
Data Structures

Augustin Cosse.

Spring 2021

March 25, 2021

Lists and Iterator ADTs (continued)

• An iterator is a software design pattern that abstract the
process of scanning through a a sequence of elements, one
element at a time

• The elements might be stored in a container class, streaming
through a network or generated by a series of computations

• For all those purposes, java provides the java.util.Iterator
interface with the following two methods

hasNext() Returns true if there is at least one additional
element in the sequence

next() Returns the next element in thr sequence.

Lists and Iterator ADTs (continued)

• The interface uses Java’s generic framework with the next
method returning a parametrized element type

• As an example, the Scanner class (which we used with
Java.io) formally implements the Iterator<String> interface,
with its next() method returning a String instance.

• If the next() method of an iterator is called when nno further
elements are available, a NoSuchElementException is thrown

• Of course, the hasNext() method can be used to detect that
condition before calling next().

Lists and Iterator ADTs (continued)

• The combination of the two hasNext() and next() methods
makes it possible to implement a loop for processing a
sequence of elements

while(iter.hasNext()){

String value = iter.next();

System.out.println(value);

}

• The java.util.iterator interface contains a third method,
which is optionally supported by some iterators

remove() Remove from the collection the element returned by the
most recent call to next(). Throws IllegalStateException
if next() has not yet been called or if remove() was
already called since the most recent call to next.

Lists and Iterator ADTs (continued)

• A single iterator instance supports only one pass through a
collection

• calls to next can be made until all elements have been
reported, but there is now way to ”reset” the iterator back to
the beginning of the sequence

• A data structure that wishes to allow repeated iterations can
support a method that returns a new iterator each time it is
called

• Following this idea, Java defines another parametrized
interface, named iterable() that includes the following
method

iterator() Returns an iterator of the elements in the collection

Lists and Iterator ADTs (continued)

• An instance of a typical collection class in Java such as the
Java implementation of ArrayList is iterable

• The collection class can be used to produce an iterator as the
return value of the function iterator()

ArrayList<Double> data;

Iterator<Double> walk = data.iterator();

while(walk.hasNext())

if (walk.next()<0.0)

walk.remove();

Lists and Iterator ADTs (continued)

• Java’s iterable class also plays a fundamental role in support
for the ”for each” loop syntax

for (ElementType variable : collection){

loopBody

}

• The syntax above is supported for any instance, collection of
an iterable class (see the example below)

List<String> list = new ArrayList><();

list.add("one");

list.add("two");

list.add("three");

for(String element : list){

System.out.println(element.toString());}

Lists and Iterator ADTs (continued)

• ElementType must be the type of object returned by its
iterator and variable will take on element values within the
loop body

• The two statements below can in fact be considered equivalent

for (ElementType variable : collection){

loopBody}

Iterator<ElementType> iter = collection.iterator();

while(iter.hasNext()){

ElementType variable = iter.next();

// loopBody

}

Lists and Iterator ADTs (continued)

• The function remove cannot be invoked within a for loop
without the explicit instantiation of an iterator. I.e.

ArrayList<Double> data;

Iterator<Double> walk = data.iterator();

while(walk.hasNext())

if(walk.next() < 0.0)

walk.remove();

Lists and Iterator ADTs (continued)

• There are two general styles for implementing iterators

• The snapshot iterator maintains its own private copy of the
sequence of elements which is constructed at the time the
iterator object is created (i.e. it records a snapshot of the
sequence of elements at the time the iterator is created). This
first iterator is thus unaffected by any subsequent changes to
the primary collection that may occur.

• The lazy iterator is an iterator that does not make an upfront
copy but instead performs a piecewise traversal of the primary
structure when the next() method is called to request
another element.

Lists and Iterator ADTs (continued)

• There are two general styles for implementing iterators

• The downside of this style of iterator is that it requires O(n)
times and O(n) auxilliary space, upon construction to copy
and store a collection of n elements

• The advantage of lazy iterator is that it can typically be
implemented so that the iterator requires only O(1) space and
O(1) construction time. A downside of lazy iterators is that its
behavior is affected if the primary structure is modified before
the iteration completes. Many of the iterators in Java’s
libraries implement a ”fail-fast” behavior that immediately
invalidates such an iterator if its underlying collection is
modified unexpectedly.

Lists and Iterator ADTs (continued)

• To have our original ArrayList class implement the Iterable¡E¿
interface, we must add an iterate() method to that class
definition.

• For that purpose, we define the non static nested class
ArrayIterator.

• The advantage of having the iterator as an inner class is that
it can access private fields (such as the array A) that are
members of the containing list

Lists and Iterator ADTs (continued)

• Each iterator maintains a field j that represents the index of
the next element to be returned. it is initialized to 0, and
when j reaches size(), there are no more elements to return

private class ArrayIterator implements Iterator<E> {

private int j = 0; // index of next element

private boolean removable = false;

public boolean hasNext() { return j < size; }

// size is field of outer instance

/*@return next object

NoSuchElementException if no more elems */

public E next() throws NoSuchElementException {

if (j == size) throw new NoSuchElementException

("No next element");

removable = true; // the element can be removed

return data[j++]; }

// post-increment j for future call to next

Lists and Iterator ADTs (continued)

• Each iterator maintains a field j that represents the index of
the next element to be returned. it is initialized to 0, and
when j reaches size(), there are no more elements to return

private class ArrayIterator implements Iterator<E> {

// continued

/* Removes elem returned by most recent call to next.*/

public void remove() throws IllegalStateException {

if (!removable) throw new IllegalStateException

("nothing to remove");

ArrayList.this.remove(j-1); // was last one returned

j--; // next element has shifted one cell left

removable = false;

// do not allow remove again until next is called

}}

Lists and Iterator ADTs (continued)

• Finally the iterator() method returns a new instance of the

public Iterator<E> iterator() {

return new ArrayIterator();

}

iterations with the LinkedPositionalList class

• When considering iterators for the PositionalList class, the
first question to ask is whether we want to define the iterator
on the nodes, or on the positions

• If we decide to allow the user to iterate through the positions
of the list, those positions can be used to access the elements
as well so support for position iterations is more general.

• It is however more standard for a container class to support
iteration of the core elements so that the for-each loop syntax
can be used to write code such as below

for (String guest : waitlist)

iterations with the LinkedPositionalList class

• A solution is to implement both approaches and consider the
standard iterator() method (which should return an iterator
for the elements of the list) and implement a positions()
method (which we will choose to return an instance that is
iterable instead of an iterator)

• The motivation for returning an iterable instance in the case
of the position() method is to be able to use the simple syntax

for (Position<String> p : waitlist.positions())

• For such a syntax to be valid, position() should return an
iterable instance.

Iterations with the LinkedPositionalList class

• To provide support for the iteration on position and nodes of
LinkedPositional() we define three inner classes :

• We first provide a PositionIterator class which provides the
core functionality of the list iterations. While the ArrayList
iterator maintained the index of the next element to be
returned, the PositionIterator class maintains the position of
the next element to be returned

• To support iteration on the positions through the method(),
and return an iterable instance, we define a second
PositionIterable inner class which construct and returns a new
PositionIterator each time the iterator() method is called. The
position() method

• Finally we need a top level iterator() to return an iterator on
positions()

Iterations with the LinkedPositionalList class

//nested PositionIterator class

private class PositionIterator

implements Iterator<Position<E>> {

private Position<E> cursor = first(); // next to report

private Position<E> recent = null; // last reported

public boolean hasNext() { return (cursor != null); }

/** Returns the next position in the iterator. */

public Position<E> next() throws NoSuchElementException {

if (cursor == null) throw new

NoSuchElementException("nothing left");

recent = cursor;

cursor = after(cursor);

return recent;}

/** Removes element returned by call to next. */

public void remove() throws IllegalStateException {

if (recent == null) throw new

IllegalStateException("nothing to remove");

LinkedPositionalList.this.remove(recent);

recent = null; // don’t allow remove until next is called

}}

Iterations with the LinkedPositionalList class

private class PositionIterable implements

Iterable<Position<E>> {

public Iterator<Position<E>> iterator() {

return new PositionIterator(); }

}

/** Returns iterable instance. */

public Iterable<Position<E>> positions() {

return new PositionIterable();

}

Iterations with the LinkedPositionalList class

• Finally the iterator on the list elements themselves can be
obtained by adapting the PositionIterator class

private class ElementIterator implements Iterator<E> {

Iterator<Position<E>> posIterator = new PositionIterator();

public boolean hasNext() { return posIterator.hasNext(); }

public E next() {

return posIterator.next().getElement();

}

public void remove() { posIterator.remove(); }

}

/** Returns an iterator of the elements stored in the list. */

public Iterator<E> iterator() {

return new ElementIterator();

}

The Java collections framework

• Java provides many data structures interfaces and classes
which together form the Java Collections Framework

• This framework which is part of the java.util.package
includes versions of several of the data structures discussed in
this course.

• The root interface of the java collection framework is named
Collection. This is a general interface for any data structure,
such as a list, that represents a collection of elements.

• This interface is a superinterface for other interfaces in the
java Collections Framework that can hold elements, such as
the Deque, List, and Queue discussed in this course.

• The Collection interface includes many methods such as
size(), isEmpty(), Iterator(), ..

The Java collections framework

• The Java collections framework includes concrete classes
implementing interfaces with multiple properties

• Robust classes provide support for concurrency, allowing
multiple processes to share use of a data structure in a thread
safe manner.

The Java collections framework

• If the structure is designated as blocking, a call to retrieve an
element from an empty collection waits until some other
process inserts an element. Similarly, a call to insert into a full
blocking structure must wait until room becomes available.

Liste iterators in Java

• The java.util.LinkedList class does not expose a position
concept to users in its API as we do in our implementation of
the PositioinalList ADT.

• Instead the preferred way to access and update a LinkedList
object in Java, without using indices, is to use a ListIterator
that is returned by the list’s listiterator() method. Such an
iterator provides forward and backward traversal methods as
well as local update methods.

• It views his positions as being before the first element, after
the last element or between two elements

• That is it uses a list cursor

Liste iterators in Java

• The java.util.ListIterator interface includes the following
methods

add(e) Adds the element e at the current position of
the iterator

hasNext() Returns true if there is an element after the current
position of the iterator

hasPrevious() Returns true if there is an element before the
current position

previous return element e before current position
and sets current position to be before e

next() Returns the element e after current positiion
and sets the current position to be after e

nextIndex() Returns the index of the next element
previousIndex() Returns the index of the previous element

Liste iterators in Java

• The java.util.ListIterator interface includes the following
methods

remove() Removes the element returned by the most
recent or previous operation

set(e) Replaces the element returned by the most
recent call to the next or previous operation with e

Comparison between the two PositionalList ADTs

Converting lists into arrays

• Lists are a beautiful concept and they can be applied in a
number of different contexts but there are instances where it
can be useful to treat a list like an array

• The java.util.Collection includes the following methods for
generating an array that has the same element as the given
collection:

toArray() Returns an array of elements of type Object containing
all the elements in this collection

toArray(A) Returns an array of elements of the same element type
as A containing all the elements in this collection.

