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Algorithm Analysis

• The big-Oh notation is widely used to characterize running
times and space bounds in terms of some parameters n which
is defined as a chosen measure of the size of the problem

• Suppose two algorithms solving the same problem are
available. An algorithm A which has a running time O(n) and
an algorithm B which has running time O(n2). Which
algorithm is the better?

• We know that n is O(n2) which implies that algorithm A is
asymptotically better than algorithm B

• Using this idea, we can use the big-Oh notation to order
classes of functions by asymptotic growth rate



Algorithm Analysis

• Our seven functions are ordered by increasing growth rate as
follows

1, log n n, n log n , n2, n3, 2n

• The importance of good algorithm design goes beyond what
can be solved effectively on a given computer

• Even if we achieve a dramatic speedup in harware, we still
cannot overcome the handicap of an asymptotically slow
algorithm



Algorithm Analysis

• A few words of caution about asymptotic notation are in order
at this point.

• First, note that the use of the big-Oh notation can be
somewhat misleading and the hidden constant factor s might
be very large

• As an illustration of this, if we know that an algorithm has
complexity 10100n (hence O(n)) while another one is 10n log n
we might want to favor the second one as 10100 (one googol)
in itself represents an intractable number of computations



Algorithm Analysis

• Second, given the big-Oh notation, one could naturally
wonder what represents a fast (or efficient) algorithm.
Generally speaking, any algorithm running in O(n log n)
should be considered efficient. Even a O(n2) algorithm may
be fast enough in some context.

• An algorithm whose running time is an exponential function
however such as O(2n) should almost never be considered
efficient

• To understand how bad an exponential running time is,
consider the story of the inventor of the game of chess who
asked a king to pay him one grain of rice for the first square,
2 grains for the second, 4 grains for the fourth and so on.

• The total number of grains for the 64th square then reached

263 = 9, 223, 372, 036, 854, 775, 808



Algorithm Analysis

• It seems natural to draw a line in terms of efficiency between
algorithms running in polynomial time O(nc) with c > 1 and
exponential time (i.e. O(bn) with b > 1)

• This should however be taken with a grain of salt as an
algorithm running in O(n100) should not really be considered
as efficient



A few examples

• All of the constant operations have by definition constant
running time :

• Assigning a value to a variable

• Following an object reference

• Performing one arithmetic operation (e.g. adding two
numbers)

• Comparing two numbers, calling a method, returning from a
method

• Accessing a single element of an array by index

• The expression A.length in Java is evaluated in constant
time because arrays are represented internally with an explicit
variable that records the length of the array



A few examples

• For any valid index j the element A[j] can be accessed in
constant time as well

• This is because an array uses a consecutive block of memory.
I.e. The jth element can be found, not by iterating through
the array one element at a time, bu by validating the index
and using it as an offset from the beginning of the array in
determining the appropriate memory address



A few examples

• As a classic example of an algorithm with a running time that
grows proportional to n, we consider the goal of finding the
largest element of an array

• A typical strategy is to loop through the elements of the array
while maintaining as a variable the largest element seen so far

/** Returns the max of an array */

public static double arrayMax(double[ ] data) {

int n = data.length;

double currentMax = data[0];

// assume first entry is biggest (for now)

for (int j=1; j < n; j++)

if (data[j] > currentMax)

currentMax = data[j];

return currentMax;

}



A few examples
• Using the big-Oh notation, we can write the following

statement regarding the running time of the algorithm
arrayMax

Proposition

The algorithm arrayMax, for computing the maximum element of
an array of n numbers runs in O(n) time

/** Returns the max of an array */

public static double arrayMax(double[ ] data) {

int n = data.length;

double currentMax = data[0];

// assume first entry is biggest (for now)

for (int j=1; j < n; j++)

if (data[j] > currentMax)

currentMax = data[j];

return currentMax;

}



A few examples

Proposition

The algorithm arrayMax, for computing the maximum element of
an array of n numbers runs in O(n) time

• To see this, first note that the initialization and the return
statement both only involve a constant number of primitive
operations

• Each iteration of the loop also only requires a constant
number of primitive operations and the loop runs n− 1 times

• The total number of primitive operations is thus
c′(n− 1) + c′′ for appropriate constants c′ and c′′



A few examples

Proposition

The algorithm arrayMax, for computing the maximum element of
an array of n numbers runs in O(n) time

• One could wonder how many operations are need for a given
ordering of the entries.

• In the worst case, the largest value is re-assigned n− 1 times

• But what if the entries are in random order. For a random
ordering, the probability that the jth element is the largest of
the first j elements is 1/j. The expected number of times we
update the variable currentMax is thus given by
1 + 1

2 + 1
3 + . . .+ 1

n which is known as the nth Harmonic
number



A few examples

Proposition

The algorithm arrayMax, for computing the maximum element of
an array of n numbers runs in O(n) time

• One could wonder how many operations are need for a given
ordering of the entries.

• In the worst case, the largest value is re-assigned n− 1 times

• But what if the entries are in random order. For a random
ordering, the probability that the jth element is the largest of
the first j elements is 1/j. The expected number of times we
update the variable currentMax is thus given by
1 + 1

2 + 1
3 + . . .+ 1

n wihch is known as the nth Harmonic
number which can be shown to be O(log n)

• On a randomly ordered array, the expected number of times
the currentMax value is updated is thus O(log n)



A few examples

• As a second example, we consider the repeated use of the
string concatenator to create long strings.

public static String repeat1(char c, int n) {

String answer = "";

for (int j=0; j < n; j++)

answer += c;

return answer;}

• The most important aspect of this example is that strings are
immutable objects in java. That is to say, once created they
cannot be modified



A few examples

• As a consequence of this, the command answer+=c is
shorthand for answer = answer+c does not cause a
character to be added to the string, instead it produces a new
String with the desired sequence of characters, and then it
reassigns the variable answer to refer to that new string.

• In terms of efficiency, the problem with this first approach is
that the creation of a new string now requires time that is
proportional to the length of the resulting string

• The first time through the loop, the result has length 1, the
second time, the result has length 2 and so on until we reach
the final length n. The overall time taken by the algorithm is
thus given by

1 + 2 + . . .+ n = O(n2)



A few examples
• Suppose that we are given 3 sets A, B and C which are

stored in three distinct integers arrays

• We suppose that no individual set contains duplicate values
but that there might be numbers that appear in two or three
of the sets.

• The three-way set disjointness problem is to determine if the
intersection of the three sets is empty, i.e. if there is no
element x such that x ∈ A, x ∈ B and x ∈ C.

public static boolean disjoint1(int[ ] groupA,

int[ ] groupB, int[ ] groupC) {

for (int a : groupA)

for (int b : groupB)

for (int c : groupC)

if ((a == b) && (b == c))

return false; // we found a common value

return true; // if we reach this, sets are disjoint}



A few examples

• It is clear that if each original set has size n, the worst case
complexity of the algorithm is O(n3)

public static boolean disjoint1(int[ ] groupA,

int[ ] groupB, int[ ] groupC) {

for (int a : groupA)

for (int b : groupB)

for (int c : groupC)

if ((a == b) && (b == c))

return false; // we found a common value

return true; // if we reach this, sets are disjoint}



A few examples

• We can improve upon the asymptotic performance with a
simple observation

• Once inside the body of the B loop, if selected elements a
and b do not match each other, it is a waster of time to
iterate through the values of C looking for a matching triple.

• Following this idea, we can come up with an improved solution

public static boolean disjoint2(int[ ] groupA,

int[ ] groupB, int[ ] groupC) {

for (int a : groupA)

for (int b : groupB)

if (a == b) // only check if match

for (int c : groupC)

if (a == c) // and thus b == c as well

return false;

return true; }



A few examples

• In this improved version, the worst case complexity is now
O(n2)

• To see this, note that there are quadratically many pairs (a, b)
to consider. However if A and B are sets of distinct elements
there are at most n pairs with a = b.

• The third loop on C hence executes at most n times.

public static boolean disjoint2(int[ ] groupA,

int[ ] groupB, int[ ] groupC) {

for (int a : groupA)

for (int b : groupB)

if (a == b) // only check if match

for (int c : groupC)

if (a == c) // and thus b == c as well

return false;

return true; }



A few examples
• In short the total number of operations for the A and B loops

is O(n2)

• The test a==b is evaluated n2 times but since that condition
is satisfied only O(n) times, the inner loop on c is executed
only O(n) times and the commands within the body of the C
loop are therefore executed at most O(n2) times.

• All in all we thus have a global complexity of O(n2)

public static boolean disjoint2(int[ ] groupA,

int[ ] groupB, int[ ] groupC) {

for (int a : groupA)

for (int b : groupB)

if (a == b) // only check if match

for (int c : groupC)

if (a == c) // and thus b == c as well

return false;

return true; }



A few examples

• A problem closely related to the three way set disjointness is
the element uniqueness problem

• In the element uniqueness problem we are given an array with
n elements and we wnat to know whether all the elements of
the array are distinct from each other

public static boolean unique1(int[ ] data) {

int n = data.length;

for (int j=0; j < n-1; j++)

for (int k=j+1; k < n; k++)

if (data[j] == data[k])

return false; // found duplicate pair

return true;

}



A few examples

• A simple solution to the problem can be obtained by looping
through all the distinct pairs of indices j < k checking if those
pairs refer to equivalent elements

• The algorithm relies on two nested loops. The first iteration
of the outer loop leads to n− 1 iterations of the inner loop,
the second one leads to n− 2 iterations,..

• The total complexity in this case is thus
(n− 1) + (n− 2) + . . .+ 2 + 1 = O(n2)

public static boolean unique1(int[ ] data) {

int n = data.length;

for (int j=0; j < n-1; j++)

for (int k=j+1; k < n; k++)

if (data[j] == data[k])

return false; // found duplicate pair

return true; }



A few examples

• A better algorithm for the element uniqueness problem is
based on using sorting as a problem solving tool

• By sorting the array elements we are guaranteed that any
duplicate elements will be placed next to each other

• To determine if there are any duplicates, all we need to do
now is do a single pass over the array, looking for consecutive
elements

public static boolean unique2(int[ ] data) {

int n = data.length;

int[ ] temp = Arrays.copyOf(data, n); // make copy

Arrays.sort(temp); // sort the copy

for (int j=0; j < n1; j++)

if (temp[j] == temp[j+1]) // check neighbors

return false; // found duplicate pair

return true; }



A few examples

• The best sorting algorithms (including those used by
Array.sort in Java) garantee a worst complexity in
O(n log n).

• Once the data is sorted, the loop runs in O(n) iterations.

• Altogether, the entire algorithm is thus O(n log n)

public static boolean unique2(int[ ] data) {

int n = data.length;

int[ ] temp = Arrays.copyOf(data, n); // make copy

Arrays.sort(temp); // sort the copy

for (int j=0; j < n1; j++)

if (temp[j] == temp[j+1]) // check neighbors

return false; // found duplicate pair

return true; }



A few examples

• As our next problem, we want to compute prefix averages of a
sequence of numbers

• Given a sequence x consisting of n numbers, we want to
compute a sequence a such that aj is the average of elements
xj for j = 0, . . . , n− 1. That is

aj =

∑j
i=0 xi
j + 1

• Prefix averages have many applications in economics and
statistics. As an example, given the year by year return of a
mutual fund, and investor might want to have access to the
fund’s annual return for the most recent year, the most recent
three years, the most recent five years and so on.



A few examples

• As a first algorithm for computing prefix averages, consider
the algorithm given below

public static double[ ] prefixAverage1(double[ ] x) {

int n = x.length;

double[ ] a = new double[n]; // filled with zeros

for (int j=0; j < n; j++) {

double total = 0; // begin computing x[0] + ... + x[j]

for (int i=0; i <= j; i++)

total += x[i];

a[j] = total / (j+1); // record the average}

return a;}

• The first line in this algorithm (i.e. the initialization) as well
as the return line at the end both execute in O(1)

• Initializing and creating the array can be done in O(n).



A few examples

• There are two nested for loops. The body of the outer for
loop is executed n times and so is the statement a[j] =

total/(j+1) as well as the management of the j variable in
the statement of the loop

• Finally the body of the inner loop gets executed j + 1 times
depending on the outer loop j. In total the statement
total+=x[i] gets executed 1 + 2 + 3 + . . .+ n = n(n+1)

2

public static double[ ] prefixAverage1(double[ ] x) {

int n = x.length;

double[ ] a = new double[n]; // filled with zeros

for (int j=0; j < n; j++) {

double total = 0; // begin computing x[0] + ... + x[j]

for (int i=0; i <= j; i++)

total += x[i];

a[j] = total / (j+1); // record the average}

return a;}



A few examples

• Altogether, our analysis shows a running time of O(n2) for
this first algorithm

public static double[ ] prefixAverage1(double[ ] x) {

int n = x.length;

double[ ] a = new double[n]; // filled with zeros

for (int j=0; j < n; j++) {

double total = 0; // begin computing x[0] + ... + x[j]

for (int i=0; i <= j; i++)

total += x[i];

a[j] = total / (j+1); // record the average}

return a;}



A few examples

• Let us now consider the following alternative

• An intermediate value in the computation of the prefix
average is the prefix sum x0 + x1 + . . .+ xj

• In the previous algorithm, the prefix average was computed
anew for each new value of j. In this second algorithm, you
see that we maintain a version of the prefix sum dynamically

public static double[ ] prefixAverage2(double[ ] x) {

int n = x.length;

double[ ] a = new double[n];

double total = 0;

for (int j=0; j < n; j++) {

total += x[j]; // update prefix sum to include x[j]

a[j] = total / (j+1); }

return a;}



A few examples

• Initializing the variables n and total both takes O(1)
operations

• Initialization of the array a takes O(n) operations

• There is now a single for loop controled by j whose body runs
O(n) times. Since both of the total+=x[j] and a[j] =

total/(j+1) take O(1) time, total contribution of the loop
is O(n)

public static double[ ] prefixAverage2(double[ ] x) {

int n = x.length;

double[ ] a = new double[n];

double total = 0; //

for (int j=0; j < n; j++) {

total += x[j]; // update prefix sum to include x[j]

a[j] = total / (j+1); }

return a;}



A few examples

• Total running time of the prefixAverage2 algorithm is thus
O(n)

public static double[ ] prefixAverage2(double[ ] x) {

int n = x.length;

double[ ] a = new double[n];

double total = 0; //

for (int j=0; j < n; j++) {

total += x[j]; // update prefix sum to include x[j]

a[j] = total / (j+1); }

return a;}



Exponential time: The tower of Hanoi problem

• The Tower of Hanoi problem is a classic problem that can be
solved easily using recursion but is difficult to solve otherwise

• The problem involves moving a specified number of disks of
distinct sizes from one tower to another while observing the
following rules:

• There are n disks labeled 1, 2, 3, . . . , n and three towers
labeled A, B and C

• No disk can be on top of smaller disk at any time

• All the disks are initially placed on tower A

• Only one disk can be moved at a time and it must be the
smaller disk on a tower

• The objective of the problem is to move al the disks from A
to B with the assistance of C.



The tower of Hanoi problem

• In the case of three disks, the solution can easily be found
manually

• In the case of 4 disks however, the problem is already much
more involved. Fortunately the problem has an inherent
recursive nature





The tower of Hanoi problem

• The base case is n = 1. In this case, one can simply move the
disk from A to B.

• When n > 1, one can split the original problem into the
following three subproblems which can then be solved
sequentially



The tower of Hanoi problem
1. Move the first n− 1 disks from A to C recursively with the

assistance of tower B

2. Move disk n from A to B

3. Move n− 1 disks from C to B recursively with the assistance
of tower A



The tower of Hanoi problem

• If we introduce the method below which moves n disks from
the fromTower to the toTower,

void moveDisk(int n, char fromTower, char toTower, char auxTower)

• We can then introduce the pseudo code for this method as
follows

if(n==1) // Stopping condition

move disk 1 from fromTower to toTower

else {

moveDisks(n-1, fromTower, auxTower, toTower);

Move disk n from the fromTower to the toTower;

moveDisks(n-1, auxTower, toTower, fromTower);

}



The tower of Hanoi problem

• For 4 pieces, how many moves (iterations) do you count?



The tower of Hanoi problem

• The complexity of the Tower of Hanoi algorithm is measured
by the number of moves

• Let T (n) denote the number of moves for the algorithm to
move n disks from tower B with T (1) = 1.

• From this, it is easy to see that

T (n) = T (n− 1) + 1 + T (n− 1)

= 2T (n− 1) + 1

= 2(2T (n− 2) + 1) + 1

= 2(2(2T (n− 3) + 1) + 1) + 1

= . . .

= 2n−1 + 2n−2 + . . .+ 1 = O(2n)



The tower of Hanoi problem

• The algorithm for the tower of Hanoi problemhas thus
exponential time complexity

• Suppose that a disk is moved at a rate of 1 per second, it
would then take 232/(365 ∗ 24 ∗ 60 ∗ 60) = 135 years to move
32 disks and 264/(365 ∗ 24 ∗ 60 ∗ 60) = 585 billion years to
move 64 disks.



Simple proof techniques

• Sometimes we will want to make claims regarding a particular
algorithm (i.e. prove that it runs fast or that it is correct)

• In order to backup our claims, we will need to prove our
statements. There are several approaches to do this:

• Through the use of (counter-)example.

• Through the use of contrapositives or contradictions

• Through the use of inductions or loop invariants



By example

• Some claims are of the generic form ’There is an element x in
a Set S that has property P ’

• To justify such a claim we only need to produce a particular x
in S that has the property.

• Likewise, some hard to believe claims are of the generic form
’Every element in a Set S has property P’

• To justify that such a claim is false, we only need to produce
a single x from S that does not have property P . Such an
instance is called a counterexample

• As an example, consider the claim: ’Every number of the form
2i − 1 is a prime, when i is an integer greater than 1’. Taking
24 − 1 = 15 = 3.5 proves the claim wrong.



Contrapositive and Contradiction

• To justify the statement ’if p is true than q is true’, we can
establish the statement ’if q is false then p is false’

• Logically those two statements are the same bu the second
one which is called the contrapositive may sometimes be
easier to think about.

• Consider the following statement: ’Let a and b be integers. If
ab is even, then a is even or b is even’.

• To prove this statement we can consider the contrapositive
and consider the statement ’If a is odd and b is odd then ab is
odd’. To prove this we write a = 2k + 1, b = 2`+ 1 and
develop ab = 4`k + 2`+ 2k + 1 which is odd.

• We have relied on de Morgan’s law to define the negation of a
conditional or: not(A or B) ]≡ (not A) and (not B)



Contrapositive and Contradiction

• Another negative justification is the justification by
contradiction which also involves de Morgan Law.

• In order to apply the justification by contradiction we establish
that a statement q is true by assuming that q is false and
showing that this assumption leads to a contradiction

• As an example of this, consider the following statement: ’Let
a and b be integers, if ab is odd then a is odd or b is odd’

• When ab is odd, we want to show that a is odd or b is odd.
With the hope of leading to a contradiction, we might assume
the opposite, namely if ab is odd a is even and b is even. Let
us take a even, we then have a = 2k, from which ab = 2kb
which is even and leads to a contradiction with respect to our
original assumption on ab. Hence a must be odd.



Induction and loop invariant

• Most of the claims we make about a running time or a space
bound involve a integer parameter n. Moreover, most of these
claims are equivalent to saying that some statement q(n) is
true for all n ≥ 1

• Since this is making a claim about an infinite set of numbers,
we cannot justify this exhaustively in a direct fashion

• Those claims can however be justified using the notion of
induction

• If we want to show that a statement q(n) is true for all values
of n, induction start by showing that q(n) is true for a
particular value of n, let us say n = 1, then it justifies that
the inductive step is true for all n > 1 namely that if q(j) is
true for all j < n then q(n) is true.



Induction and loop invariant

• An example of this, consider the Fibonacci function F (n)
which is defined such that F (1) = 1, F (2) = 2 and
F (n) = F (n− 2) + F (n− 1) for n > 2. We claim that
F (n) < 2n

• We can show that claim by induction. We first show the base
case F (1) = 1 < 2 = 21 and F (2) = 2 < 4 = 22

• We then show the induction step. Suppose that the claim is
true for all j < n, we then have

F (n) = F (n− 2) + F (n− 1) < 2n−2 + 2n−1

Now use

2n−2 + 2n−1 < 2n−1 + 2n−1 = 22n−1 = 2n



Induction and loop invariant
• Consider the statement

n∑
i=1

i =
(n+ 1)n

2

• Again we can easily prove this statement by induction

• We start with the base case, n = 1 for which we have
1 = 1 · 2/2 = 1

• We then prove the induction step. Assuming the statement
holds for every j < n, we have

n−1∑
i=1

i =
(n− 1)(n− 1 + 1)

2
=

(n− 1)n

2

From which we get

n∑
i=1

i = n+

n−1∑
i=1

i = n+
(n− 1)n

2
=

2n+ n2 − n

2
=

n(n+ 1)

2



Induction and loop invariant

• A last technique that is often useful is the notion of loop
invariant. To prove that a statement L about a loop is
correct, we can define L in terms of a series of smaller
statements L0, L1, . . . Lk where

1. The initial claim L0 is true before the loop begins

2. If Lj−1 is true before iteration j then Lj will be true after
iteration j

3. The final statement Lk implies the desired statement to be
true



Induction and loop invariant

• To illustrat the idea of loop invariant, we consider the
algorithm arrayFind below which finds the smallest index at
which element val occurs in array A. The algorithm also
returns −1 if there is no such element

public static int arrayFind(int[ ] data, int val) {

int n = data.length;

int j = 0;

while (j < n) {

if (data[j] == val){return j; }

j++;

return -1; }

• To show that the algorithm is correct, we inductively define a
list of statements Lj that lead to the conclusion of the
algorithm. Let Lj define the fact that val is not equal to any
of the first j elements of data.



Induction and loop invariant

public static int arrayFind(int[ ] data, int val) {

int n = data.length;

int j = 0;

while (j < n) {

if (data[j] == val){return j; }

j++;

return -1; }

• The claim is true at the beginning of the algorithm since
j = 0 and no element can be equal to val

• In iteration j we compare element val to element data[j]. if
those elements are the same we return the index j which is
correct since no other element of data was equal to val. If
data[j] and val are not equal we have found one more
element not equal to val and we increment j



Induction and loop invariant

public static int arrayFind(int[ ] data, int val) {

int n = data.length;

int j = 0;

while (j < n) {

if (data[j] == val){return j; }

j++;

return -1; }

• The claim Lj will then be true for this value of j and Lj−1
being true thus implies Lj being true

• If the while loop terminates without returning an index in
data, we have j = n and Ln is true, there is no element in
data equal to val and the algorithm returns −1 which
verifies the statement.



Induction and loop invariant

• One way to describe repetition within a computer program is
through the notion of loops. Another completely different way
is through the notion of recursion

• Recursion is a technique through which a method makes one
or more calls to itself during execution or by which a data
structure relies upon smaller instances of the very same type
of data structure in its representation

• There are many examples of recursion in art and nature. One
such example are Russian Matryoshka dolls.

• In computing, recursion provides an elegant and powerful
alternative to perform repetitive tasks



Induction and loop invariant

• Most modern programming languages support functional
recursion using the same mechanism that is used to support
traditional forms of method calls.

• When one invocation of the method makes a recursive call,
the invocation is suspended until the recursive call completes

• We consider four illustrative examples: The factorial function,
the English ruler, the binary search and the file system



The factorial function

• The factorial of a positive integer n denoted n! is defined as
the product of the integer from 1 to n

• If 0! is set to 1 by convention, for any integer n, we write

n! =

{
1 if n = 0
n · (n− 1) · . . . 3 · 2 · 1, otherwise

• The factorial is important because it is known to equal the
number of ways in which n distinct numbers can be aranged
into a sequence, that is the number of permutations of n
items. For example, the three characters a, b and c can be
arranged in 3! = 6 ways abc, acb, bac, bca cab and cba.

• There is a natural recursion for the factorial function as we
can write

n! =

{
1 if n = 0
n · (n− 1) if n ≥ 1



The factorial function

• As you can see with the implementation below, recursion does
not require any explicit loop but is instead achieved

• The process is finite because each time the method is invoked,
its argument is reduced by 1

public static int factorial(int n)

throws IllegalArgumentException {

if (n < 0)

throw new IllegalArgumentException( );

else if (n == 0)

return 1; // base case

else

return n factorial(n-1); // recursion}



The factorial function

• We can illustrate the recursion process using a recursion
Trace.

• Each entry of the trace corresponds to a recursive call to the
function.

• Each new recursive method call is indicated by a downward
arrow to the new invocation.



The factorial function



The factorial function
• When the method returns, an arrow showing this return is

drawn and the return value is indicated alongside the arrow

• A recursive trace closely mirrors a programminng language’s
execution of the recursion . In Java, each time a function is
called, an activation record or activation frame is created to
store information about the progress of that method



The factorial function
• When the execution of a method leads to a nested method

call, the execution of the former call is suspended and its
frame stores the place in the source code where the flow of
control should return unpon completion of the nested call

• This process is used both for simple function calls as for
nested calls. The key idea is that Java maintains a separate
frame for each active call



Binary search

• As an additional application of recursion, we consider the
classic binary search algorithm.

• Binary search is used to locate a target value within a sorted
sequence of n elements stored in an array

• Binary search is among the most important computer
algorithms



Binary search

• When the array is unsorted, the standard approach to search
for a target value is to use a loop to examine every element,
until either finding the target or exhausting the dataset

• This algorithm is known as linear search or sequential search
and it runs in O(n)

• When the sequence is sorted and indexable, we can design a
more efficient algorithm

• If we consider an rbitrary element in the sequence with value
v, we can be sure that all elements prior to this particular
element have value less than v and that all elements that
come after have value greater than v



Binary search

• We call an element of the sequence a candidate if at a
particular moment of the search we cannot rule out that this
item matches the target

• The binary search algorithm maintains two parameters low

and high such that all elements have index at least low and
at most high.

• We then compare our target value to the median candidate

mid = b(low + high)/2c

and we consider three cases

1. If the target equals the median, then we have found the
element we are looking for

2. If the target is less than the median, we recur on the first half
of the sequence (low, mid-1)

3. If the target is larger than the median then we recur on the
second half of the sequence (mid+1, high)



Binary search

• All in all, this leads to the following algorithm known as binary
search

public static boolean

binarySearch(int[ ] data, int target, int low, int high) {

if (low > high)

return false; // interval empty; no match

else {

int mid = (low + high) / 2;

if (target == data[mid])

return true; // found a match

else if (target < data[mid])

return binarySearch(data, target, low, mid 1);

else

return binarySearch(data, target, mid + 1, high);

}}



Binary search

Example of binary search for a target equal to 22


