
Data Structures

Augustin Cosse.

Spring 2021

February 11, 2021

Catching Exceptions

• If an exception occurs and is not handled, then the Java
Runtime will terminate the program after printing after
printing an appropriate message together with the trace of the
runtime stack

• Before the program is terminated, each method on the stack
trace has an opportunity to catch an exception

• Starting with the most deeply nested method in which the
exception occurs, each method may either catch the
exception, or allow it to pass through to the method that
called it

Catching Exceptions

• For example, consider the following stack trace:

Exception in thread "main" java.lang.NullPointerException

at java.util.ArrayList.toArray(ArrayList.java:358)

at net.datastructures.HashChainMap.bucketGet(HashChainMap.java:35)

at net.datastructures.AbstractHashMap.get(AbstractHashMap.java:62)

at dsaj.design.Demonstration.main(Demonstration.java:12)

• In the stack trace above the ArrayList.java method had the
first opportunity to catch the exception. Since it did not do
so, the exception was passed upward to the
HashChainMap.bucketGet method, which in turn ignored
the exception, causing it to pass further upward to the
AbstractHashMap.get method. The final opportunity to
catch the exception was in the Demonstration.main method.
But since it did not do so, the program terminated with the
above diagnostic message.

Catching Exceptions

• The general methodology for catching exceptions is the
try-catch construct in which a guarded fragment of code that
might throw an exception is executed.

• If it throws an exception, then the exception is caught by
having the flow of control jumping to a predefined catch
block that contains the code to analyze the exception and
apply an appropriate resolution.

• If no exception occurs in the guarded code, all catch blocks
are ignored.

Catching Exceptions

• The typical syntax for the try catch is as follows

try{

// guarded body

} catch(exceptionType1 variable1) {

// remedy body 1

} catch(exceptionType2 variable2) {

// remedy body 2

}

• Each exceptionTypei is the type of an exception and each
variablei is a valid Java variable name.

Catching Exceptions

• The Java Runtime environment starts by executing the block
guarded body. If no exception is generated during the
execution, the flow of control continues with the first
statement beyond the last line of the entire try catch
statement.

• If, on the other hand, the block bfseries guarded body
generates an exception at some point, the execution of that
block immmediately terminates and execution jumps into the
catch block whose exceptionType most closely matches the
exception thrown.

• The variable for this catch statement references the exception
object itself, which can be used in the block of the matching
catch statement.

Catching Exceptions

• Once execution of the catch block completes, control flows
continues with the first statement beyond the entire try catch
construct

• If an exception occurs during the execution of the block
guardedBody that does not match any of the exception types
characterized by the catch statements, that exception is
rethrown in the surrounding context.

Catching Exceptions

• If you are willing to use the same error message for the two
exceptional cases, we can use a single catch clause wit the
following syntax

}catch(ArrayIndexOutOfBoundsException |

NumberFormatException e){

System.out.println("Using default value for n. ");

}

Throwing Exceptions

• Exceptions are generated when a piece of Java code finds
some sort of problem during execution and throws and
exception object

• This is done through the keyword throw followed by an
instance of the exception type to be thrown.

• It can sometimes be convenient to instantiate an exception at
the time the exception has to be thrown.

• A thrown statement typically takes the form

throw new exceptionType(parameters);

• Where exceptionType is the type of the exception and the
parameters are sent to that exception’s constructor.

Throwing Exceptions

• Most exceptions offer a version of a constructor that accepts
an error message string as a parameter

• As an example, consider the following code snippet

public void ensurePositive(int n){

if (n<0)

throw new IllegalArgumentException

("That’s not positive")

//

}

• The execution of a throw statement immediately terminates
the body of a method.

Throwing Exceptions

• When a method is declared, it is possible to explicitly declare
as part of the method’s signature the possibility that a
particular exception type may be thrown during a call to that
method

• It does not matter whether the exception is directly thrown
from from a throw statement in that method body or
propagated upward from a secondary method call from within
the body.

• the syntax for that particular situation relies on the keyword
throws (with an s) such as

public static int parseInt (String s) throws NumberFormatException;

Throwing Exceptions

• The designation throws NumberFormatException warns the
user about the possibility of an exceptional case so that they
might be better prepared to handle an exception that may
arise

• If one of many exception types may possibly be thrown, all
such types can be listed separated by commas.

• In short, if you are using a try-catch block for a particular
exception, you are handling the exception there. If you specify
throws on the method, you are declaring that the method can
throw such an exception(and not handle it within itself) and it
becomes the responsibility of the caller to handle that
exception.

public static int parseInt (String s) throws NumberFormatException;

Throwing Exceptions

• Java defines a rich inheritance hierarchy of all objects that are
deemed Throwable

• The two main branches of the hierarchy are errors and
exceptions

Throwing Exceptions

• Errors are typically thrown by the Java Virtual Machine and
designate the most serious situations that are unlikely to be
recoverable, such as when the virtual machine is asked to
execute a corrupt class file

• In contrast exception designate situations in which a running
program might reasonably be able to recover, for example,
when opening a data file.

• Java further provide a division between the RuntimeException
class (which are officialy treated as checked exceptions) and a
remaining set of other subclasses which are labelled as
checked exceptions

Casting and Generics

• We have discussed casting for base type. Java also provides a
way to do conversion between objects

• Just as for base types, we will talk about widening
conversion when :

• A type T is converted to a type U, T and U are class types and
U is a super class of T

• A type T is converted to a type U, T and U are interface types
and U is a super interface of T

• A type T is converted to a wider type U, T is a class that
implements the interface U

Casting and Generics

• Widening conversion automatically occurs to store the result
of an expression within a variable, without the need for
explicit casting.

• In other words, as we saw, we can directly store the result of
an expression of type T into a variable v of type U when the
conversion from T to U is a widening conversion

• We already encountered such a situation when discussing
polymorphism

CreditCard card = new PredatoryCreditCard(...);

Casting and Generics

• A narrowing conversion occurs when a type T is converted
into a narrower type S. Common examples include

• A type T is converted to a type S, T and S are class types and
S is a subclass of T

• A type T is converted to a type S, T and S are interface types
and S is a subinterface of T

• A type T is converted to a type S, T is an interface
implemented by class S

Casting and Generics

• In general, narrowing conversion of reference types requires an
explicit cast.

• The correctness of a narrowing conversion may not be
verifiable by the compiler. Hence its validity should be tested
by the Java runtime environment during program execution

CreditCard card = new PredatoryCreditCard(...); // widening

PredatoryCreditCard pc = (PredatoryCreditCard) card; // narrowing

Generics

• Java provides support for writing generic classes and methods
that cna operate on a variety of data types while often
avoiding the need for explicit casts.

• The generics framework allows use to to define a class in
terms of a set of formal type parameters which can be used as
the declared type for variables, parameters and return values
within the class definition.

• Those formal type parameters are later specified when using
the generic class as a type elsewhere in the program

Generics

• The generics framework was not part of the original Java
language. It was added as part of Java SE5.

• Prior to that, generic programming was implemented through
the class Object which is the universal supertype of all objects

• In that ”classic” style, a generic pair might be implemented as
follows.

public class ObjectPair{

Object first;

Object second;

public ObjectPair(Object a, Object b){

first = a;

second = b;}

public Object getFirst() {return first; }

public Object getSecond() {return second; }}

Generics

• An instance of the ObjectPair class thus stores the two
objects that are sent to the constructor and provides
individual accessors for each component of the pair

• With this definition, a pair can be declared and instantiated
with the following command

ObjectPair bid = newObjectPair("ORCL", 32.07)

• This instantiation is legal because the parameters to the
constructor undergo widening conversion. The first parameter
”ORCL” is a string (and thus also an object) and the second is
a double (but it is automatically boxed into a Double object)

Generics

• The drawback with the classical approach are the accessors,
both of which formally return an Object reference

• Even if we know that the first object is a string, we cannot
legally make the assignment

String stock = bid.getFirst(); // illegal

• This represents a narrowing conversion from the declared
return type of Object to the variable of type String. In this
case, an explicit cast is required

String stock = (String) bid.getFirst(); // illegal

Generics

• With Java’s generic framework, we can implement a pair class
using formal type parameters to represent the two relevant
types in our composition

public class Pair<A,B> {

A first;

B second;

public Pair(A a, B b) { // constructor

first = a;

second = b;

}

public A getFirst() { return first; }

public B getSecond() { return second;}}

Generics

• A new pair can then be instantiated as

bit = new Pair<>("ORCL", 32.07)

Using arrays

• As a first illustration of the use of arrays in Java, we consider
the class GameEntry which stores the scores of a number of
video games players

public class GameEntry {

private String name; // name of the person earning this score

private int score; // the score value

/ Constructs a game entry with given parameters.. /

public GameEntry(String n, int s) {

name = n;

score = s;

}

/ Returns the name field. /

public String getName() { return name; }

/ Returns the score field. /

public int getScore() { return score; }

/ Returns a string representation of this entry. /

public String toString() {

return "(" + name + ", " + score + ")";

}}

Using arrays

• To keep track of the scores of all players, we can then define
another class (which we will call ScoreBoard)

• The ScoreBoard class will consist of a limited number of
scores that can be maintained. Once the limit has been
reached, a new score only qualifies for the score board if it is
strictly higher than the lowest score ”high score” on the board.

• Within the ScoreBoard class, we will use an array to manage
the scores

public class ScoreBoard{

private int numEntries = 0;

private GameEntry[] board;

/** constructor */

public Scoreboard(int capacity){

board = new GameEntry[capacity];

}}

Using arrays

• All the entries in the array are intially set to null.

• One of the most basic improvement we want to make to the
ScoreBoard class is to add a method that will add an entry in
the board.

public void add(GameEntry e) {

int newScore = e.getScore();

// is the new entry e really a high score?

if (numEntries < board.length ||

newScore > board[numEntries-1].getScore()) {

if (numEntries < board.length) // no score drops from the board

numEntries++; // so overall number increases

// shift any lower scores rightward to make room for the new entry

int j = numEntries - 1;

while (j > 0 && board[j-1].getScore() < newScore) {

board[j] = board[j-1]; // shift entry from j-1 to j

j--; // and decrement j

}

board[j] = e; // when done, add new entry

}}

Using arrays
• When a new score is considered, the first step is to determine

if it qualifies as a high score. This is always true if the board
has not reached its full capacity yet

• If the board has attained its maximum capacity, we have to
determine whether the new GameEntry belongs or not

public void add(GameEntry e) {

int newScore = e.getScore();

// is the new entry e really a high score?

if (numEntries < board.length ||

newScore > board[numEntries-1].getScore()) {

if (numEntries < board.length) // no score drops from the board

numEntries++; // so overall number increases

// shift any lower scores rightward to make room for the new entry

int j = numEntries - 1;

while (j > 0 && board[j-1].getScore() < newScore) {

board[j] = board[j-1]; // shift entry from j-1 to j

j--; // and decrement j

}

board[j] = e; // when done, add new entry

}}

Using arrays

• If the capacity of the array has not been attained, the first
thing we should do is increase this capacity by 1

• When the array is full, the addition of a new entry necessarily
implies removing an entry

public void add(GameEntry e) {

int newScore = e.getScore();

// is the new entry e really a high score?

if (numEntries < board.length ||

newScore > board[numEntries-1].getScore()) {

if (numEntries < board.length) // no score drops from the board

numEntries++; // so overall number increases

// shift any lower scores rightward to make room for the new entry

int j = numEntries - 1;

while (j > 0 && board[j-1].getScore() < newScore) {

board[j] = board[j-1]; // shift entry from j-1 to j

j--; // and decrement j

}

board[j] = e; // when done, add new entry

}}

Using arrays

• To update the array, we start from the end. While the
GameEntry score we need to add is higher than the score at
entry j, we shift score j by one.

public void add(GameEntry e) {

int newScore = e.getScore();

// is the new entry e really a high score?

if (numEntries < board.length ||

newScore > board[numEntries-1].getScore()) {

if (numEntries < board.length) // no score drops from the board

numEntries++; // so overall number increases

// shift any lower scores rightward to make room for the new entry

int j = numEntries - 1;

while (j > 0 && board[j-1].getScore() < newScore) {

board[j] = board[j-1]; // shift entry from j-1 to j

j--; // and decrement j

}

board[j] = e; // when done, add new entry

}}

Using arrays

• The idea of the add method can be summarized by the figure
below

Using arrays

• The idea of the add method can be summarized by the figure
below

Using arrays

• How would you adapt the methods in a situation where you
don’t need to preserve the ordering of the entries ?

Using arrays

• We now need to remove an entry from the array. We consider
the function below

• Here again, when a score is removed, all the lower scores must
be shifted towards the left as shown by the figure below

Using arrays

• Our method remove (below) will involve a loop that starts
from the index i that we want to remove and then gradually
shifts (i.e. board[i] = board[i+1]) all the entries on the left.

• There is not entry to shift in cell board[numEntries-1] so we
return that cell to null just after the loop.

/ Remove and return the high score at index i. /

public GameEntry remove(int i) throws IndexOutOfBoundsException {

if (i < 0 || i >= numEntries)

throw new IndexOutOfBoundsException("Invalid index: " + i);

GameEntry temp = board[i]; // save the object to be removed

for (int j = i; j < numEntries - 1; j++) // count up from i (not down)

board[j] = board[j+1]; // move one cell to the left

board[numEntries -1] = null; // null out the old last score

numEntries--;

return temp; // return the removed object

}

Using arrays

• The methods for adding and removing object in the array of
high scores are simple. Nevertheless, they form the basis of
techniques that are used repeatedly to build more
sophisticated data structures.

• These other data structures, however will be more general
than the array structure which we just covered and they will
often have more operations they will be able to perform than
just add or remove but studying the array data structure is a
very good starting point.

Sorting an array

• Another important function when working with arrays is
sorting

• As a warm up, we will consider the simple insertion-sort
algorithm. We want this algorithm to proceed by placing the
new elements in the correct order with respect to those which
came before it.

// Input: An array A of n comparable elements

// Output: The array A with elements rearranged

for k from 1 to n-1 do

Insert A[k] at its proper location within A[0],

A[1],...A[k]

Sorting an array

• The correct approach is to start form the first element (for
which the array is trivially sorted). Then proceed with the
second element. If it is smaller than the first, we swap them.

/** Insertion-sort of an array of

characters into nondecreasing order */

public static void insertionSort(char[] data) {

int n = data.length;

for (int k = 1; k < n; k++) { // begin with second character

char cur = data[k]; // time to insert cur=data[k]

int j = k; // find correct index j for cur

while (j > 0 && data[j-1] > cur) { /* thus, data[j-1]

must go after cur */

data[j] = data[j-1]; // slide data[j-1] rightward

j--; // and consider previous j for cur

}

data[j] = cur; // this is the proper place for cur

}}

Sorting an array

• We then proceed with the third element, swapping leftwards
until it reaches its proper position and we continue loke that
with all the subsequent elements.

/** Insertion-sort of an array of

characters into nondecreasing order */

public static void insertionSort(char[] data) {

int n = data.length;

for (int k = 1; k < n; k++) { // begin with second character

char cur = data[k]; // time to insert cur=data[k]

int j = k; // find correct index j for cur

while (j > 0 && data[j-1] > cur) { /* thus, data[j-1]

must go after cur */

data[j] = data[j-1]; // slide data[j-1] rightward

j--; // and consider previous j for cur

}

data[j] = cur; // this is the proper place for cur

}}

Sorting an array

• You can see that the function insertion-sort moves a new
element to its proper location starting from the far right and
gradually swapping this element with the entries on its left
whenever they are larger (largest is on the right)

/** Insertion-sort of an array of

characters into nondecreasing order */

public static void insertionSort(char[] data) {

int n = data.length;

for (int k = 1; k < n; k++) { // begin with second character

char cur = data[k]; // time to insert cur=data[k]

int j = k; // find correct index j for cur

while (j > 0 && data[j-1] > cur) { /* thus, data[j-1]

must go after cur */

data[j] = data[j-1]; // slide data[j-1] rightward

j--; // and consider previous j for cur

}

data[j] = cur; // this is the proper place for cur

}}

Sorting an array

• A nice feature of the insertionSort method is that once the
array is sorted, the inner loop does only one comparison.,
determines that there is no swap needed and then get back to
the outer loop.

/** Insertion-sort of an array of

characters into nondecreasing order */

public static void insertionSort(char[] data) {

int n = data.length;

for (int k = 1; k < n; k++) { // begin with second character

char cur = data[k]; // time to insert cur=data[k]

int j = k; // find correct index j for cur

while (j > 0 && data[j-1] > cur) { /* thus, data[j-1]

must go after cur */

data[j] = data[j-1]; // slide data[j-1] rightward

j--; // and consider previous j for cur

}

data[j] = cur; // this is the proper place for cur

}}

Illustration of the insertionSort method

Illustration of the insertionSort method

Java.util Methods for Arrays and Random numbers

• Because arrays are so important, Java provides a class
java.util.Arrays with a number of nuilt in static methods for
performing common tasks

equals(A, B) Returns true if and only if the
array A and the array B are
equal. Two arrays are equal if
they have the same number of
elements and every
corresponding pair of elements
in the two arrays are equal.

fill(A, x) Stores value x in every cell of
an array A, provided the type
of array A is defined so that it
allows to store the value x

Java.util Methods for Arrays and Random numbers

copyOf(A, n) Returns an array of size n such
that the first k elements of A
are copied from A, where
k = min (n, A.length). If
n > A.length then the last
n-A.length elements in this
arraywill be padded with
default values, e.g. 0 for an
array of int and null for an
array of objects.

copyOfRange(A, s, t) Returns an array of size (t-s)
such that the elements of this
array are copied in order from
A[s] to A[t-1], where s<t,
padded with copyOf if
t>A.length

Java.util Methods for Arrays and Random numbers

toString(A) Returns a string representation
of the Array A, beginning with
[, ending with] and with
elements of A displayed
separated by string ”,”. The
string representation of and
element A[i] is obtained using
String.valueOf(A[i]), which
returns the string ”null” for a
null reference and otherwise
calls A[i].toString().

Java.util Methods for Arrays and Random numbers

sort(A) Sorts the array A based on
natural ordering of its
elements, which must be
comparable

binarySearch(A), x Searches the sorted array A for
value x, returning the index
where it is found , or else the
index where it could be
inserted while maintaining the
sorted order.

Java.util Methods for Arrays and Random numbers

• As static instances, the methods java.util.Arrays class are
invoked directly on the class, not on any particular instance of
the class.

• For example, if data were an array, we could sort it wiht
syntax java.util.Arrays.sort(data), or with the shorter syntax
Arrays.sort(data) if we import the Arrays class

Java.util Methods for Arrays and Random numbers

• Another feature built in Java which is often useful when
testing programs dealing with arrays is the ability to generate
pseudo random numbers

• Java has a built in class, java.util.Random whose instances are
pseudorandom numbers generators, that is objects that
compute a sequence of numbers that are statistically random

• The sequence are not actually random in the sense that it is
possible to predict the next number in the sequence given the
past list of numbers.

• Indeed, a popular pseudorandom number generator is to
generate the next number, next, from the current number cur
as next = (a*cur + b) % n where a, b are appropriately
chosen integers

Java.util Methods for Arrays and Random numbers

• An idea along this line is used by the java.util.Random
objects, with n = 248.

• It turns out that such a sequence can be proven to be
statistically uniform, which is usually good enough for most
applications requiring random numbers such as games

• For applications such as computer security settings where
unpredictable security sequences are needed, this king of
formula should not be used.

• Instead one should consider a sample coming from a physical
source that is actually random such as atmospheric noise.

Java.util Methods for Arrays and Random numbers

• Since the next number in a pseudorandom generator is
determined by the previous numbers, such a generator always
needs a place to start, which is called the seed

• The sequence of numbers generated from a same seed will
always be the same.

• The seed for an instance of the java.util.Random class can
be set in its constructor, or with its SetSeed() method.

• One common trick to get a different sequence, each time a
program is run is to use a seed that will be different for each
run.

Java.util Methods for Arrays and Random numbers

• The methods of the java.util.Random class are the following:

nextBoolean() Returns the next
pseudorandom boolean value

nextDouble() Returns the next
pseudorandom double value
between 0.0 and 1.0

nextInt() Returns the next
pseudorandom int value

nextInt(n) returns the next pseudorandom
int value in the range from 0
to but not including n

setSeeds(s) Sets the seed of this
pseudorandom number
generator to the long s

PseudoRandom Numbers Generators

import java.util.Arrays;

import java.util.Random;

/** Program showing some array uses. */

public class ArrayTest {

public static void main(String[] args) {

int data[] = new int[10];

Random rand = new Random();

// a pseudo-random number generator

rand.setSeed(System.currentTimeMillis());

// use current time as a seed

// fill the data array with pseudo-random

// numbers from 0 to 99, inclusive

//

PseudoRandom Numbers Generators

import java.util.Arrays;

import java.util.Random;

/** Program showing some array uses. */

public class ArrayTest {

public static void main(String[] args) { ...

for (int i = 0; i < data.length; i++)

data[i] = rand.nextInt(100);

// the next pseudo-random number

int[] orig = Arrays.copyOf(data, data.length);

// make a copy of the data array

System.out.println("arrays equal before sort: "

+Arrays.equals(data, orig));

Arrays.sort(data);

// sorting the data array (orig is unchanged)

System.out.println("arrays equal after sort: "

+ Arrays.equals(data, orig));

System.out.println("orig = " + Arrays.toString(orig));

System.out.println("data = " + Arrays.toString(data));}}

Java.util Methods for Arrays and Random numbers

• By using a pseudo random number generator to determine
program values, we can get a different input to our program
each time we run it

• This feature is in fact what makes pseudorandom number
generator useful for testing code, aprticularly when dealing
with arrays.

• Even so, we should not use random tests as a replacement for
reasoning about our code, as we might miss important special
cases in test runs

