
Data Structures

Augustin Cosse.

Spring 2021

February 24, 2021

Equivalence testing

• When working with reference types, there are many different
notions of what it means for one type to be equal to another

• At the lowest level, if a and b are reference variables, a == b
tests whether a and b refer to the same object

• For many types, there is however a higher level notion of two
variables being considered equivalent, even if they do not refer
to the same instance of the class

• For example, we typically want two strings to be considered
equivalent to each other if they represent identical sequences
of characters

Equivalence testing

• To support such a broader notion of equivalence, all object
types support a method named equals

• Users of reference types should rely on the syntax a.equals(b)
unless they have a more specific need to test the more narrow
notion of identity

• The equals method is defined in the Object class (which is a
superclass for all object instances) but that implementation
reverts to return the value of the expression a == b

• Defining a more precise notion of equivalence requires
knowledge about a class and its representation

Equivalence testing

• The author of each class has a responsability to provide an
implementation of the equals method which overrides the one
inherited from Object if there is a more relevant definition of
the equivalence of two instances.

• For example, The Java String class redefines equals to test
character-for-character equivalence

• Great care must be taken when overriding the notion of
equality as the consistency of Java’s library depends upon the
equals method defining what is known as an equivalence
relation

Equivalence testing

• An equivalence relation should satisfy the following properties:

• Treatment of Null: For any nonull reference variable x, the call
x.equals(null) should return false (that is nothing equals null)
except null

• Reflexivity For any nonnull reference variable x, the call
x.equals(x) should return true (that is an object should equal
itself)

• Symmetry: For any nonnull reference variables x and y, the
calls x.equals(y) and y.equals(x) should return the same value.

• Transitivity: For any nonull reference variables x, y and z, if
both calls x.equals(y) and y.equals(z) return true, then
x.equals(z) must return true as well.

Equivalence testing

• While these properties might seem intuitive, it might be
challenging to make sure they are implemented for some data
structures, especially in an object oriented framework.

• Arrays are considered a reference type in Java (although not a
class). However, the java.util.Arrays class can be used to
provide additional methods when working with arrays

Equivalence testing

• In particular, the following methods are supported:

• a==b Tests if a and b refer to the same underlying array
instance

• a.equals(b): identical to a==b. Arrays are not a true class
type and do not override the Object.equals method

• Arrays.equals(a, b): Returns true if the arrays have the same
length and and all pairs of corresponding elements are
”equals” to each other. If the array elements are primitive,
then this uses the traditional == to compare values. if
elements of the arrays are reference types it makes pairwise
comparisons a[k].equals(b[k]).

Equivalence testing
• An additional difficulty with arrays arises due to the fact that

they compound objects (i.e. one two dimensional arrays in
Java really are one dimensional arrays nested inside a common
one dimensional array)

• If we have two different two dimensional arrays in Java that
have the same entries, we probably want to think of them as
being equal. However since the row of a and the row of b are
stored in different memory locations, a call to the method
java.util.Arrays.equals(a, b) will return false in this case
because it tests a[k].equals(b[k]) which uses the object
definition

• To support a more natural definition of equivalence, the Arrays
class provides the additional method Arrays.deepEquals(a, b)
which is identical to Arrays.equals(a, b) except when the
elements of a and b are themselves arrays in which case it calls
Arrays.deepEquals(a[k], b[k]) rather than a[k].equals(b[k])

Equivalence testing
• Another important class for which equivalence is of prime

importance are linked lists

• One approach is to consider two lists as equivalent if they
have the same length and contents that are element by
element equivalent.

public boolean equals(Object o) {

if (o == null) return false;

if (getClass() != o.getClass()) return false;

SinglyLinkedList other = (SinglyLinkedList) o;

// use nonparameterized type

if (size != other.size) return false;

Node walkA = head; // traverse the primary list

Node walkB = other.head; // traverse the secondary list

while (walkA != null) {

if (!walkA.getElement().equals(walkB.getElement()))

return false; //mismatch

walkA = walkA.getNext();

walkB = walkB.getNext();}

return true; // if we reach this, everything matched successfully}

Equivalence testing

• An implementation of this idea is given below

• You can see that although we focus on the comparing
between two Singly Linked Lists, we make it possible for the
method to take an arbitrary Object as an argument

public boolean equals(Object o) {

if (o == null) return false;

if (getClass() != o.getClass()) return false;

SinglyLinkedList other = (SinglyLinkedList) o;

// use nonparameterized type

if (size != other.size) return false;

Node walkA = head; // traverse the primary list

Node walkB = other.head; // traverse the secondary list

while (walkA != null) {

if (!walkA.getElement().equals(walkB.getElement()))

return false; //mismatch

walkA = walkA.getNext();

walkB = walkB.getNext();}

return true; // if we reach this, everything matched successfully}

Equivalence testing

• However, if the Object class is not of type SinglyLinked
(this.getClass), the objects are considered different

• At line 4 we know that the argument is a singly Linked List
and we can thus safely cast our Object into a List

public boolean equals(Object o) {

if (o == null) return false;

if (getClass() != o.getClass()) return false;

SinglyLinkedList other = (SinglyLinkedList) o;

// use nonparameterized type

if (size != other.size) return false;

Node walkA = head; // traverse the primary list

Node walkB = other.head; // traverse the secondary list

while (walkA != null) {

if (!walkA.getElement().equals(walkB.getElement()))

return false; //mismatch

walkA = walkA.getNext();

walkB = walkB.getNext();}

return true; // if we reach this, everything matched successfully}

Equivalence testing
• Note that there is a catch to using generics here. If we use

generic types <E>, we cannot determine at runtime whether
the two lists have matching types.

• So instead, we turn to a more classic approach, relying on the
getElement and equals methods.

public boolean equals(Object o) {

if (o == null) return false;

if (getClass() != o.getClass()) return false;

SinglyLinkedList other = (SinglyLinkedList) o;

// use nonparameterized type

if (size != other.size) return false;

Node walkA = head; // traverse the primary list

Node walkB = other.head; // traverse the secondary list

while (walkA != null) {

if (!walkA.getElement().equals(walkB.getElement()))

return false; //mismatch

walkA = walkA.getNext();

walkB = walkB.getNext();}

return true; // if we reach this, everything matched successfully}

Cloning data structures

• When cloning data structures, a common expectation is that
a copy of an object has its own state and that once made, the
copy is independent of the original (i.e changes made to one
do not directly affect the other)

• However, when an object has fields that are reference variables
pointing to auxiliary objects, it is not always obvious whether a
copy should have a corresponding field that refers to the same
auxiliary object, or to a new copy of that auxiliary object.

• For example, if a hypothetical AddressBook generates
instances that represent electronic address books, with
contact information (such as phone numbers and email
addresses) for friends and acquaintances, How should we
envison a copy of this address book?

Cloning data structures

• Should an entry added into one book appear in its copy ? If
we change a person’s phone number in one book, would we
expect that change to be synchronized in the other?

• There is no one-size-fits all answer to questions like this.
Instead, each class in Java is responsible for defining whether
its instances can be copied, and if so, how the copy is
constructed.

• The universal Object superclass defines a method named
clone which can be used to produce what is known as a
shallow copy of an object

• Such a copy uses the standard assignment semantics to assign
the value of each field of the new object equal to the
corresponding field of the existing object that is being copied

Cloning data structures

• A shallow copy is not always appropriate for all classes and
therefore Java intentionally disables use of the clone()

method by declaring it as protected and by having it throw a
CloneNotSupportedException when called.

• The author of a class must explicitely declare support for
cloning by formally declaring that the class implements the
Cloneable interface and by declaring a public version of the
clone() method.

Cloning data structures

• The public method can simply call the protected one to do
the field by field assignment that results in a shallow copy if
appropriate.

• However for many classes, the class may choose to implement
a deeper version of cloning in which some of the referenced
objects are themselves cloned

• In either case however, to define a custom class that
implements the Cloneable interface, the class must override
the clone() method in the Object class.

Cloning data structures

• Consider the following example

public class House implements Cloneable, Comparable<House>{

private int id;

private double area;

private java.util.Date WhenBuilt;

// ...

/** Override the protected clone method defined

in the Object class, and strengthen its accessibility*/

public Object clone() {

try{

return super.clone();

}

catch (CloneNotSupportedException ex){

return null;

}}}

Cloning data structures

• Although arrays support some special syntaxes such as a[k],
and a.length, it is important to remember that they are
objects and that array variables are reference variables. This
has important consequences

• To illustrate one of them, consider the code below

int[] data = {2,3,5,7,11,13,17,19}

int[] backup;

backup = data;

• In this example, the assignment of variable backup to data

does not create any new array. It simply creates a new alias
for the same array

Cloning data structures

Cloning data structures

• Instead, if we want to make a copy of the array and assign a
reference to the new array to a variable, we should write

backup = data.clone();

• The clone() method when executed on an array initializes
each cell of the new array to the value that is stored in the
corresponding cell of the original array.

• If we subsequently make an assignment such as data[4] =

23 in this configuration, the backup array is unaffected.

Cloning data structures

Cloning data structures

• There are more considerations when copying an array that
stores reference types rather than primitive types

• In this case, the clone() method produces a Shallow copy of
the array, leading to a new array whose cells refer to the same
objects referenced by the first array

Cloning data structures

Cloning data structures

• A deep copy of the contact list can be created by iteratively
cloning the individual elements

• This is however possible only if the Person class is declared as
clonable

Person[] guests = new Person[contacts.length];

for (int k = 0; k< contacts.length; k++){

guests[k] = (Person) contacts[k].clone();

// returns Object type

}

Cloning data structures

• Because a two-dimensional array is really a one-dimensional
array storing other one dimensional arrays, the same
distinction between shallow and deep copy exists

• Unfortunately the java.util.Arrays class does not provide any
”deepClone” method. However, you can always implement
your own method by cloning the individual rows of an array

public static int[][] deepClone(int[][]original){

int[] [] backup = new int[original.length][];

for(int k=0; k< original.length; k++){

backup[k] = original[k].clone();

return backup;

}}

Cloning data structures

• Just as we did it for arrays, it is possible to implement a
Clone method for lists

• As we saw before, the first step to make a class cloneable in
Java is to have it implement the Cloneable interface. We
therefore need the first line

public class SinglyLinkedList<E> implements Cloneable{}

• As a second step we then need to implement a public version
of the clone() method of the class. By convention, the
method should begin by creating a new instance using a call to
super.clone() which invokes the method from the Object class

• Since the inherited version returns an Object, we perform a
narrowing cast to the SingledLinkedLIst<E> type.

Cloning data structures

• Through the use of the super.clone() reference, our list can
be created as a shallow copy of the original.

• Since the original list has two fields, size and head, the
assignments other.size = this.size and other.head =
this.head have been made

public SinglyLinkedList<E> clone()

throws CloneNotSupportedException{

// always use inherited Object.clone() to create initial copy

SinglyLinkedList<E> other = (SinglyLinkedList<E>) super.clone();

if (size > 0){

other.head = new Node<>(head.getElement(), null);

Node<E> walk = head.getNext();

Node<E> otherTail = other.head;

while (walk != null){

Note<E> newest = new Node<> (walk.getElement(), null);

otherTail.setNext(newest);

otherTail = newest;

walk = walk.getNext();

}}}

Cloning data structures
• While the assignment of the size variable is correct, we cannot

allow the new list to share the same head value (otherwise it
remains a shallow copy)

• For a nonemtpy list to have an independent state, it must
have an entirely new chain of nodes, each storing a reference
to the corresponding element from the original list.

public SinglyLinkedList<E> clone()

throws CloneNotSupportedException{

// always use inherited Object.clone() to create initial copy

SinglyLinkedList<E> other = (SinglyLinkedList<E>) super.clone();

if (size > 0){

other.head = new Node<>(head.getElement(), null);

Node<E> walk = head.getNext();

Node<E> otherTail = other.head;

while (walk != null){

Note<E> newest = new Node<> (walk.getElement(), null);

otherTail.setNext(newest);

otherTail = newest;

walk = walk.getNext();}}}

Cloning data structures

• We can therefore create a new head node (line 5) and then
perform a walk through the remainder of the original list while
creating and linking new nodes for the new list

// ...

Node<E> walk = head.getNext();

Node<E> otherTail = other.head;

while (walk != null){

// make new node storing the same element

Note<E> newest = new Node<> (walk.getElement(), null);

// link previous node to this one

otherTail.setNext(newest);

otherTail = newest;

walk = walk.getNext();}}}

Part III: Algorithm Analysis

Algorithm Analysis

• In this fourth part, we are interested in the design of ”good”
data structures and algorithms

• SImply put, a data structure is a systematic way of organizing
and accessing data and an algorithm is a step-by-step
procedure for performing some task in a finite amount of time

• These concepts are central to good computing

• To be able to classify data structures and algorihtms as good,
we must have precise ways of analyzing them

Algorithm Analysis

• The primary analysis tool we will use in this book involves
characterizing the running time of algorithms and data
structures operations, with space usage also being of interest

• Running time is a natural measure of ”goodness” as time is a
precious resource. Computer solutions should run as fast as
possible.

• In general the running time of an algorithm or data structure
operations, increases with the input size, although it may also
vary for different inputs of the same size

• The running time is also affected by the harware environment
(processor, clock rate, memory, disk,..) and the software
environment (operating system, programming language,..)

Algorithm Analysis

• Obviously, all other factors being equal, the running time of
the same algorithm on the same input data will be smaller if
the computer has for example a much faster processor or if
the implementation is done in a program compiled into native
machine code instead of an interpreted implementation run on
a virtual machine.

• Focusing on the running time as a primary measure of
”goodness” requires that we be able to use a few
mathematical tools

• We will be interested in characterizing an algorithm’s running
time as a function of the input size.

Algorithm Analysis

• One way to study the efficiency of an algorithm is to
implement it and experiment by running the program on
various test inputs while recording the spent on each
execution.

• A simple mechanism for collecting such running times in Java
is baed on use of the currentTimeMillis method of the
System class.

• That method reports the number of milliseconds that have
passed since a benchmark time known as the epoch

• By recording the time immediately before executing the
algorithm and then immediately after, we can measure the
elapsed time of an algorithm execution by computing the
difference of those times.

Algorithm Analysis

• A typical way to automate this process is given below

long startTime = System.currentTimeMillis();

/*runs the algorithm*/

long endTime = System.currentTimeMillis();

long elapsed = endTime - startTime;

• For extremely quick operations, Java provides a method
nanoTime that measures in nanoseconds rather than in
milliseconds.

• Because we are interested in the general dependence of the
running time on the size and structure of the input, we should
perform independent experiments on many different inputs of
various sizes

Algorithm Analysis

• We can then visualize the results by plotting the performance
of each run of the algorithm as a point with x-coordinate
equal to the input size n and y-coordinate equal to the
running time t

• To be meaningful, such an analysis would require that we
choose good sample inputs and test enough of them to be
able to make sound statistical claims about the algorithm’s
running time

Algorithm Analysis

• The measured times reported by currentTimeMillis and
nanoTime will vary greatly from machine to machine though
and may even vary from trial to trail on the same machine

• I.e many processes share use of the computer’s central
processing unit (CPU) and memory system hence the elapsed
time will depend on what other processes are running on the
computer when a test is performed

• While a precise running time might not be dependable,
experiments are quite useful when comparing the efficiency of
two or more algorithms, so long as they are gathered under
similar circumstances

Algorithm Analysis

• As an illustration of experimental analysis, consider the
following two algorithms for constructing long strings

public static String repeat1(char c, int n){

String answer = "";

for(int j=0; j<n; j++){

answer + = c;

return answer;

}}

public static String repeat2(char c, int n){

StringBuilder sb = new StringBuilder();

for(int j=0; j<n; j++){

sb.append(c);

return sb.toString();

}}

Algorithm Analysis

• As an experiment, we can use
System.currentTimeMillis() to measure the efficiency of
both repeat1 and repeat2 for very large strings. The results
of the experiments are gathered in the Table below

Algorithm Analysis

• The most impressive part of the experiments is how faster the
repeart2 algorithm is relative to the repeat1 algorithm.

• While repeat1 is already taking more than 3 days to
compose a string of 12.8 million characters, repeat2 is able
to do the same in a fraction of second.

Algorithm Analysis

• While experimental studies of running times are valuable,
especially when fine tuning production quality code, there are
three major limitations to their use for algorithm analysis:

• As we saw earlier, experimental running times of two
algorithms are difficult to directly compare unless the
experiments are performed in the same harware and software
environments

• Experiments can be done only on a limited set of test inputs;
hence they leave out the running times of inputs not included
in the experiment (and these inputs might be important)

• An algorithm must be fully implemented in order to execute it
to study its running time experimentally

Algorithm Analysis

• The last requirement is the most serious drawback to the use
of those experimental studies

• At an early stage of the design, when considering a particular
choice of data structures or algorithms, it would be foolish to
spend a significant amount of time implementing an approach
that could easily be deepmed inferior by a higher level analysis

Algorithm Analysis

• Our goal will be to develop an approach to analyzing the
efficiency of algorithms that:

• Allows us to evaluate the relative efficiency for any two
algorithms in a way that is independent of the hardware and
software environments

• Is performed by studying a high level description of the
algorithm without need for any implementation

• Takes into account all possible inputs

Algorithm Analysis

• To analyze the running time of an algorithm without
performing experiments, we perform an analysis directly on a
high level description of the algorithm (code fragment or
pseudo-code)

• We define a set of primitive operations including

• Assigning a value to a variable

• Performing an arithmetic operation

• Following an object reference

• Calling a method

• ...

Algorithm Analysis

• Formally, a primitive operation corresponds to a low level
instruction with an execution time that is constant

• Ideally, this might be the type of basic operations that is
executed by the harware (although many of the primitive
operations may be translated to a small number of
instructions)

• Instead of trying to determine the specific execution time of
each primitive operation, we will simply count how many
primitive operations are executed and use this number t as the
running time of the algorithm

• This operation count will correlate to the actual running time
on a specific computer

Algorithm Analysis

• To capture the order of growth of an algorithm’s running
time, we will associate with each algorithm, a function f(n)
that characterizes the number of primitive operations that cna
be performed as a function of the input size n

• An algorithm may run faster on some inputs, than it does on
others of the same size

• For this reason, we may wish to express the running time of
an algorithm as a function of the input size obtained by taking
the average over all possible inputs of the same size

• Unfortunately such an average case is challenging in practice
as it requires to define a probability distribubtion on the set of
inputs

Algorithm Analysis

Algorithm Analysis

• In this course, except if specified otherwise, we will
characterize the running time in terms of the Worst case
complexity.

• Worst case analysis is much easier than average case as it
requires only the ability to identify the worst case input

• Moreover, studying the worst case generally leads to the
improvement of algorithms as performing well in the worst
case means doing well on every input

Algorithm Analysis: complexity functions

• For almost all the analysis we will do during the course, we
will restrict to 7 main complexity functions:

• The constant function

• The logarithm function

• The linear function

• The n log n function

• The quadratic function

• The cubic function and other polynomials

• The exponential function

The constant function

• The simplest function we can think of is the constant function,

f(n) = c

• For any argument n, the function f(n) assigns the value c
where c is any constant.

• In particular, it does not matter what the value of n is, f(n)
will always be equal to the value c

• The most fundamental constant function g(n) = 1. From this
function we can thus write f(n) = c · g(n)

• The constant function characterizes the number of operations
needed to do a basic operation on a computer, like adding two
numbers, assigning a value to a variable, or comparing two
numbers

The logarithm function

• AAn interesting aspect of the analysis of data structures and
algorithms is the presence of the logarithm function,

f(n) = logb(n)

for some b > 1. This function is defined as the inverse of a
number

x = logb n, if and only if bx = n

• The value b is known as the base of the logarithm. The most
common base in computer science is 2 as computers store
integers in binary. This base is so common that we will
typically ommit it from the notations when it is 2. That is to
say log n = log2 n.

The logarithm function

• The ceiling of a real number x is the smallest integer greater
than or equal to x denoted by dxe.

• The ceiling of x can be viewed as an integer approximation of
x since we have x ≤ dxe ≤ x + 1.

• For an integer n, if we repeatedly divide n by band stop when
we get a number less than or equal to 1. the number of
divisions is equal to dlogb(n)e.

• Consider the examples below

• dlog3(27)e = 3 because ((27/3)/3)/3 = 1

• dlog2 12e = 4 because ((((12/2)/2)/2)/2)/2 = 0.75 < 1

• Note that one can also define the largest integer less than or
equal to x using the floor notation, bxc

The logarithm function

• Together with the logarithm function come several important
identities which are recalled below

1. logb(ac) = logb(a) + logb(c)

2. logb(a/c) = logb(a)− logb(c)

3. logb(a
c) = c logb(a)

4. logb a = (logd a)/(logd(b))

5. blogd a = alogd b

• In particular, you can see that the fourth item makes is easy
to compute a base two logarithm on a calculator that only has
base 10 logarithm.

The linear function

• Another important function is the linear function

f(n) = n

• The linear function arises in the analysis of algorithms and
data structures each time we have do repeat a simple
operation for each of the elements in the structure. For
example, comparing a number x to each of the elements in an
array of size n will require n comparisons

• The linear function also represents the best runnning time we
can hope to achieve for any algorithm that processes each of
n objects that are not already in the computer’s memory (as
reading in the n elements in itself already requires n
operations)

The n log n function

• The n log n function assigns to an input n the value of n
times the logarithm base two of n

f(n) = n log n

• The function grows a little more rapidly than the linear
function and a lot less rapidly than the quadratic function

• As a result we greatly prefer an algorithm whose complexity
grows like n log n

• Examples of algorithms exhibiting n log n complexity include
the fastest possible algorithms for sorting n arbitrary values

The quadratic function

• Another function that frequently appears in algorithms
analysis is the quadratic function

f(n) = n2

• The main reason behind the use of the quadratic function in
algorithm analysis is the presence of nested loops where the
inner loop performs a linear number of operations and the
outer loops is performed a linear number of times.

• The quadratic function can also arise in the context of nested
loops where the first iteration of a loop uses one operation,
the second uses two operations, and so on. In this case, the
total number of operations is

1 + 2 + 3 + . . . + (n− 1) + n

The quadratic function

• In 1787, a German schoolteacher decided to keep his 9 and 10
years old pupils occupied by getting them add up the integers
from 1 to 100. Almost immediately however, one of the
children claimed to have the answer. The schoolteacher was
suspicious for the student only had the final answer written on
his slate. But the answer 5050 was correct. The student, Carl
Gauss grew up to be one of the greatest mathematician of his
time

• Presumably Gauss used the following identity

1 + 2 + 3 + . . . + (n− 2) + (n− 2) + n =
n(n + 1)

2

The quadratic function

The cubic function and other polynomials

• The cubic function f(n) = n3 appears less frequently

• The linear, quadratic and cubic functions can be viewed as
particular instances of the more general polynomial function

f(n) = a0 + a1n + a2n
2 + . . . + adn

d

• where a0, a1, . . . , ad and d (the degree) are constants.

• Obviously, when discussing complexity, polynomial with low
degrees are better than polynomial with high degrees

The cubic function and other polynomials

• A notation that appears again and again in the analysis of
data structures is the summation which is defined as follows

b∑
i=a

f(i) = f(a) + f(a + 1) + f(a + 2) + . . . + f(b)

• Using a summation we can write the sum of integers as

n∑
i=1

i =
n(n + 1)

2

• Likewise we can write a polynomial f(n) of degree d as

f(n) =

d∑
i=0

ain
i

The exponential function

• The last function that we will often use is the exponential
function

f(n) = bn

• b is a positive constant called the base and n is the exponent

• As with the logarithm, the most common base for the
exponential function is the b = 2 (e.g. an integer word
containing n bits can represent all the non negative integers
less than 2n)

The exponential function

• When characterizing the complexity of an algorithm we might
want to use the following properties of the exponential
function. For positive integers a, b and c, we have

• (ba)c = bac

• babc = ba+c

• ba/bc = ba−c

• Obviously, the exponent extends to fractional values.

The exponential function

• For any integer n ≥ 0 and any real number a > 0, 6= 1,
another important relation when characterizing the complexity
of an algorithm or data structure is the following:

n∑
i=0

ai = 1 + a + a2 + . . . + an

=
an+1 − 1

a− 1

• Summations such as the above are called geometric
summations

• Note that the largest unsigned integer that can be represented
using n bits is given by 1 + 2 + 4 + . . . + 2n−1 = 2n − 1.

Asymptotic Analysis

• In algorithm analysis, we focus on the growth rate as a
function of the input size n, taking a ”big picture” approach

• As an illustration of this, it is often enough just to know that
the running time of an algorihthm grows proportionally to n

• As a consequence, when analyzing algorithms and data
structures, we will often rely on mathematical functions that
disregard constant factors

Asymptotic Analysis

• More generally, we characterize the running times of
algorithms by using functions that maps the size of the input,
n to values to correspond to the main fators that determines
the growth rate in terms of n

• This allows us to analyze algorithms by focusing on the
number of primitive operations up to a constant factor rather
than getting bogged down in language specific or hardware
specific analysis of the exact number of operations executed
by the computer

The ”Big-Oh” Notation
• Let f(n) and g(n) be functions mapping positive integers to

positive real numbers. We say that f(n) is O(g(n)) if there is
a real constant c > 0 and an integer constant n0 ≥ 1 such
that

f(n) ≤ c · g(n), for n ≥ n0

• This definition is often referred to as the ”big-Oh” notation
for it is sometimes pronounced as ”f(n) is big-Oh of g(n)”.

The ”Big-Oh” Notation

• As an example the function 8n + 5 is O(n). By the big-Oh
notation, we need to find a real constant c > 0 and an integer
constant n0 ≥ 1 such that 8n + 5 ≤ cn for every integer
n ≥ n0. In this case, this works for example for c = 9 and
n0 = 5

• As another example, the function 5n4 + 3n3 + 2n2 + 4n + 1 is
O(n4). Proof: note that
5n4 + 3n3 + 2n2 + 4n + 1 ≤ (5 + 3 + 2 + 4 + 1)n4 = cn4 for
c = 15.

• In short, the ”big-Oh” notation allows us to ignore constant
factors and lower order terms

• Generally speaking if f(n) is a degree d polynomial,
f(n) = a0 + a1n + . . . + adn

d, and ad > 0, then f(n) is
O(nd).

The ”Big-Oh” Notation

• The highest degree term in a polynomial is the term that
determines the asymptotic growth rate of that polynomial

• Note that 3 log n + 2 is O(log n) and 2n+2 is O(2n).

• In general we should use the big-Oh notation to characterize a
function as closely as possible. While it is true that the
function f(n) = 4n3 + 3n2 is O(n5) or even O(n4), it is more
accurate to say that f(n) is O(n3).

• The seven functions we just listed are the most common
functions used in conjunction with the ”big-Oh” notation. We
typically use the names of those functions to refer to the
running time of the algorithms they charasterize. E.g we talk
about quadratic or linear time algorithms.

Big Omega and Big Theta

• Just as the big-Oh notation provides an asymptotic way of
saying that a function is ”less than or equal to” another
function, the Big Omega notation provides an asymptotic
notation for saying that a function grows at a rate that is
”greater than or equal to” that of another

• Let f(n) and g(n) be functions mapping positive integers to
positive real numbers. We say that f(n) is Ω(g(n))
pronounced ”f(n) is big-Omega of g(n)” if g(n) is O(f(n)),
that is if there is a real constant c > 0 and an integer
constant n0 ≥ 1 such that

f(n) ≥ c · g(n), for n ≥ n0

• As an example, 3n log n− 2n is Ω(n log n), taking n0 = 2 and
c = 1.

Big Omega and Big Theta

• The last notation will allow us to say that two functions grow
at the same rate, up to constant factors.

• We say that f(n) is Θ(g(n)), pronounced ”f(n) is big-Theta
of g(n)” if f(n) is O(g(n)) and f(n) is Ω(g(n)), that is there
are real constants c′ > 0 and c′′ > 0 and an integer constant
n0 ≥ 1 such that

c′g(n) ≤ f(n) ≤ c′′g(n), for n ≥ n0.

• As an example, we have 3n log n + 4n + 5 log n is Θ(n log n).
Proof: 3n log n ≤ 3n log n + 4n + 5 log n ≤ (3 + 4 + 5)n log n
for n ≥ 2.

