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• When discussing stacks and queues, we introduced the queue
ADT as a collection of objects that are added and removed
according to the First In First Out (FIFO) principle

• A company’s customer call center embodies such a model in
which customers are told “calls will be answered” in the order
that they were received.



• In practice, there are many applications for which using a
queue might be a good idea but for which the first in first out
policy might not suffice.

• A first example is the air traffic control center where one has
to decide which flight to clear for landing from among many
approaching the airport

• The choice may be influenced by factors such as each plane’s
distance from the runway, time spent waiting in holding
pattern, or amount of remaining fuel

• Most of the time, it is quite unlikely that the landing decisions
will be based purely on FIFO policy



• In other situations, FIFO might be seem reasonable but might
have to be combined with other types of priorities

• As an example of this, suppose that because of the possibility
of cancellations on a particular flight, an airline maintains a
queue of standby passengers hoping to get a seat.

• Although the priority of a passenger is influenced by the
check-in time of that passenger, other considerations might
include the fare paid and frequent flyer status



• Today we will consider a new abstract data type known as
Priority Queue

• A Priority Queue is a collection of prioritized elements that
allows arbitrary element insertion and allows the removal of
the element that has the first priority

• When an element is added to a priority queue, the user
designates its priority by providing an associated key

• The element with the minimal key will be the next to be
removed from the queue



The priority queue ADT (part I)

• Although it is common for priorities to be expressed
numerically, any Java object may be used as a key, as long as
there exists means to compare any two instances a and b in a
way that defines a natural order of the keys

• We model an element and its priority as a key-value
composite known as an entry.



The priority queue ADT (part II)

• We will define the priority queue ADT to support the
following methods

insert(k,v) Creates an entry with key k and value v in the
priority queue

min() Returns (but does not remove) a priority
queue entry (k, v) having minimal key
returns. null if queue is empty

removeMin() Removes and return an entry (k, v) having
minimal key from the priority queue.
Returns null if queue is empty

size() Returns the number of entries in the queue
isEmpty() Returns a boolean indicating whether the

queue is empty or not



The priority queue ADT (part II)
• A priority queue may have multiple entries with equivalent

keys, in which case the methods min and removeMin may
report an arbitrary choice among those entries having minimal
key.

• The table below shows a series of operations and their effects
on an initially empty priority queue.



Implementing a Priority Queue
• We use the Entry type in the interface for priority Queues

• This allows us to return both a key and a value as a single
object from methods such as min and removeMin

• We also define the insert method to return an entry

• In more advanced, adaptable priority queues, that entry can
be subsequently removed or updated.

public interface PriorityQueue<K,V>{

int size();

boolean isEmpty();

Entry<K,V> insert(K key, V value)

throws IllegalArgumentException;

Entry<K,V> min();

Entry<K,V> removeMin();}



Comparing keys with Total Order

• In defining the priority queue ADT, we can allow any type of
object to serve as a key but we must be able to compare keys
to each other in a meaningful way

• Moreover, the result of the comparison must not be
contradictory.

• For a comparison rule, which we denote by ≤ to be self
consistent, it must define a total order relation which is to say
that it satisfies the following properties for any keys k1, k2
and k3
• Comparability: k1 ≤ k2 or k2 ≤ k1

• Antisymmetry : if k1 ≤ k2 and k2 ≤ k1 then k1 = k2

• Transitivity: if k1 ≤ k2 and k2 ≤ k3 then k1 ≤ k3

• Comparability implies Reflexivity: k ≤ k



Comparing keys with Total Order

• A comparison rule ≤ that defines a total order relation will
never lead to a contradiction

• Such a rule defines a linear ordering among a set of keys. In
particular, if a (finite) set of elements has a total order defined
for it, then the notion of a minimal key kmin is well defined as
a key for which kmin ≤ k for any other key k in our set.



The Comparable and Comparator interfaces
• Java provides two means for comparing object types.

• The first of these is that a class may define what is known as
the natural ordering of its instances by formally implementing
the java.lang.Comparable interface. which includes a
single method compareTo.

• The syntax a.compareTo(b) must return an integer i with
the following meaning:

• i < 0 designates that a < b

• i = 0 designates that a = b

• i > 0 designates that a > b

• For example, the compareTo method of the String class
defines the natural ordering of Strings to be lexicographic,
which is a case sensitive extension of the alphabetic ordering
to Unicode.



The Comparable and Comparator interfaces

• In some applications, we may want to compare objects
according to some notion other than their natural ordering

• For example, we might be interested in which of two strings is
the shortest, or in defining our own complex rules for judging
which of two stocks is more promising

• To support generality, Java defines the
java.util.Comparator interface

• A comparator is an object that is external to the class of the
keys it compares

• It provides a method with the signature compare(a, b) that
returns an integer with similar meaning to the compareTo

method



The Comparable and Comparator interfaces

• As a concrete example, the code fragment below defines a
comparator that evaluates strings based on their length
(rather than their natural lexicographic order)

public class StringLengthComparator

implements Comparator<String>{

/**compares two strings according to their lengths */

public int compare(String a, String b){

if (a.length() < b.length()) return -1;

else if (a.length() == b.length()) return 0;

else return 1;

}

}



Comparators and the Priority Queue ADT
• For a general reusable form of a priority queue, we allow a user

to choose any key type and to send an appropriate comparator
instance as a parameter to the priority queue constructor

• The priority queue will use that comparator anytime it needs
to compare two keys to each other

• For convenience, we also allow a default priority queue to
instead rely on the natural ordering for the given keys
(assuming keys come from the comparable interface). In that
case, we build our own instance of a DefaultComparator

class shown below

public class DefaultComparator<E> implements Comparator<E>{

public int compare(E a, E b) throws ClassCastException{

return ((Comparable<E>) a).compareTo(b);

}}



The abstract Priority Queue Base class
• We start by defining a general abstract base class named
AbstractPriorityQueue

public abstract class AbstractPriorityQueue<K,V>

implements PriorityQueue<K,V> {

// Part I: The nested PQEntry class

protected static class PQEntry<K,V> implements Entry<K,V>

{ private K k; // key

private V v; // value

public PQEntry(K key, V value) {

k = key;

v = value;}

// methods of the Entry interface

public K getKey( ) { return k; }

public V getValue( ) { return v; }

// utilities not exposed as part of the Entry interface

protected void setKey(K key) { k = key; }

protected void setValue(V value) { v = value; } }



The abstract Priority Queue Base class

public abstract class AbstractPriorityQueue<K,V>

implements PriorityQueue<K,V> {

// Part II: instance variables and methods

private Comparator<K> comp;

/** Creates empty queue using the given comparator*/

protected AbstractPriorityQueue(Comparator<K> c)

{ comp = c; }

/** Creates empty queue based on natural ordering*/

protected AbstractPriorityQueue( )

{ this(new DefaultComparator<K>( )); }

/** Comparing keys */

protected int compare(Entry<K,V> a, Entry<K,V> b) {

return comp.compare(a.getKey( ), b.getKey( ));

}



The abstract Priority Queue Base class

public abstract class AbstractPriorityQueue<K,V>

implements PriorityQueue<K,V> {

// Part III: instance variables and methods (ctd)

private Comparator<K> comp;

/** Determines whether a key is valid. */

protected boolean checkKey(K key)

throws IllegalArgumentException {

try {

return (comp.compare(key,key) == 0);

// see if key can be compared to itself

} catch (ClassCastException e) {

throw new

IllegalArgumentException("Incompatible key");

}}

/** Tests whether the priority queue is empty. */

public boolean isEmpty( ) { return size( ) == 0; }}



The abstract Priority Queue Base class

• In our first implementation of a priority queue, we will store
entries within an unsorted linked list

• For internal storage, key value pairs are represented as
composites , using instances of the inherited PQEntry class

• These entries are then stored within a PositionalList that is an
instance variable.

• We first assume that the Positional List is implemented by
means of a doubly linked list



The abstract Priority Queue Base class

• We will begin with an emtpy list when a new priority queue is
constructed

• At any point, the size of the list equal the number of
key-value pairs currently stored in the priority queue

• Our priority queue size method hence simply returns the
length of the internal list

• Each time a key-value pair is added to the priority queue via
the insert method, we create a new PQEntry composite for
the give key and value and add that entry to the list



The abstract Priority Queue Base class

• The remaining challenge is that when min or removeMin is
called, we must locate the entry with the minimal key

• Because the entries are not sorted, we must inspect all entries
to find the one with the minimal key

• In order to do this, we define a private findMin utility that
returns the position of an entry with minimal key



public class UnsortedPriorityQueue<K,V>

extends AbstractPriorityQueue<K,V> {

// Part I, constructors and minimal key

private PositionalList<Entry<K,V>> list =

new LinkedPositionalList<>( );

/** Creates empty queue with natural ordering */

public UnsortedPriorityQueue( ) { super( ); }

/** Creates empty queue using compator*/

public UnsortedPriorityQueue(Comparator<K> comp)

{ super(comp); }

/** Returns Position of minimal key */

private Position<Entry<K,V>> findMin( ) {

Position<Entry<K,V>> small = list.first( );

for (Position<Entry<K,V>> walk : list.positions( ))

if(compare(walk.getElement( ), small.getElement( ))<0)

small = walk; // found an even smaller key

return small;}



• The min method simply uses the position to retrieve the entry
when preparing a key-value tuple to return

// Part II,insert, min and removeMin methods

public Entry<K,V> insert(K key, V value)

throws IllegalArgumentException {

checkKey(key); // key-checking method

Entry<K,V> newest = new PQEntry<>(key, value);

list.addLast(newest);

return newest;}

public Entry<K,V> min( ) {

if (list.isEmpty( )) return null;

return findMin( ).getElement( );}



• Knowledge of the position allows the removeMin method to
invoke the remove method on the positional list

// Part III removeMin

/** Removes and returns an entry with minimal key. */

public Entry<K,V> removeMin( ) {

if (list.isEmpty( )) return null;

return list.remove(findMin( ));

}

/** Returns number of items in the queue. */

public int size( ) { return list.size( ); }

}



Implementing a Queue with a sorted list

• The running times for the various methods of the
UnsortedPriorityQueue class can be found in the table
below



Implementing a Queue with a sorted list

• To improve the running times for the min and removeMin

methods, we can decide to store the entries by non decreasing
keys. This ensures that the first element of the list is the
entry with the smallest key

• For such a sorted Queue, the implementation of min and
removeMin are rather straightforward

• Assuming that the list is implemented with a doubly linked
list, operations min and removeMin take O(1) time



public class SortedPriorityQueue<K,V>

extends AbstractPriorityQueue<K,V> {

private PositionalList<Entry<K,V>> list =

new LinkedPositionalList<>( );

/** Empty priority queue based on natural ordering */

public SortedPriorityQueue( ) { super( ); }

/** Empty priority queue using given comparator*/

public SortedPriorityQueue(Comparator<K> comp)

{ super(comp); }

/** Returns an entry with minimal key */

public Entry<K,V> min( ) {

if (list.isEmpty( )) return null;

return list.first( ).getElement( );}

/** Removes and returns an entry with minimal key */

public Entry<K,V> removeMin( ) {

if (list.isEmpty( )) return null;

return list.remove(list.first( )); }

public int size( ) { return list.size( ); }}



Implementing a Queue with a sorted list

• This benefit comes at a cost though and the method insert

now requires that we scan the list to find the appropriate
position to insert the new entry.

• Our implementation starts at the end of the list, walking
backward until the new key is smaller than that of an existing
entry

• In the worst case, it progresses until reaching reaching the
front of the list

• As a result, the insert method takes O(n) worst case time
where n is the number of entries in the priority queue at the
time the method is executed



public Entry<K,V> insert(K key, V value)

throws IllegalArgumentException {

checkKey(key); // key-checking method

Entry<K,V> newest = new PQEntry<>(key, value);

Position<Entry<K,V>> walk = list.last( );

// walk backward, looking for smaller key

while (walk != null

&& compare(newest, walk.getElement( )) < 0)

walk = list.before(walk);

if (walk == null)

list.addFirst(newest); // new key is smallest

else

list.addAfter(walk, newest);

// newest goes after walk

return newest;}



Implementing a Queue with a sorted list



Implementing a Queue with a sorted list

• In short, we see an interesting tradeoff when implementing
priority queues: unsorted lists support fast insertion but slow
queries and deletions while a sorted list allows fast queries and
deletions, but slow insertions



Heaps

• As we saw, with priority queues, when using an unsorted list
to store entries, we can perform insertions in O(1) but finding
or removing an element with minimal key requires an O(n)
time loop through the entire collection.

• In constrast, if using a sorted list, we can trivially find or
remove the minimal element in O(1) time, bu adding a new
element to the queue may require O(n) time to restore the
sorted order

• We can in fact provide a more efficient realization of a priority
queue using a data structure called a binary heap. This data
structure will allow us to perform both insertions and
removals in logarithmic time

• The fundamental way the heap achieves this improvement is
by using the structure of a binary tree to fin a compromise
between elements being entirely unsorted and perfectly sorted



Heaps

• A Heap is a binary tree T that stores entries as its positions
and that satisfies two additional properties:

• A relational property defined in terms of the way keys are
stored in T

• A structural property defined in terms of the shape of T itself

Example of Heap with integer keys



Heaps

• The relational property is known as the Heap-Order Property
and states that in a heap T , for every position p other than
the root, the key stored at p is greater than or equal to the
sey stored at p’s parent

• As a consequence of the heap order property, the keys
encountered on a path from the root to a leaf of T are in
nondecreasing order

• Also a minimal key is always stored at the root of T

• This makes it easy to locate such an entry when min or
removeMin is called as it is informally said to be “at the top
of the heap”



Heaps

• For effciency reasons, we want the heap T to have as small a
height as possible

• We enforce this requirement by insisting that the heap T
satisfy an additional structural property known as the
Complete Binary Tree Property

• The Complete Binary Tree Property states that a heap T with
a height h is a complete binary tree if levels 0, 1, 2, . . . , h− 1
of T have the maximal number of nodes possible (namely level
i has 2i nodes, for 1 ≤ i ≤ h− 1) and the remaining nodes at
level h reside in the leftmost possible position at that level



Heaps
• The tree below is complete because levels 0, 1 and 2 are full

and the six nodes at level 3 are in the six leftmost possible
positions

• Let h denote the height of T . The fact that T is complete has
an important consequence summarized by the following
proposition

Proposition

A heap T storing n entries has height blog nc

Example of Heap with integer keys



Heaps

Proposition

A heap T storing n entries has height blog nc

Proof.
From the fact that T is complete, we know that the number of
nodes at levels 0 through h− 1 of T is precisely
1 + 2 + 4 + . . .+ 2h−1 = 2h − 1 and that the number of nodes at
level h is at least 1 and at most 2h. Therefore we have

n ≥ 2h − 1 + 1 and n ≤ 2h+1 − 1

Taking the logarithm on both sides of inequality n ≥ 2h we see
that h ≤ log n. Taking the logarith on both sides of the inequality
n ≤ 2h+1 − 1 we get log(n+ 1) ≤ h+ 1 since h is an integer,
these two inequality imply that h = blog nc



Implementing a priority queue with a heap

• The previous proposition has an important consequence for it
implies that if we can perform update operations on a heap in
time proportional to its height, then those operations will run
in logarithmic time

• The size and isempty methods can be implemented based
on examination of the tree and the min operation is equally
trivial because the heap property assures that the element at
the root of the tree has a minimal key.

• The interesting algorithms are those for implementing the
insert and removeMin methods



Implementing a priority queue with a heap

• Let us first consider how to perform insert(k, v) on a
priority queue implemented with a heap T

• We store the pair (k, v) as an entry at a new node of the tree.
To maintain the complete binary tree property, that new node
should be placed at a position p just beyond the rightmost
node at the lowest level of the tree, or at as the leftmost
position of a new level, if the bottom level is already full



Implementing a priority queue with a heap
• After this action, the tree T is complete, but it may violate

the heap-order property (i.e. the key stored at p is greater
than the key stored at p’s parent). Hence unless the position
p is the root of the tree, we compare the key at position p to
that of p’s parent which we denote as q.

• If key kp ≥ kq, the heap order property is satisfied and the
algorithm terminates

• If instead kp < kq, then we need to restore the heap order
property which can be locally achieved by swapping the
entries stored at position p and q



Implementing a priority queue with a heap

• The swap causes the new entry to move up one level. Again,
the heap order property may be violated, so we repeat the
process, going up in T until no violation of the heap order
property occurs

• The upward movement of the newly inserted entry by means
of swaps is conventionally called up-heap bubbling.



Implementing a priority queue with a heap

• A swap either resolves the violation of the heap-order
property, or propagates it one level up in the heap. In the
worst case scenario, up heap bubbling causes the new entry to
move all the way up in the heap. Thus in the worst case
scenario, teh number of swaps performed in the execution of
the method insert is equal to the heigth of T which (as we
saw on the previous slides) is bounded by blog nc



Removing the entry with the minimal key

• We now turn to the implementation of the removeMin

method of the priority queue ADT.

• We know that the entry with the smallest key is stored at the
root of the tree T . However, in general we cannot simply
delete node r because this would leave two disconnected
subtrees

• Instead we should ensure that the shape of the heap respects
the complete binary tree property by deleting the leaf at the
last position p of T defined as the rightmost position at the
bottommost level of the treee



Removing the entry with the minimal key

• To preserve the entry from the last position p we copy it to
the root



Down-Heap Bubbling after a Removal

• We are not yet done however, for even though T is now
complete, it violates the heap order property.

• If T has only one node, then the heap order property is
trivially satisfied and the algorithm terminates. Otherwise, we
distinguish two cases

• If p has no right child let c be the left child of p

• Otherwise (p has both children), let c be the child with
minimal key

• If key kp ≤ kc, the heap order property is satisfied and the
algorithm terminates

• If instead kp > kc, then we need to restore the heap-order
property. This can be locally achieved by swapping the entries
stored at p and c



Down-Heap Bubbling after a Removal

• It is worth noting that when p has two children, we
intentionnally consider the smaller key of the children. In this
case, not only is the key of c smaller than that of p, it is at
least as small as the key at c’s sibling. This ensures that the
heap order property is locally restored when that smaller key is
promoted above the key that had been at p, and that at c’s
sibling



Down-Heap Bubbling after a Removal

• Having restored the heap property for node p relative to its
children, there may be a violation of this property at c. We
may therefore have to continue swapping down T until no
violation of the heap-order property occurs. This downward
swapping process is called down-heap bubbling



Down-Heap Bubbling after a Removal

• A swap either resolves the violation of the heap order property,
or propagates it one level down in the heap. In the worst case,
an entry moves all the way down to the bottom level.

• The number of swaps performed in the execution of the
method removeMin is, in the worst case, equal to the height
of the heap T , that is blog nc



Array based representation of Complete Binary tree

• The array based representation of a binary tree is especially
suitable for a complete binary tree. We recall that in this
implementation, the elements of the tree are stored in an
array-based list A such that the element at position p is
stored in A with index equal to the level number f(p) of p



Array based representation of Complete Binary tree
• Recall that the level number f(p) is defined as

• If p is the root, then f(p) = 0

• If p is the left child of a position q, then f(p) = 2f(q) + 1

• If p is the right child of position q, then f(p) = 2f(q) + 2



Array based representation of Complete Binary tree

• For a tree with size n, teh elements have contiguous indices in
the range [0, n− 1] and the last position is always at index
n− 1



Array based representation of Complete Binary tree

• The array based heap representation avoids some of the
complexities of a linked tree structure. Specifically, methods
insert and removeMin depend on locating the last position
of the heap while with the array-based representation of a
heap of size n, the last position is simply at index n− 1.

• If the size of a priority queue is not known in advance, use of
an array based representation does introduce the need to
dynamically resize the array on occasion

• The space usage of such an array based representation of a
complete binary tree with n nodes is O(n), and the time
bounds of methods for adding or removing elements become
amortized.



public class HeapPriorityQueue<K,V> extends

AbstractPriorityQueue<K,V> {

/**Priority queue using array-based heap (part I). */

protected ArrayList<Entry<K,V>> heap =

new ArrayList<>( );

/**Creates empty queue w/ natural ordering*/

public HeapPriorityQueue( ) { super( ); }

/**Creates empty queue w/ given comp. to order keys.*/

public HeapPriorityQueue(Comparator<K> comp)

{ super(comp); }

// protected utilities

protected int parent(int j) { return (j-1)/2;}

protected int left(int j) { return 2*j + 1; }

protected int right(int j) { return 2*j + 2; }

protected boolean hasLeft(int j)

{ return left(j) < heap.size( ); }

protected boolean hasRight(int j)

{ return right(j) < heap.size( ); }



• We also add to the class protected utilities swap, upheap and
downheap

public class HeapPriorityQueue<K,V> extends

AbstractPriorityQueue<K,V> {

/**Priority queue using array-based heap (part II). */

/** Exchanges entries i and j */

protected void swap(int i, int j) {

Entry<K,V> temp = heap.get(i);

heap.set(i, heap.get(j));

heap.set(j, temp);}



• We also add to the class protected utilities swap, upheap and
downheap

/** Moves entry at index j higher*/

protected void upheap(int j) {

while (j > 0) { // continue until root (or break)

int p = parent(j);

if (compare(heap.get(j), heap.get(p)) >= 0) break;

swap(j, p);

j = p; }}



• We also add to the class protected utilities swap, upheap and
downheap

/** Moves the entry at index j lower*/

protected void downheap(int j) {

while (hasLeft(j)) { // continue to bottom (or break)

int leftIndex = left(j);

int smallChildIndex = leftIndex;

if (hasRight(j)) {

int rightIndex = right(j);

if (compare(heap.get(leftIndex),

heap.get(rightIndex)) > 0)

smallChildIndex = rightIndex;

if (compare(heap.get(smallChildIndex),

heap.get(j)) >= 0)

break; // heap property has been restored

swap(j, smallChildIndex);

j = smallChildIndex; }}



• A new entry is added at the end of the array-list and then
repositioned as needed with upheap.

• To remove the entry with minimal key (which resides at index
0), we move the last entry of the array-list from index n− 1
to index 0, and then invoke downheap to reposition it.



• We conclude with size, insert and removeMin() methods

/** Returns the number of items in the queue. */

public int size( ) { return heap.size( ); }

/** Returns (not remove) entry with minimal key*/

public Entry<K,V> min( ) {

if (heap.isEmpty( )) return null;

return heap.get(0);

}

/** Inserts and returns a key-value pair*/

public Entry<K,V> insert(K key, V value)

throws IllegalArgumentException {

checkKey(key); // auxiliary key-checking method

Entry<K,V> newest = new PQEntry<>(key, value);

heap.add(newest); // add to the end of the list

upheap(heap.size( ) - 1); // upheap newly added entry

return newest;

}



• We conclude with size, insert and removeMin() methods

/** Removes and returns minimal key entry */

public Entry<K,V> removeMin( ) {

if (heap.isEmpty( )) return null;

Entry<K,V> answer = heap.get(0);

swap(0, heap.size( )-1); // put min at the end

heap.remove(heap.size( )- 1); // remove it from list;

downheap(0); // then fix new root

return answer;

}}



• The run time analysis of the most important methods of the
Priority Queue ADT for a heap implementation can be carried
out by considering the following facts:

• The heap T has n nodes, each storing a reference to a
key-value entry

• The height of the heap is log n (the heap is complete)

• The min operation runs in O(1) (because the root of the tree
contains such an element)

• Locating the last postion of a heap as required by the insert

and removeMin methods can be performed in O(1) (array
based) or O(log n) (linked tree)

• In the worst case, up heap and down heap bubbling perform
a number of swaps equal to the height of T



• The heap data structure is a very efficient realization of the
priority queue ADT, independent of whether the heap is
implemented with a linked structure or an array

• The heap implementation achieves fast running times for both
insertion and removal, unlike the implementations that were
based on using unsorted or sorted lists



Bottom Up heap construction

• If we start with an initially empty heap, n successive calls to
the insert operation will run in O(n log n) in the worst case.
However if all n key value pairs to be stored in the heap are
known in advance, there is an alternative bottom up
construction that runs in O(n) time

• To introduce the this bottom up heap construction, we will
assume that the number of keys satisfies n = 2h+1 − 1 (that
is the heap is a complete binary tree with every level being
full). It therefore also have height h = log(n+ 1)− 1



Bottom Up heap construction

• Bottom up heap construction consists of the following
h+ 1 = log(n+ 1) steps

• In the first step, we construct (n+ 1)/2 elementary heaps
storing one entry each



Bottom Up heap construction

• Bottom up heap construction consists of the following
h+ 1 = log(n+ 1) steps

• In the second step, we form (n+ 1)/4 elementary heaps
storing 3 entries each, by joining pairs of elementary heaps and
adding one new entry. The new entry is placed at the root and
may have to be swapped with the entry stored at a child to
preserve the heap-order property



Bottom Up heap construction

• Bottom up heap construction consists of the following
h+ 1 = log(n+ 1) steps

• In the third step, we form (n+ 1)/8 heaps storing 7 entries
each, by joining pairs of of 3 entries heaps (constructed in the
previous step) and adding a new entry. The new entry is
initially placed at the root but may have to move down with a
down heap bubbling to preserve the heap order property



Bottom Up heap construction

• Bottom up heap construction consists of the following
h+ 1 = log(n+ 1) steps

• In the generic ith step, 2 ≤ i ≤ h, we for (n+ 1)/2i heaps,
each storing 2i − 1 entries, by joining pairs of heaps storing
2i−1 − 1 entries (constructed in the previous step) and adding
a new entry. The new entry is initially placed at the root but
may have to move down with a down heap bubbling to
preserve the heap order property



Bottom Up heap construction

• Bottom up heap construction consists of the following
h+ 1 = log(n+ 1) steps

• Finally, in the last step, we form the final heap, storing all n
entries by joining two heaps storing (n− 1)/2 entries each and
adding a new entry. The new entry is placed initially at the
root by may again have to move down with a down heap
bubbling to preserve the heap order property



Bottom Up heap construction

• Bottom up heap construction consists of the following
h+ 1 = log(n+ 1) steps

• Finally, in the last step, we form the final heap, storing all n
entries by joining two heaps storing (n− 1)/2 entries each and
adding a new entry. The new entry is placed initially at the
root by may again have to move down with a down heap
bubbling to preserve the heap order property



Bottom Up heap construction

Proposition

Bottom-up construction of a heap with n entries takes O(n) time,
assuming two keys can be compared in O(1) time

• The primary cost of the algorithm is due to the down heap
steps that are performed at each of the non leaf positions

• Let πv denote the path of T from nonleaf node v to its “’in
order succcessor’ leaf (that is to say the path that starts at v
then goes to the right child of v then does down leftward until
it reaches a leaf)



Bottom Up heap construction

• The number of edges of πv is proportionnal to the height of
the subtree rooted at v and gives a bound on complexity of
the down heap bubbling step from v

• From this we can bound the total running time of the bottom
up heap construction by the sum

∑
v |πv|

• The paths πv are edge disjoints and the total sum of all path
length is thus bounded by the total number of edges in the
tree which is O(n)



Sorting with a Priority Queue

• One application of Priority Queues is sorting, where we are
given a sequence of elements that can be compared according
to a total order relation and we want to rearrange them in
increasing order

• The algorithm for sorting a sequence S with a priority queue
P is quite simple and consists of the following two phases:

• In the first phase, we insert the elements of S into an initially
empty priority queue P by means of a series of n insert

operations

• In the second phase, we extract the elements from P in non
decreasing order by means of a series of n removeMin

operations, putting them back into S in that particular order



Sorting with a Priority Queue

/** Sorts sequence S using priority queue. */

public static <E> void pqSort(PositionalList<E> S,

PriorityQueue<E,?> P) {

int n = S.size( );

for (int j=0; j < n; j++) {

E element = S.remove(S.first( ));

P.insert(element, null);

}

for (int j=0; j < n; j++) {

E element = P.removeMin( ).getKey( );

S.addLast(element);

}}

• Sorting based on priority queues serves as a basis for several
popular sorting algorithms including selection-sort,
insertion-sort, heap-sort



Selection Sort
• In phase 1 of our sorting algorithm, we insert the elements

into a queue P while in phase 2, we remove the elements
using removeMin.
• When using an unsorted queue, the insertion phase takes
O(n), while each removeMin operation takes O(L) where L is
the current length of the queue.
• The bottleneck is thus the selection of the min value and we

call this approach Selection Sort



Insertion Sort

• When implementing the priority queue with a sorted list, the
bottleneck becomes the insertion and the resulting algorithm
is known as Insertion-Sort



Insertion Sort

• We can compute the runtime of both of theinsertion and
selection sort algorithms by noting that each of their
bottleneck operations requires a number of operations
proportional to the current size of the list. The complexity of
those algorithms is thus bounded as

O(n+ (n− 1) + . . .+ 1) = O(n2)

for selection sort and

O(1 + 2 + . . .+ (n− 1) + n) = O(n2)

for insertion sort.



Insertion Sort

• Realizing a priority queue with a heap has the advantage that
all the methods in the priority queue run in logarithmic time
or better

• If we consider our sorting algorithm but this time with a heap
based implementation of the queue

• The ith step of the first phase (insert phase) now takes
O(log i) time since the heap has i entries after the previous
operations have been carried out. The first phase thus take
O(n log(n)) operation.

• For the second phase, recall that we only need to remove the
root node in the heap, and we then replace it with the
rightmost leaf, after which we perform at most log(d) down
heap bubbling to satisfy the heap order property. We thus
again have a O(n log n) running time.



Insertion Sort

• All in all, this leads to the following proposition

Proposition

The heap sort algorithm sorts a sequence S of n elements in
O(n log n) time, assuming two elements of S can be compared in
O(1) time.



Implementing Heap Sort in place

• If the sequence to be sorted is implemented by means of an
array-based sequence, such as ArrayList in Java, we can speed
up heap sort and reduce its space requirement by a constant
factor by using a portion of the array itself to store the heap.

• In general we say that an algorithm is in place if it uses only a
small amount of memory in addition to the sequence storing
the objects to be stored



Implementing Heap Sort in place

• This approach can be carrried out through the following steps:

• We first define the heap to be maximum oriented (each node is
now at least as large as its children). at any time during the
execution of the algorithm, we use the left portion of the
original array S, up to index i− 1 to store the entries of the
heap, and the right portion of S from i to n− 1 to store the
elements of the sequence.

• In the first phase of the algorithm, we start with an empty
heap and move the boundary between the sequence and the
heap left to right (at step i, we expand the heap by adding the
element at index i)

• During the second phase, we start with an empty sequence and
move the boundary between the heap and the sequence right
to left. At step i, we move a maximum elements from the
heap and store it at index n− i in the sequence



Implementing Heap Sort in place
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