
Data Structures

Augustin Cosse.

Spring 2021

February 9, 2021

Package import

• As we saw, every stand-alone public class defined in java must
be given a separate file. The file name is the name of the
class with a .java extension.

• A class declared as public class Window will be defined in
the file Window.java. That file may contain definitions of
other standalone classes but none of them may be declared
with public visibility

• To help with the organization of large repository, Java allows
a group of related type definition (such as classes or enums)
to be grouped into what is known as as a package

• For types to belong to a package named packageName, their
source code must all be located in a directory named
packageName and each file must begin with the line package
packageName

Package import

• To refer to a type within a package name, we can use the dot
notation with the type treated as an attribute of the package.
For example, if the Window class is defined in the package
architecture, we can declare a variable with
architecture.Window as its type.

• Packages can be organized in subpackages (which then have
to be grouped within a subdirectory of the package directory)

• The dot notation can also be used with subpackages. As an
example, the java.util.zip subpackage within the Java.util
package.

Package import

• The use of packages has several advantages:

• Package can reduce name conflicts. If all the files are in a
single folder, there can be only one class with the name
Window. But with packages, we can imagine having a class
saved as architecture.Window and another saved as
gui.Window

• The distribution of the code is easier (the code will be more
easily understood and used by other programmers)

• Recall that clases within the same package have access to any
of each others members having anything but private (i.e.
public, protected or default) visibility

Package import

• We can always refer to a type stored in a package through its
”fully qualified name” (e.g. the Scanner class is defined in the
java.util package and we can refer to it as java.util.Scanner)

• We can thus always declare and construct a new instance of
that class in a project using the statement

java.util.Scanner input =

new java.util.Scanner(System.in);

• To be more efficient, java allows the use of the keyword
import to include external classes or entire packages in the
current file. To import a class from a specific package, we use
the line below

import packageName.className;

Package import

• As an example, to import and to use the class Scanner, we
can then use

import java.util.Scanner;

Scanner input = new Scanner(System.in)

• In order to import all the definitions from a given package,
one can also use the line

import packageName.*;

such as in

import architecture.*;

import gui.*;

Software development

• Traditional software development relies on the following main
steps

• Design

• Coding

• Testing and Debugging

• For object oriented programming, the design step is perhaps
the most important phase. It is in the design step that we
decide how to divide the workings of our program into classes,
and decide how those classes will interact, what data they will
store and how they will interact.

Object oriented design

• The main actors in the object oriented paradigm are called
objects

• Each object is an instance of a class.

• The class specifies the instance variables that the objects will
contain as well as the methods that the object will be able to
execute.

• Software development should achieve robustness, adaptability
and reusability

Object oriented design

• In general, we will want our programs to be robust (i.e.
capable of handling unexpected inputs that are not explicitely
defined for its application)

• For example, if a program is expecting positive integers and it
is given a negative integer instead, the program should be able
to gracefully recover from this error.

• In life critical applications, where a software error can lead to
injury or loss of lives, a software that is not robust could be
deadly.

• As an example, in the 1980’s, a radiation therapy machine
severely overdosed 6 patients (becasue of software errors),
some of whom died from complications resulting from the
radiation overdose.

Object oriented design

• Modern software development such as web browsers involve
large programs that are used for many years.

• These programs therefore need to be able to evolve over time
in response to changing conditions in the environment

• Another important goal in software development is for the
programs to achieve adaptability

• An particular aspect of this is portability (i.e. the ability of
software to run with minimal changes on different harware and
operating system platforms)

Object oriented design

• Finally, a last important aspect of efficient software
development is reusability.

• The same code should be usable as a component of different
systems in various applications

• Developing high quality softwares can be expensive and the
cost of software development can thus be reduced significantly
if the sotfware is designed in a way that makes it reusable in
future applications.

Object oriented design

• Object oriented design relies on the following principles

• Abstraction

• Encapsulation

• Modularity

Abstraction (I)

• The notion of abstraction consists in splitting a complicated
system into its most fundamental components

• Describing the parts of a system involves naming them and
explaining their functionalities

• Applying the idea of abstraction to the design of data
structures gives rise to abstract data types.

• An Abstract Data Type specifies what each operation does
but not how to do it

• An ADT can be expressed by an interface which is simply a
list of method declarations where each method has an empty
body

Abstraction (II)

• An abstract data type is realized by a concrete data structure
which in Java is modelled by a class.

• Unlike interface, classes specify how the operations are
performed in the body of each method

• A java class is said to implement an interface if its methods
include all the methods declared in the interface

• A class can have more methods than the interface

Encapsulation

• The idea of encapsulation is that the different components of
a program should not reveal the internal details of their
respective implementation

• Encapsulation gives a programmer the freedom to implement
the details of a component without concerns that other
programmers might be writing code that intricately depends
on those internal decisions

• Encapsulation yields robustness and adaptability (i.e.
implementation details of parts of a program can be changed
without affecting other parts, making it easier to fix bugs)

Modularity

• Modularity refers to the idea that different components of a
software should be divided into separate functional units.

• Modularity improves robustness beacuse it is easier to test
and debug separate components before they are integrated
into a larger software system.

Inheritance

• A natural way to organize the various components of a
software package is in a hierarchical fashion with abstract
definitions grouped in a level-by-level manner

• Ex: The set of houses is a subset of the set of buildings but a
superset of the set of ranches

• We will usually refer to such as correspondance through the
”is a” relationship. A house is a building and a ranch is a
house.

Inheritance

Inheritance

• In object oriented programming, the mechanism for a modular
and hierarchical implementation is implemented through
inheritance

• A new class can be defined based upon an existing class as
the starting point

• In object oriented programming, the existing class is typically
described as the base class, the parent class or the super-class,
while the newly defined class is known as the subclass or chilc
class

• We say that the subclass extends the superclass.

Inheritance

• When inheritance is used, the subclass automatically inherits,
as its starting point, all the methods from the superclass
(other than constructors)

• The subclass can differentiate itself from its superclass in two
ways. It may augment the superclass by adding new fields and
new methods and it may also specialize existing behaviors by
providing a new implementation that overrides an existing
method

Inheritance

• As an illustration of inheritance, consider the following class

public class CreditCard{

private String customer;

private String bank;

private String account;

private int limit;

protected double balance;

// constructor

public CreditCard(...){}

// A method

public boolean charge(double price){ ... }

// a second method

public void makePayment(double amount){ ... }

}

Inheritance

• A child of that class could be given by the following Predatory
class

public class PredatoryCreditCard extends CreditCard{

private double apr;

// constructor for the class

public PredatoryCreditCard(String cust)

// a new method

public void processMonth(){...}

// Overriding the charge method defined

// in the parent class

public void boolean charge(double price){

}

Inheritance

Inheritance

• The predatory class augments the original CreditCard class,
adding a new instance variable named apr and adding a new
method named processMonth. The new class also specializes
its superclass by overriding the original charge method in
order to provide a new implementation.

• You see that to indicate that the new class inherits from the
existing CreditCard class, we use the keyword extends.
followed by the name of the parent class. In Java each class
extends exactly one other class (We say that Java only allows
single inheritance among classes)

public class PredatoryCreditCard extends CreditCard{

...

}

Inheritance

• Note that if even if a class makes no explicit use of the
extends keyword, it automatically inherits from a class
java.lang.Object which serves as the universal superclass in
Java

• On top of newly defined apr variables, the child class
PredatoryCreditCard will also inherit all the variables
(customer, bank,a ccount, limit, and balance) from its parent
class

public class PredatoryCreditCard extends CreditCard{

private double apr;

...

}

Inheritance

• Constructors are never inherited in Java. When the child class
is created, all of its fields must be properly initialized
(including the inherited fields). For this reason, the first
operation performed within the body of a constructor of a
child class is usually to invoke a constructor from the
superclass.

• In Java the constructor from the superclass can be invoked by
using the keyword super with the appropriate parametrization.

public class PredatoryCreditCard extends CreditCard{

public PredatoryCreditCard(String cust, String bk,

String acnt,...){

// invoking the constructor from the superclass

super(cust, bk, acnt,..);

apr = rate; }

}

Inheritance
• The use of the super is very similar to the use of the this

used to invoke a different constructor from a given class.

• If a constructor of a child class does not make an explicit call
to super or this, an implicit call will be made by Java through
the command super() (call to the zero parameter
constructor).

• On top of the call to super(), you see that we also need to
initialize the new variable apr

public class PredatoryCreditCard extends CreditCard{

public PredatoryCreditCard(String cust, String bk,

String acnt,...){

// invoking the constructor from the superclass

super(cust, bk, acnt,..);

apr = rate; }

}

Inheritance

• On top of the methods that it inherits form the parent’s class,
you can see that the child class PredatoryCreditCard also
defines a new method processMonth()

• You also see that the new method accesses the variable
balance. This is permitted because that attribute was declared
with protected visibility in the original CreditCard class.

public class PredatoryCreditCard extends CreditCard{

public PredatoryCreditCard(String cust, String bk,

String acnt,...){}

public void processMonth(){

if (balance>0){

...

}}}

Inheritance

• Finally, through the lines below, we can also override the
method charge which is inherited from the parent class.

• You also see that within our new implementation of the
method we can still use some of the attributes from the
parent class through the keyword super (here super.charge())

public class PredatoryCreditCard extends CreditCard{

public PredatoryCreditCard(String cust, String bk,

String acnt,...){}

public void processMonth(){}

public boolean charge(double price){

boolean isSuccess = super.charge(price);

...

}}

Polymorphism

• The word polymorphism literaly means ”many forms”. In the
framework of object oriented programming it refers to the
ability of a reference variable to take many forms.

• This idea is known as the Liskov Substitution principle (it is a
manifestation of the ”is a” relationship)

• We say that the variable card is polymorphic. Note that if a
variable is declared with a specific type, it will only be able to
use the methods that are defined at the level of that type.

CreditCard card;

CreditCard card = new PredatoryCreditCard(...);

Polymorphism

• In the example below, since the object is a
PredatoryCreditCard instance, it will execute the
PredatoryCreditCard.charge method even if the referenced
object has been declared with the type CreditCard

CreditCard card;

CreditCard card = new PredatoryCreditCard(...);

Polymorphism

• Now one could wonder what happens if we consider the call to
card.charge() (given that both CreditCard and
PredatoryCreditCard have their own implementation of this
method.)

• In such a situation, Java relies on a process called dynamic
dispatch.

• The idea of dynamic dispatch is that java decides at runtime
to call the version of the method that is most specific to the
actual type (not the declared type) of the referenced object

CreditCard card;

CreditCard card = new PredatoryCreditCard(...);

Inheritance

• Java also provides an instance of operator that tests at
runtime whether an instance satisfies as a particular type.

• As an example the line ’card instance of
PredatoryCreditCard’ produces true if the object currently
referenced by the variable card belongs to the
PredatoryCreditCard class or any further subclass of that class.

Inheritance hierarchies

• Although a subclass cannot inherit from multiple superclasses
in Java, a superclass may have many subclasses. It is in fact
quite common in Java to develop complex inheritance
hierarchies to maximize reusability of the code

• As an illustration of this, we consider the following inheritance
diagram for Progression:

Inheritance hierarchies

• A general progression is a sequence of numbers, in which each
current number depends on one or more of the previous
numbers.

• An arithmetic progression determines the next number by
adding a fixed constant to the previous value.

• A geometric progression determines the next number by
multiplying the previous value by a fixed constant.

public class Progression{

// instance variable

protected long current;

/** Constructs a progression starting at zero */

public Progression() {this(0); }

/** Constructs a progression with given start value*/

public Progression(long start){ current = start; }

/** Returns the next value of the progression */

public long nextValue() {

long answer = current;

advance(); // this protected call is responsible for

// advancing the current value

return answer();

...

}}

public class Progression{

...

/** Advances the current value to the next value

of the progression */

protected void advance(){

current ++;

}

/** Prints the next n values of the

progression, separated by spaces */

public void printProgression(int n){

System.out.print(nextValue());

// print first value w/o space

for(int j=1; j < n; j++)

System.out.print(" " + nextValue());

// print leading space before the others

System.out.println();

}}

Inheritance hierarchies

• The class Progression has a single field named current. It
also defines two constructors, one accepting a specified
starting value for the progression and the other using the
default 0 value.

• On top of those, the class also has the remaining attributes:

• nextValue() : A public method that returns the next value of
the progression, also implitely advancing the progression each
time.

• advance(): A protected method responsible for advancing the
value of current in the progression

• printProgression(n): A public utility that advances the
progression n times while displaying each value

Inheritance

• The method advance() in the Progression class is the one
that we will want the children classes to override.

• We consider three subclasses of the Progression class:
ArithmeticProgression, GeometricProgression and
FibonacciProgression.

Inheritance

• As a first example of a child class, we consider the class
ArithmeticProgression

• An arithmetic progression adds a fixed constant to the current
term of the progression to produce the next

• ArithmeticProgression relies on the class Progression as its
parent class

• It includes three constructors (one of them calling the
superclass constructor through this) and override the
protected advance method

public class ArithmeticProgression extends Progression

{ protected long increment;

/** Constructs progression 0,1,2,...*/

// start at 0 with increment of 1

public ArithmeticProgression() {this(1,0); }

/** Constructs progression 0, stepsize,

2*stepsize, ...*/

// starts at 0

public ArithmeticProgression(long stepsize) {

this(stepsize,0);}

/** Constructs arithmetic progression with

arbitrary start and increment */

public ArithmeticProgression(long stepsize, long start)

{ super(start);

increment = stepsize; }

/** Adds the arithmetic increment to the current

value */

protected void advance(){

current +=increment;

}}

Inheritance

• As a second example of a child class, we consider the class
GeometricProgression

• The class introduces one new field: the base of the geometric
progression

• It also provides three constructors, just as the
ArithmeticProgression class, for convenience.

• Finally, it overrides the protected advance method

public class GeometricProgression extends Progression{

protected long base;

/** Constructs progression 1,2,4,...*/

// start at 1 with base of 2

public GeometricProgression() {this(2,1); }

/** Constructs progression 1, b, b^2, ...*/

// starts at 1

public GeometricProgression(long b) {this(b,1);}

/** Constructs geometric progression with

arbitrary base and start */

public GeometricProgression(long b, long start){

super(start);

base = b;

}

/** Multiplies the current value by the

geometric base */

protected void advance(){

current*=base;

}}

Inheritance

• Finally, as a last example of a child class, we consider the
class FibonacciProgression

• Each value of a Fibonacci series is the sum of the two most
recent values. To begin the first two values are conventionally
0 and 1

• The FibonacciProgression class is stored as an arithmetic
Progression with a varying increment

• The Fibonacci class introduces a new value prev which stores
the value Fn−2 such that Fn = Fn−1 + Fn−2. The value of
prev is initialized as F0 = F2 − F1

public class FibonacciProgression extends Progression{

protected long prev;

/** Constructs Fibonacci .*/

// starting 0,1,1,2,3

public FibonacciProgression() {this(0,1); }

/** Constructs generalized Fibonacci */

// with given first and second value

public FibonacciProgression(long first, long second) {

super(first);

prev = second - first; }

// fictitious value preceding first

/**Replaces (prev, current) with

(current, current+prev) */

protected void advance(){

long temp = prev;

prev = current;

current + = temp;

}}

Inheritance

• The three classes can then be represented through the
following inheritance diagram

Interfaces and abstract classes

• In order for two objects to interact, they must know the
methods that each supports.

• To enforce this knowledge, Object Oriented Programming
requires the classes to specify the Application Programming
Interface (API).

• In the framework of this course, we will define our interface as
a type definition and a collection of methods for this type
with the arguments for each method being of specified types.

• The specification will then be enforced by the compiler which
will require that the types of the parameters that are passed
to the method rigidly conform with the type specified in the
interface. (Such a requirement is known as strong typing)

Interfaces and abstract classes

• Having to define interfaces might seem to place a burden on
the programmer. Yet this burden is often offset by the fact
that it will make it possible to catch programming error that
would otherwise go unnoticed.

• Interfaces do not have constructors

• When a class implements an interface, it must implement all
the methods declared in the interface. (Note that additional
methods could be added)

• The interface should be stored in a separate .java file.

/** An example of an interface for objects

that can be sold */

public interface Sellable{

/** Returns a description of the object */

public String description();

/** Returns the list price in cents */

public int listPrice();

/** Returns the lowest price in cents we

will accept */

public int lowestPrice();

}

/** An implementation of the interface Sellable */

public class Photograph implements Sellable {

private String descript; // photo descript.

private int price; // price

private boolean color; // true if color photo

public Photograph(String desc, int p, boolean c){

// constructor

descript = desc;

price = p;

color = c; }

public String description() {return descript; }

public int listPrice() {return price; }

public int lowestPrice() {return price/2; }

public boolean isColor() {return color; }

}

• Note that a class can implement multiple interfaces as
illustrated by the class BoxedItem below

public interface Transportable {

...

}

public class BoxedItem implements Sellable,

Transportable {

...

}

Interfaces and abstract classes

• The ability of extending from more than one type is known as
multiple inheritance

• In Java, although multiple inheritance is not allowed for
classes, it is allowed for interfaces

• The intuition behind this is that interfaces do not define fields
or method bodies. If Java was allowing multiple inheritance
for classes there could be a confusion if a class tries to extend
from two classes with the same variables names or methods
with the same signatures.

Interfaces and abstract classes

• One interest of using multiple inheritance for interface is to
mimic the mixin technique from C++ or Smalltalk. Some
object oriented all multiple inheritance from concrete classes
as a way to provide particular functionalities to a given class

• This idea can be approximated with interfaces and the
methods from a mix of interfaces can be used to define a new
interface that combines their functionalities.

Abstract classes

• In Java an abstract class serves a role in between a traditional
class and an interface

• Like an interface, an abstract class may define signatures for
one or more methods without providing an implementation of
those method bodies. Such methods are known as abstract
methods

• However, unlike an interface, an abstract class may also define
or more fields and any number of methods with
implementations. (so-called concrete methods.)

• An abstract class may also extend another class and be
extended by further subclasses.

Abstract classes

• As is the case with interfaces, an abstract class may not be
instantiated. I.e no object can be created from the class.

• A subclass of an abstract class must therefore provide
implementations for the abstract methods, or else remain
abstract.

• A non abstract class will be called concrete class.

• Abstract classes are classes and hence limited to single
inheritance. Abstract classes thus have at most one super
class (concrete or abstract).

Abstract classes

• Abstract classes are particularly interesting as the support
reusability of code

• In particular, commonality between concrete classes can be
placed at the level of an abstract class that can serve as a
super class.

• By using an abstract, we can then force a collection of classes
to share a mixing of functionalities.

• The main point of the Progression class which we discussed
before was to provide common functionalities for the three
classes ArithmeticProgression, GeometricProgression and
FibonacciProgression so that we could have instead, decided
to define this class as an interface.

Abstract classes

public abstract class AbstractProgression {

protected long current;

public AbstractProgression() {this(0); }

public AbstractProgression(long start)

{current = start; }

public long NextValue(){

long answer = current;

advance();

return answer;}

public void printProgression(int n){

System.out.print(nextValue());

for(int j=1; j<n; j++)

System.out.print(" " + nextValue());

System.out.println();}

protected abstract void advance(); // abstract method

}

Abstract classes

• Note the use of the abstract modifier on the class definition

• Note how the method advance is defined as abstract

• You might also notice that the class provide constructors,
despite the fact that (since it is abstract) it cannot be
instantiated. The constructors can however be invoked within
the subclasses constructors using the super keyword

Abstract classes

• You can also see that the abstract method advance does not
have any body. Moreover it is being called inside the body of
the nextValue() function

• For abstract classes, it is perfectly legit to call an abstract
method from within the body of another concrete method.

• This is an example of an object oriented design pattern known
as template method pattern in which an abstract base class
provides a concrete behavior that relies upon calls to other
abstract behaviors.

• Once a class provides definitions for the missing abstract
behaviors, the inherited concrete behavior will be well defined.

Abstract classes

• Finally it might seem as though abstract methods are
equivalent to overriding empty methods. In fact the difference
lies in the fact that, since the implementation of the abstract
method is defered, you cannot call this method before it has
been implemented, reducing, once again the risk of making
mistakes.

Exceptions

• Exceptions are unexpected events that occur during the
execution of a program

• Exceptions might result from unavailable resource, unexpected
input from a user or simply a logical error from the
programmer

• In Java, exceptions are objects that can be thrown by code
that encounters an unexpected situation.

• The general methodology for handling exceptions is the try
catch construct

Exceptions

• The syntax for a try catch is the following

try{

// guarded body

}catch(exceptionType1 variable1) {

// remedeBody1

} catch(exceptionType2 variable2) {

// remedeBody2

}

Exceptions

• When facing a try catch, the Java Runtime environment
starts by processing the guarded body of the try

• If no exception are generated during the execution, the flow of
control continues wih the first line beyond the entire try catch
statement

• If an exception is generated during the execution of the try
body, the execution jumps to the catch whose exception type
most closely matches the exception object itself

• The variable for this catch statement references the exception
object itself, which can be used in the block of the matching
catch statement

• Once execution of that catch block completes, control flow
continues with the first statement beyond the entire try catch.

Exceptions
• Consider the following example

public static void main(String[] args){

int n = DEFULAT;

try {

n = Integer.parseInt(args[0]);

if(n<=0){

System. out.println("n must be positive. Using default");

n = DEFAULT;}

catch(ArrayIndexOutOfBoundsException e){

System.out.println("No argument specified for n. Using default")

} catch=(NumberFormatException e){

System.out.println("Invalid integer number. Using default")

}

}

}

