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Converting lists into Arrays

• The java.util.Collection interface includes two methods for
generating an array that has the same elements as the
collection

toArray() Returns an array of elements of type Object containing
all the elements in this collection

toArray(A) Returns an array of elements of the same element type as
A containing all the elements in this collection

• If the collection is a list, the returned array will have its
elements stored in the same order as the list

• In particular, if we have a useful array based method that we
want to use on a list or other type of collection, we can do so
by using that collection’s toArray() method to produce an
array representation of the collection.



Converting Arrays into Lists

• Similarly, it is often useful to be able to convert an array into
an equivalent list. The java.util.Arrays class includes the
following methods

asList(A) Returns a list representation of the array A, with the
same element type as the elements of A

• The list returned by this method uses the array A as its
internal representation for the list. So this list is guaranteed to
be an array based list and any changes made to it will
automatically reflect in A



Converting Arrays into Lists

• Because of this connection between the array and newly
created list, the asList method should always be used with
caution

• when used with care, this method can however often save us a
lot of time as shown by the random shuffle example below

Integer[] arr = {1,2,3,4,5,6,7,8};

List<Integer> listArr = Arrays.asList(arr);

Collections.shuffle(listArr);

• It is worth noting that the array A sent to the asList()
method should be a reference type (hence our use of the
Integer rather than int) type above



Sorting a positional list

• When discussing arrays, we introduced the insertionSort()
algorithm (recalled below)

public static void insertionSort(char[] data){

int n = data.length;

for(int k=1, k<n; k++){

char cur = data[k];

int j = k;

while(j>0 && data[j-1]>cur ){

data[j] = data[j-1];

j--;

}

data[j] = curr;

}}



Sorting a positional list
• We can design a similar algorithm on Positional Lists. To do

so, we maintain a variable named marker that represents the
rightmost position of the currently sorted portion of a list

• During each pass, we consider the position just past the
marker as the pivot and consider where the pivot element
belongs relatove to the sorted portion.

• We also use another variable, named walk, to move leftward
from the marker,as long as there remains a preceding element
with value larger than the pivot’s. The connfiguration of thes
variables is shown below



Sorting a positional list

• The sorting algorithm can then be implemented as follows

public static void insertionSort(PositionalList<Integer> list) {

Position<Integer> marker = list.first( );

// last sorted position

while (marker != list.last( )) {

Position<Integer> pivot = list.after(marker);

int value = pivot.getElement( ); // number to be placed

if (value > marker.getElement( )) // pivot is sorted

marker = pivot;

else { // must relocate pivot

Position<Integer> walk = marker;

// find leftmost item greater than value

while (walk != list.first( ) &&

list.before(walk).getElement( ) > value)

walk = list.before(walk);

list.remove(pivot); // remove pivot entry and

list.addBefore(walk, value); // reinsert value in front

}} }



Trees

• Trees are on the most important non linear structures in
computing

• Trees structures can be considered a breakthrough in data
organization in the sense that they allow us to implement a
host of algorithms much faster than when using linear data
structures, such as arrays or linked lists

• Trees also provide a natural organization for data, and
consequently have become ubiquitous structures in file
systems, graphical user interfaces, databases, websites and
many other computer systems

• When we say that trees are nonlinear we are referring to an
organizational relationship that is richer than the simple
”before” and ”after” between objects in sequences.



Trees

• The relationships in a tree are hierarchical with some object
being above and some below others

• Actually, the main terminology for tree data structures comes
from family trees with the term parent, child, ancestor and
descendant



Trees
• With the exception of the top element, each element in a tree

has a parent element and zero or more children elements

• A tree is usually visualized by drawing the connections
between parents and children using straight lines

• We typically call the top element the root of the tree, but it is
drawn as the highest element, with the other elements being
connected below



Trees

• Formally we define a tree T as a set of nodes such that the
nodes have a parent-child relationship that satisfies the
following properties

• If T is nonempty, it has a special node, called the root of T ,
that has no parent

• Each node ν of T different from the root has a unique parent
node w; every node with parent w is a child of w

• Note that according to this definition, a tree can be empty,
meaning that it does not have any node.

• Finally, this convention allows us to define a tree recursively
such that a tree is either empty or consists of a node r called
the root of T , and a (possibly empty) set of subtrees whose
roots are the parents of the children of r



Trees

• Two nodes that are the children of the same parent are called
siblings. A node ν is external if ν has no children.

• A node ν is internal if it has one of more children

• External nodes are also known as leaves



Trees
• A node u is an ancestor of a node ν if u = ν or u is an

ancestor of the parent of ν

• Conversely, we say that a node ν is a descendant of a node u
if u is an ancestor of ν. For example, in the tree below,
cs252/ is an ancestor of papers/ and pr3 is a descendant of
cs016/.



Trees

• The subtree of T rooted at a node ν is the tree consisting of
all the descendants of ν in T (including ν itself). In the tree
below, the subtree rooted at cs016/ consists of the nodes
cs016/, grades, homeworks/, programs/, hw1, hw2, hw3,
pr1, pr2 and pr3.



Trees
• An edge of the tree T is a pair of nodes (u, ν) such that u is

the parent ν, or vice versa.

• A path of T is a sequence of nodes such that any two
consecutive nodes in the sequence form an edge.

• As an example, the tree below contains the paths (cs252/,

projects/, demos/, market)



Trees

• A tree is ordered if there is a meaningful linear order among
the children of each node; that is, we purposefully identify the
children of a node as being the first, second, third, and so on

• Such an order is usually visualized by arranging siblings left to
right, according to their order



The tree abstract data type

• As we did with positional lists, we will define the tree ADT
using the concept of position as an abstraction for a node of a
tree.

• An element is stored at each position and positions satisfy
parent-child relationships that define the tree sculpture.

• A position object for a tree supports the following methods

getElement() Returns the element stored at this position



The tree abstract data type

• The tree ADT then supports a set of accessor methods,
allowing a user to navigate the various positions of a tree T

root() Returns the position of the root of the tree
(or null if empty)

parent(p) Returns the position of the parent of position p
(or null if p is the root)

children(p) Returns an iterable collection containing the children
of position p (if any)

numChildren(p) Returns the number of children of position p

• If a tree T is ordered, then children(p) reports the children of
p in order.



The tree abstract data type

• In addition to the accessor methods, the following additional
methods

isInternal(p) Returns true if position p has at least one child

isExternal(p) Returns true if position p does not have any children

isRoot(p) Returns trueif position p is the root of the tree

• The methods above make programming with trees easier and
more readable, since we can use themin the conditionals of if
statements and while loops



The tree abstract data type

• Trees support a number of more general methods, unrelated
to the specific structure of the tree which include

size() Returns the number of positions (hence elements)
that are contained in the tree

isEmpty() Returns true if the tree does not contain any positions
( and thus no element)

iterator() Returns an iterator for all elements in the tree
(so that the tree itself is iterable)

positions() Returns an iterable collection of all positions of the tree



A Tree interface in Java

• To define a tree interface, we rely on the Position interface

• We declare the tree interface to extend Java’s iterable
interface (hence including the required iterator method)

public interface Tree<E> extends Iterable<E> {

Position<E> root( );

Position<E> parent(Position<E> p) throws IllegalArgumentException;

Iterable<Position<E>> children(Position<E> p)

throws IllegalArgumentException;

int numChildren(Position<E> p) throws IllegalArgumentException;

boolean isInternal(Position<E> p) throws IllegalArgumentException;

boolean isExternal(Position<E> p) throws IllegalArgumentException;

boolean isRoot(Position<E> p) throws IllegalArgumentException;

int size( );

boolean isEmpty( );

Iterator<E> iterator( );

Iterable<Position<E>> positions( );}



A Tree interface in Java

• To define a tree interface, we rely on the Position interface

• We declare the tree interface to extend Java’s iterable
interface (hence including the required iterator method)

public interface Tree<E> extends Iterable<E> {

Position<E> root( );

Position<E> parent(Position<E> p) throws IllegalArgumentException;

Iterable<Position<E>> children(Position<E> p)

throws IllegalArgumentException;

int numChildren(Position<E> p) throws IllegalArgumentException;

boolean isInternal(Position<E> p) throws IllegalArgumentException;

boolean isExternal(Position<E> p) throws IllegalArgumentException;

boolean isRoot(Position<E> p) throws IllegalArgumentException;

int size( );

boolean isEmpty( );

Iterator<E> iterator( );

Iterable<Position<E>> positions( );}



An Abstract Tree Base class

• As we saw in previous courses, while an interface is a type
definition that includes public declarations of various methods,
an interface cannot include definitions for any of those
methods

• In contrast, an abstract class may define concrete
implementations for some of its methods while leaving other
abstract methods without definition

• An abstract class is designed to serve as a base class, through
inheritance, for one or more concrete imeplementations of an
interface.

• When some of the functionalityof an interface is implemented
in an abstract class, less work remains to complete a concrete
implementation



An Abstract Tree Base class

• In the case of the Tree interface, we will define an abstract
Tree base class, demonstrating how many tree based
algorithm can be defined independently of the low-level
representation of a tree data structure

• We start with the following simple implementation of the
AbstractTree class

public abstract class AbstractTree<E>

implements Tree<E> {

public boolean isInternal(Position<E> p) {

return numChildren(p) > 0; }

public boolean isExternal(Position<E> p) {

return numChildren(p) == 0; }

public boolean isRoot(Position<E> p) {

return p == root( ); }

public boolean isEmpty( ) {

return size( ) == 0; }}



An Abstract Tree Base class

• Recall that any class that implements an interface must
provide an implementation for all the methods of the
interface, otherwise, the class has to be marked as abstract.

• Here there are no abstract methods in the body of the
AbstractTree class. However, some of the methods from the
Tree interface are not given any implementation (this the case
with numChildren for example), hence the keyword abstract



Computing depth and height in a Tree
• Let p be a position within the tree T . The depth of p is the

number of ancestors of p, other than p itself. For example, in
the tree below, the node storing international has depth 2

• Note that this definition implies that the depth of the root of
T is 0



Computing depth and height in a Tree
• The depth can also be recursively defined as follows:

• If p is the root, then the depth of p is 0

• Otherwise, the depth of p is one plus the depth of the parent
of p



Computing depth and height in a Tree

• Based on this definition, we can define a simple recursive
algorithm for computing the depth of a position p in the tree

public int depth(Position<E> p) {

if (isRoot(p))

return 0;

else

return 1 + depth(parent(p));

}

• The method calls itself recursively on the parents of p and 1
to the value returned

• The running time of depth(p) for position p is O(dp + 1)
where dp denotes the depth of p in the tree, because the
algorithm performs a constant time recursive step for each
ancestor of p



Computing depth and height in a Tree

• As a result, the depth algorithm runs in O(n) worst case time
where n is the total number of positiions of T because a
position of T may have depth n− 1 if all nodes form a single
branch

public int depth(Position<E> p) {

if (isRoot(p))

return 0;

else

return 1 + depth(parent(p));

}



Computing depth and height in a Tree
• From the definition of the depth of a node p, we can define

the height of a tree to be equal to the maximum of the depths
of its positions

• The tree below has height 4 as the node storing Africa has
depth 4



Computing depth and height in a Tree

• Just as for the depth, we can provide a method that computes
the height of a tree

private int heightBad( ) {

// works, but quadratic worst-case time

int h = 0;

for (Position<E> p : positions( ))

if (isExternal(p)) // only leaf positions

h = Math.max(h, depth(p));

return h;

}

• The positions() method can be implemented such that the
entire iteration runs in O(n) time where n is the total number
of positions in T



Computing depth and height in a Tree

• Because heightBad calls algorithm depth on each leaf of T ,
its running time is O(n+

∑
p∈L(dp +1)) where L is the set of

leaf positions of T

• In the worst case, the sum
∑

p∈L(dp + 1) is proportional to

n2, consequently the algorithm heightBad runs in O(n2)
worst case time

private int heightBad( ) {

// works, but quadratic worst-case time

int h = 0;

for (Position<E> p : positions( ))

if (isExternal(p)) // only leaf positions

h = Math.max(h, depth(p));

return h;

}



Computing depth and height in a Tree

• We can however compute the height of a tree more efficiently
by considering a recursive definition

• To do this, we parametrize a function based on the position
within the tree and calculate the height of the subtree rooted
at this position

• Formally, we define the height of a position p in a tree T as
follows :

• If p is a leaf, then the height of p is zero

• Otherwise, the height of p is one more than the maximumof
the heights of p’s children



Computing depth and height in a Tree

• Following this recursive approach, we can thus say that the
height of tree T is given by the maximum depth among all the
leaves of T

• The method height below can be considered as a (more
efficient) substitute for the original simpler method heightBad

public int height(Position<E> p) {

int h = 0; // base case if p is external

for (Position<E> c : children(p))

h = Math.max(h, 1 + height(c));

return h;

}

• To determine the total complexity of this new algorithm, we
count the number of operations needed on the non recursive
part of the call



Computing depth and height in a Tree

• Clearly there is a constant amount of work per position plus
the overhead of computing the maximum among positions.

• Although we do not have a concrete implementation for
children(p), we can assume for now that such a call can be
executed in O(cp + 1) time where cp denotes the number of
children of p

• The algorithm height(p) thus spent O(cp + 1) time at each
position p to compute the maximum and its complexity is
given by O(

∑
p(cp + 1)) = O(n+

∑
p cp)

public int height(Position<E> p) {

int h = 0; // base case if p is external

for (Position<E> c : children(p))

h = Math.max(h, 1 + height(c));

return h;}



Computing depth and height in a Tree

• To complete the analysis, we rely on the following proposition

Proposition

Let T be a tree with n postions, and let cP denote the number of
children of a position p in T , then summing over the positions of
T ,

∑
p cP = n− 1

Proof.
Each position in T , with the exception of the root, is the child of a
node and therefore contributes one unit to the sum

∑
p cp

public int height(Position<E> p) {

int h = 0; // base case if p is external

for (Position<E> c : children(p))

h = Math.max(h, 1 + height(c));

return h;}



Computing depth and height in a Tree

• Combining this with the complexity O(n+
∑

p cp) we get a
total running time of O(n)

public int height(Position<E> p) {

int h = 0; // base case if p is external

for (Position<E> c : children(p))

h = Math.max(h, 1 + height(c));

return h;}



Binary Trees
• A Binary tree is an ordered tree with the following properties

• Every node has at most two children

• Each child node is labeled as being either a left child or a right
child

• A left child precedes a right child in the order of children of a
node

• The subtree rooted at a left or right child of an internal node
ν is called a left subtree or right subtree, respectively, of ν.

• A binary tree is proper if each node has either zero or two
children. Some textbooks also refer to such trees as being full
binary trees. Hence in a proper binary tree, every internal
node has exactly two children.

• A binary tree that is not proper is improper



Binary Trees

• An important class of binary trees arises in contexts where we
wish to represent a number of different outcomes that can
result from answering a series of yes/no questions



Binary Trees
• Each internal node is associated with a question. Starting at

the root, we then go to the left or right child of the current
node, depending on whether the answer to the question is
”Yes” or ”No”



Binary Trees

• An arithmetic expression is another example of a concept that
can be represented as a binary tree whose leaves are
associated with variables or constants, and whose internal
nodes are associated with one of the operators +,−, ∗ and /.



Binary Trees

• Each node in such a tree has a value associated with it: If a
node is a leaf, then its value is that of its variable or constant.
If a node is internal, then its value is defined by applying its
operation to the values of its children



Binary Trees

• The binary tree below is used to represent the arithmetic
expression ((((3 + 1) ∗ 3)/((9− 5) + 2))− ((3 ∗ (7− 4)) + 6))



A Recursive Binary Tree

• Incidentally, we can also define a binary tree in a recursive
way. In that case, a binary tree is either

• An empty tree

• A nonempty tree having a root node r, which stores an
element, and two binary trees that are respectively the left and
right subtrees of r. We note that one or both of those subtrees
can be empty by this definition



The binary tree ADT

• As an abstract data type, a binary tree is a specialization of a
tree that supports three additional accessors methods:

left(p) Returns the position of the left child of p
(or null if p has no left child)

right(p) Returns the position of the right child of p
(or null if p has no right child)

sibling(p) Returns the position of the sibling of p
(or null if p has no sibling)



Defining the binary tree Interface

• To define the binary tree interface, we extend the Tree
interface as follows

/** An interface for a binary tree,

Each node has at most two children. */

public interface BinaryTree<E> extends Tree<E> {

/** Returns the Position of p’s left child */

Position<E> left(Position<E> p)

throws IllegalArgumentException;

/** Returns Position of p’s right child */

Position<E> right(Position<E> p)

throws IllegalArgumentException;

/** Returns Position of p’s sibling */

Position<E> sibling(Position<E> p)

throws IllegalArgumentException;}



Defining the Abstract Binary Tree class

• To promote reusability, we define our Binary Tree class as an
abstract class

• We further let this class inherit from the AbstractTree class

public abstract class AbstractBinaryTree<E>

extends AbstractTree<E>

implements BinaryTree<E> {

/** Position of p’s sibling (or null). */

public Position<E> sibling(Position<E> p) {

Position<E> parent = parent(p);

if (parent == null) return null; //p must be root

if (p == left(parent)) // p is a left child

return right(parent);

else // p is a right child

return left(parent);

}// to be continued

}



Defining the Abstract Binary Tree class

• The sibbling method is derived from a combination of left,
right and parent.

• We identify the sibling of a position p as the other ”child” of
p’s parent. p does however not have a sibling if it is the root
or if it is the only child of its parent

public abstract class AbstractBinaryTree<E>

extends AbstractTree<E>

implements BinaryTree<E> {

/** Position of p’s sibling (or null). */

public Position<E> sibling(Position<E> p) {

Position<E> parent = parent(p);

if (parent == null) return null; //p must be root

if (p == left(parent)) // p is a left child

return right(parent);

else // p is a right child

return left(parent);}}



Defining the Abstract Binary Tree class

• We can also use the left and right methods to provide an
implementation for the numChildren and the children

public abstract class AbstractBinaryTree<E>

extends AbstractTree<E>

implements BinaryTree<E> {

// Part II

/** Returns the number of children of Position p. */

public int numChildren(Position<E> p) {

int count=0;

if (left(p) != null)

count++;

if (right(p) != null)

count++;

return count;}

// to be continued

}



Defining the Abstract Binary Tree class

• The implementation of the children method relies on
producing a snapshot. That is to say, we create an empty
java.util.ArrayList, which is an iterable container and then
add any children that exist, ordered so that a left child is
reported before a right child.

public abstract class AbstractBinaryTree<E>

extends AbstractTree<E>

implements BinaryTree<E> {

// Part II

public Iterable<Position<E>> children(Position<E> p) {

List<Position<E>> snapshot = new ArrayList<>(2);

if (left(p) != null)

snapshot.add(left(p));

if (right(p) != null)

snapshot.add(right(p));

return snapshot;

}}



Properties of Binary Trees

• Binary trees have several interesting properties deadling with
relationships between their height and their number of nodes.

• We denote the set of all nodes of a tree T at the same depth
d as the level d of T



Properties of Binary Trees

• In a binary tree, level 0 has at most one node (the root), level
1 has at most two nodes (children of the root), and so on.

• Generally speaking, level d has at most 2d nodes



Properties of Binary Trees

• We can see that the maximum number of nodes on the levels
of a binary tree grows exponentially as we go down the tree

• From this simple observation we can derive the following
properties relating the height of a binary tree T with its
number of nodes

Proposition

Let T be a nonempty binary tree, and let n, nE , nI and h denote
the number of nodes, number of external nodes (i.e leafs), number
of internal nodes, and height of T respectively. Then T has the
following properties

• h+ 1 ≤ n ≤ 2h+1 − 1

• 1 ≤ nE ≤ 2h

• h ≤ 2h

• log(n+ 1)− 1 ≤ h ≤ n− 1



Properties of Binary Trees

Proposition

Let T be a nonempty binary tree, and let n, nE , nI and h denote
the number of nodes, number of external nodes (i.e leafs), number
of internal nodes, and height of T respectively. If T is proper, then
T has the following additional properties

• 2h+ 1 ≤ n ≤ 2h+1 − 1

• h+ 1 ≤ nE ≤ 2h

• h ≤ nI ≤ 2h − 1

• log(n+ 1)− 1 ≤ h ≤ (n− 1)/2



Properties of Binary Trees

• In addition to the previous properties, the number of external
nodes and the number of internal nodes can be related
through the following proposition

Proposition

In a nonempty proper binary tree T with nE external nodes and nI
internal nodes, we have nE = NI + 1

• To see this, we can remove nodes from the tree and divide
them into two piles: an internal node pile and an external
node pile until T becomes empty.



Properties of Binary Trees

Proposition

In a nonempty proper binary tree T with nE external nodes and nI
internal nodes, we have nE = NI + 1

• If T has only one node ν, we remove ν and place it on the
external node pile. Thus the external node pile has only one
node and the internal node pile is empty.

• Otherwise we remove from T an (arbitrary) external node w
and its parent v which is an internal node. We place w on the
external node pile and v on the internal node pile. If v has a
parent u, then we reconnect u with the former sibling z of w



Properties of Binary Trees

Proposition

In a nonempty proper binary tree T with nE external nodes and nI
internal nodes, we have nE = NI + 1

• Note that the operation below removes one internal node and
one external node and leaves the tree being a proper binary
tree.

• Repeating this operation, we are eventually left with a final
tree consisting of a single node.


