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• So far, we focused on the definition of abstract classes for
trees.

• Although those classes provide a great deal of support, they
cannot be instantiated

• There are several choices for the internal representation of
trees. We will begin with binary trees



• A natural way to realize a binary tree T is to use a linked
structure with a node that maintains a reference to the
element stored at a position p and to the nodes associated to
the children and parents of p.

• If p is the root of T , then the parent field of p is null.
Likewise, if p does not have a left child (resp. a right child),
the associated field is null



• The tree itself maintains an instance variable storing a
reference to the root node (if any) and a variable, called size,
that represents the overall number of nodes of T



• The Tree and BinaryTree interfaces define a variety of
methods for inspecting an existing tree, yet so far, we do not
have any update method.

• Presuming that a newly created tree is empty, we would like to
have means for changing the structure or content of the tree

• In the case of a linked binary tree, we will consider the
following update methods

addRoot(e) Creates a root for an empty tree, storing e
as the element and returns the position of that root;
an error occurs if the tree is not empty

addLeft(p,e) Creates a left child of position p,
storing element e, and returns the position of the
new node. An error occurs if p already has a left child



addRight(p,e) Creates a right child of position p,
storing element e, and returns the position of the
new node. An error occurs if p already has a
right child

set(p,e) Replaces the element stored at position p with
element e and returns the previously stored element

attach(p,T1,T2) Attach internal structure of trees T1 and T2

as the respective left and right subtrees of
leaf position p and resets T1 and T2 to empty trees
an error occurs if p is not a leaf

remove(p) Removes the node at position p,
replacing it with its child (if any) and returns the
element that had been stored at p
An error occurs if p has two children



• The complete set of methods on the previous two slides can
all be implemented in O(1) worst case time

• The most complex methods are attach and remove due to
the case analyses involving the various parent-child
relationships and boundary conditions

• As we did when implementing the LinkedPositionalList class,
we will use a non public nested Node class to represent each
of the nodes and to serve as a position of the public interface

• A node will maintain references to its parent, its left child and
its right child (any of which might be null)



• The tree maintains a reference to the root node (possibly
null) and a count of the number of nodes in the tree

• As for the list, we will also maintain a validate method that
can be called any time a position is received as a parameter,
to ensure that it corresponds to a valid node

• In the case of the linked tree, we adopt a convention in which
we set a node’s parent pointer to itself when it gets removed
from the tree so that it can later be recognized as an invalid
position



Linked Binary Tree (Nested Node class)

public class LinkedBinaryTree<E>

extends AbstractBinaryTree<E> {

//instance variables + nested Node class

protected static class Node<E> implements Position<E> {

private E element;

private Node<E> parent;

private Node<E> left;

private Node<E> right;

/** Nested Node Class (Part I) */

public Node(E e, Node<E> above,

Node<E> leftChild, Node<E> rightChild) {

element = e;

parent = above;

left = leftChild;

right = rightChild;}

// To be continued

}



Linked Binary Tree (Nested Node class)

public class LinkedBinaryTree<E>

extends AbstractBinaryTree<E> {

//nested Node class (part I)

protected static class Node<E> implements Position<E> {

// Part II: accessor and update methods

public E getElement( ) { return element; }

public Node<E> getParent( ) { return parent; }

public Node<E> getLeft( ) { return left; }

public Node<E> getRight( ) { return right; }

public void setElement(E e) { element = e; }

public void setParent(Node<E> parentNode)

{ parent = parentNode; }

public void setLeft(Node<E> leftChild)

{ left = leftChild; }

public void setRight(Node<E> rightChild)

{ right = rightChild; }}



• The nested node class implements the Position interface

• It also defines a method createNode that can be used to
return a new Node instance

• Such a design uses what is known as factory method pattern,
allowing use to later subclass our tree in order to use a
specialized node pattern (i.e. we will be able to implement
other types of trees with nested node classes that extends the
node class of BinaryTree)



Linked Binary Tree (Part I)

public class LinkedBinaryTree<E>

extends AbstractBinaryTree<E> {

/** Factory function to create a new node storing element e. */

protected Node<E> createNode(E e, Node<E> parent,

Node<E> left, Node<E> right) {

return new Node<E>(e, parent, left, right);}

// LinkedBinaryTree instance variables

protected Node<E> root = null; // root of the tree

private int size = 0; // number of nodes in the tree

// constructor

public LinkedBinaryTree( ) { }



Linked Binary Tree (Part II)

public class LinkedBinaryTree<E>

extends AbstractBinaryTree<E> {

/** Validates the position and returns it as a node. */

protected Node<E> validate(Position<E> p) throws

IllegalArgumentException {

if (!(p instanceof Node))

throw new IllegalArgumentException

("Not valid position type");

Node<E> node = (Node<E>) p; // safe cast

if (node.getParent( ) == node) // defunct node

throw new IllegalArgumentException

("p is no longer in the tree");

return node;}

// accessor methods (not in AbstractBinaryTree)

public int size( ) { /* num of nodes*/

return size;}

public Position<E> root( ) { /* root position*/

return root;}



Linked Binary Tree (Part III)

/** Returns Position of parent */

public Position<E> parent(Position<E> p) throws

IllegalArgumentException {

Node<E> node = validate(p);

return node.getParent( );}

/** Returns Position of left child */

public Position<E> left(Position<E> p) throws

IllegalArgumentException {

Node<E> node = validate(p);

return node.getLeft( );}

/** Returns Position of right child */

public Position<E> right(Position<E> p) throws

IllegalArgumentException {

Node<E> node = validate(p);

return node.getRight( );}



Linked Binary Tree (Part IV)

/** Places e at root of empty tree*/

public Position<E> addRoot(E e) throws

IllegalStateException {

if (!isEmpty( )) throw new

IllegalStateException("Tree is not empty");

root = createNode(e, null, null, null);

size = 1;

return root;}

/** Creates new left child of Position p */

public Position<E> addLeft(Position<E> p, E e)

throws IllegalArgumentException {

Node<E> parent = validate(p);

if (parent.getLeft( ) != null)

throw new IllegalArgumentException

("p already has a left child");

Node<E> child = createNode(e, parent, null, null);

parent.setLeft(child);

size++;

return child;}



Linked Binary Tree (Part V)

/** Creates right child */

public Position<E> addRight(Position<E> p, E e)

throws IllegalArgumentException {

Node<E> parent = validate(p);

if (parent.getRight( ) != null)

throw new IllegalArgumentException

("p already has a right child");

Node<E> child = createNode(e, parent, null, null);

parent.setRight(child);

size++;

return child;}

/** Replaces the element at Position p with e */

public E set(Position<E> p, E e) throws

IllegalArgumentException {

Node<E> node = validate(p);

E temp = node.getElement( );

node.setElement(e);

return temp;}



Linked Binary Tree (Part VI)

/** Attaches T1 and T2 as left and right subtrees of p.*/

public void attach(Position<E> p, LinkedBinaryTree<E> t1,

LinkedBinaryTree<E> t2) throws

IllegalArgumentException {

Node<E> node = validate(p);

if (isInternal(p)) throw new IllegalArgumentException

("p must be a leaf");

size += t1.size( ) + t2.size( );

if (!t1.isEmpty( )) { // attach t1 as left subtree

t1.root.setParent(node);

node.setLeft(t1.root);

t1.root = null;

t1.size = 0;

}

if (!t2.isEmpty( )) { // attach t2 as right subtree

t2.root.setParent(node);

node.setRight(t2.root);

t2.root = null;

t2.size = 0;

}}



Linked Binary Tree (Part VII)
• We conclude the implementation a method that removes a

node and reconnect its parent with its left subtree

public E remove(Position<E> p) throws

IllegalArgumentException { // Part I

Node<E> node = validate(p);

if (numChildren(p) == 2)

throw new IllegalArgumentException("p has two children");

Node<E> child = (node.getLeft( ) != null ?

node.getLeft( ) : node.getRight( ) );

if (child != null)

child.setParent(node.getParent( ));

if (node == root)

root = child; // child becomes root

else {

Node<E> parent = node.getParent( );

if (node == parent.getLeft( ))

parent.setLeft(child);

else

parent.setRight(child);}



Linked Binary Tree

• In remove(), we use conditional branching. I.e. the fact that
Java provide a compressed syntax for the expression

boolean accessAllowed;

double age = 10;

if (age > 18) {accessAllowed = true;} else

{accessAllowed = false;}

as

boolean accessAllowed = (age > 18) ? true : false;

In short, we rely on the syntax

boolean result = condition ? value1 : value2;



Linked Binary Tree

• We conclude the implementation a method that removes a
node and reconnect its parent with its left subtree

public E remove(Position<E> p) throws

IllegalArgumentException {

// Part II

size--;

E temp = node.getElement( );

node.setElement(null); // help garbage collection

node.setLeft(null);

node.setRight(null);

node.setParent(node); // defunct node convention

return temp;}// end of remove method

} // end of LinkedBinaryTree class



Runtime

• Among the methods that we implemented above:

• The size method uses an instance variable storing the number
of nodes of a tree and therefore only takes O(1) time. The
same is true for the isEmpty method

• The accessor methods root, left, right and parent which are
implemented in LinkedBinaryTree take O(1) each. The
sibling, children and numChildren which are defined in
AbstractBinaryTree also rely on a constant number of calls
to those accessor methods and hence run in O(1) as well.

• The isInternal and isExternal methods inherited from the
AbstractTree class rely on a call to numChildren and hence
run in O(1) time. The isRoot method, also implemented in
AbstractTree relies on a comparison to the result of the root
method and hence also runs in O(1)



Runtime

• Among the methods that we implemented above:

• The update method set runs in O(1) time and so run all the
methods addRoot, addLeft, addRight, attach and remove

• We already analyzed the methods depth and height when
discussing the AbstractTree class and we concluded that depth
runs in O(dp + 1) for a position p at depth dp and that height
runs in O(n) for the root



Array based representation

• Just as for Positional Lists, we can alternatively represent our
binary tree by relying on arrays

• For every position p of T , let f(p) be the integer defined as
follows

• If p is the root of T , then f(p) = 0

• If p is the left child of position q, then f(p) = 2 ∗ f(p) + 1

• If p is the right child of position q, then f(p) = 2 ∗ f(p) + 2

• The numbering function f is known as the level numbering of
the positions in a binary tree for it numbers the positions on
each level of the tree in increasing order from left to right

• Note that the numbering is based on the potential positions
within the tree and not the actual shape.



Array based representation



Array based representation

• The level numbering function f suggests a representation of a
binary tree by means of an array based structure A, with the
elements at position p of T stored at index f(p) of the array



Array based representation

• An advantage of the array based representation is that a
position p can be encoded by the single integer f(p) and
consequently, that position based methods such as root,
parent, left and right can be implemented using simple
arithmetic operations on the number f(p)

• Based on the level numbering formula, the left child of a node
p has index 2f(p) + 1, the right child has index 2f(p) + 2 and
the parent has index b(f(p)− 1)/2c

• The space usage of an array based representation depends
greatly on the shape of the tree

• If we let n to denote the number of nodes and let fM denote
the maximum value of f(p) over all nodes p of T . The array
requires size 1 + fM as we label the root starting from
f(r) = 0



Array based representation

• Note that the array may have a number of empty cells. In
fact, in the worst case, one can check that N = 2n− 1 (why?)

• We will also study a special class of binary trees called heaps
for which N = n

• In spite of the worst case memory ussage which is clearly
suboptimal, there are still applications for which the the array
representation of binary trees is efficient (e.g. heaps). For
binary trees though, the exponential worst case space
requirement is prohibitive

• Another drawback of the array representation is that many
array operations for trees cannot be efficiently supported. For
example, removing a node and promoting its child takes O(n)
runtime because it is not just the child that moves locations
within the array but all the descendants of that child



From binary trees to general trees
• For a general tree, there is a priori no limit on the number of

children that a node may have

• A natural way to realize a general tree as a linked structure is
to have each node store a single container of references to its
children. For example, a children field of a node can be an
array or list of references to the children of the node (if any)



From binary trees to general trees

• The performance of the implementation of a general tree
using a linked structure is given below

• We let cp denote the number of children of the node at
position p and dp its depth



Tree Traversal Algorithms

• A traversal of a tree T is a systematic way of accessing or
”visiting” all the positions of T .

• The specific action associated with the ”visit” of a position
depends on the application of this traversal and could involve
anything from incrementing a counter to performing some
complex computation for p



Tree Traversal Algorithms

• In a preorder traversal of a tree T , the root of T is visited first
and then the subtrees are traversed according to the order of
the children

perform the "visit" action for position p

// happens before recursion

for each child node c in children(p) do

preorder(c)

// recursively traverse subtree rooted at c



Tree Traversal Algorithms
• In a postorder traversal of a tree T , the root of T is visited

first and then the subtrees are traversed according to the
order of the children

for each child node c in children(p) do

postorder(c)

// recursively traverse the tree rooted at c

perform the "visit" action for position p

// happens after the recursion



Runtime Analysis

• Both preorder and postorder are efficient ways to access all
the positions of a tree

• The analysis of either of these traversal algorithms is similar
to that of the algorithm height

• At each position p, the non recursive part of the traversal
algorithm requires time O(cp + 1) where cp is the number of
children of p

• The overall running time for the traversal of the tree is O(n)
where n is the total number of positions in the tree



Breadth First Tree Traversal
• Although the preorder and postorder are two common ways of

visiting the postions of a tree, another approach is to traverse
a tree so that we visit all the positions at depth d before we
visit the positions at depth d+ 1. Such an approach is known
as breadth-first traversal

• A breadth first traversal is a common approach used in
software for playing games. A game tree represents the
possible choices of moves that might be made by a player (or
computer) during a game with the root of the tree being the
initial configuration of the game



Breadth First Tree Traversal

• A breadth first traversal of a game tree is often performed
because a computer may be unable to explore a complete
game tree in a limited amount of time

• The computer will then consider all moves, then responses to
those moves, going as deep as computational time allows

Initialize queue Q to contain root()

while Q not empty do

p = Q.dequeue() // p is oldest entry in queue

perform the "visit" action for position $p$

for each child $c$ in children(p) do

Q.enqueue(c)

// add p’s children to the end of the queue

// for later visits



Breadth First Tree Traversal

• Note that the breadth first process is not recursive as we are
not traversing entire subtrees at once

• We use a queue to produce a FIFO semantics for the order in
which we visit the nodes

• The overall running time is O(n) due to the n calls to
enqueue and the n calls to deuque.

Initialize queue Q to contain root()

while Q not empty do

p = Q.dequeue() // p is oldest entry in queue

perform the "visit" action for position $p$

for each child $c$ in children(p) do

Q.enqueue(c)

// add p’s children to the end of the queue

// for later visits



In Order traversal of Binary Tree

• During an in-order traversal (on binary trees), we visit a
position between the traversal of its left and right subtrees

• The in-order traversal of a binary tree T can be informally
viewed as visiting the nodes of T ”from left to right”

• Indeed, for every position p, the inorder traversal visits p after
all the positions in the left subtree of p and before all the
positions in the right subtree of p

if p has a left child lc then

innorder(lc)

perform the "visit" action for position p

if p has a right child rc then

inorder(rc)



In Order traversal of Binary Tree



Binary Search Tree

• An important application of the inorder traversal algorithm
arises when we store an ordered sequence of elements in a
binary tree, defining a structure we call a binary search tree

• Let S be a set whose unique elements have an order relation.
For example, S could be a set of integers. A binary search tree
for S is a proper binary tree T such that, for each internal
position p of T :

• Position p stores an element of S, denoted as e(p)

• Elements stored in the left subtree of p (if any) are less than
e(p)

• Element stored in the right subtree of p (if any) are greater
than e(p)



Binary Search Tree


