicity) is required only for applications of A∗ to graph
search. A heuristic h(n) is consistent if, for every node n and
every successor n′ of n generated by any action a, the
estimated cost of reaching the goal node from n is no greater
than the step cost of getting to n′ plus the estimated cost of
reaching the goal from n′

h(n) ≤ c(n, a, n′) + h(n′)

• Note that his makes perfect sense for admissible heuristics as
a violation of this inequality would imply that there is a route
from n to the goal Gn via n′ that is cheaper than h(n) (this
would in turn violate the property that h(n) is a lower bound
on the cost to reach Gn)



A∗ search

• The tree-search version of A∗ is optimal if h(n) is admissible
and the graph-search version of A∗ is optimal if h(n) is
consistent


