
Data Structures

Augustin Cosse.

Spring 2021

January 29, 2021

Schedule

• Lectures: Tuesday/Thursday, 12:30pm-1:45pm.

• Recitation (Mandatory): Tuesday, 2.15pm 3.45pm.

• Office hour : Thursday 2.15pm 3.45pm.

• Location: NYU Paris, 57 Boulevard Saint-Germain, Room 410

• Combination between programming sessions (Java) and
lectures

• Exams: Midterm: 30%, Final : 30%

• Assignements throughout the semester: 30%

• Independent project: 10%

Course organization

• Notes + Sample exam questions will be posted (soon) on the
course webpage

• Sample exam questions = help you with the study but not
comprehensive

• If a section of the notes is not covered in class, you don’t have
to study it for the exam

• See http://www.augustincosse.com/teaching for details
(select ”Data Structures > Spring 2021” semester)

General Organization (I): Website + Project

• All the material will be posted on the website (including labs,
slides and coursenotes)

• Current Password : Zion101

• One end of semester project: Implementation and/or reading
of pioneering paper (see course website for some ideas)

General Organization (I): Website + Project

• Main references for the course:

• Data structures and algorithms in Java, Goodrich, Tamassia,
Goldwasser

• Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein.

General Organization (II): Reference Books

• If you need additional references

• Introduction to Java Programming (and data structures) 10th
edition (or more recent), Comprehensive version, Yang.

• A Java Reference: Assorted Java Reference Material, Hilfinger

• Algorithms, Sedgewick and Wayne,

• Java Software solutions, foundations of program design, Lewis
and Loftus

This week

• General Introduction to Java

• No recitation ⇒ replaced by setting up Java, Git,
Gradescope,..

Intro to java

• The first step in coding is to write a program made of a series
of statements whose syntax obeys well defined rules

• In order to obtain the results of the program, we will then
want the computer to read this program

• For the computer to be able to read the program, we need to
translate our program into a language that the computer can
understand.

• Because of the electronic components, the information in a
computer is transmitted through combinations of two states 0
(turned off) and 1 (switched on), also known as a sequence of
bits

Intro to java

• Since the computer can only understand those two states,
every type of information (even something as simple as a
number) has to be encoded, through an appropriate scheme,
as a sequence of 0 and 1

• In order words, when interacting with the computer, we need
a specific step that will process every type of information and
encode the information as a sequence of bits.

• Note that we will also need a step that will do the reverse,
that is to say that will take the result of the execution (in
bits) and turn it into the appropriate information.

Intro to java

• The computer is very good at executing tasks. In fact it can
execute his tasks much faster than a human being

• A computer is however not intelligent. It cannot choose
between two actions and because of its limited capabilities, it
can only understand a task if it is given to him as a binary
sequence.

• When designing programming language, the general idea is to
encode the orders that will be submitted to the computer by
using particular words and a particular syntax (i.e how the
words can be combined with each other)

• C, C++, Pascal, Basic, Fortran, Cobol, Java, Python are all
programming languages consisting of a collection of words and
a syntax that is specific to each language

Intro to java

• To get the computer to execute a sequence of tasks, it is
therefore necessary to know one of those languages

• The translation of the source code (i.e. the higher level code
written in your favorite programming language) into the
executable (lower level) machine language is done by a
program known as the compiler

• Compiling consists in running a program that reads every
instruction from the (higher level) source code, check if those
are following the syntax of the language and then, provided
there is no mistake, the compiler produces a binary code that
can be executed by the computer

Intro to java

• A program written in Pascal is translated in machine language
through a Pascal compiler. Similarly a program written in Java
is translated in machine language through a Java compiler

• However, the binary code (machine language) that can be
understood by each machine changes from one machine to
another.

• The binary code associated with each operation (e.g.
addition) is determined by the designer of each computer

• It is therefore impossible to run the same source code on two
different machines without having to compile it twice

• The idea of Gosling was that it should be possible to execute
a program written on a PC (IBM), just as on Mac (Apple) or
on any Unix station (Sun type) without having the re-write or
re-compile the source code, I.e introduce a language that
would be independent of the computer.

• In order to do this, Gosling decided to create an intermediate
code between the source code and the binary code

• This intermediate code is known as pseudo code or byte code

Intro to java

• The byte code can then be generated once and used on every
machine without having to re-compile it.

• Generating the machine code from the byte code is then done
by a specific program which varies from one machine to the
next and is known as Java interpreter (there are thus as many
interpreters as there are computers)

• The collection of all interpreters makes up what is known as
the Java Virtual Machine (JVM)

• Unlike other compilers such as C or C++, the Java compiler
hence does not create binary code but produces the bytecode
which is then interpreted by the JVM

Intro to java

• The advantage of this is that the developper is guaranteed
that the program that he/she will design is perfectly
compatible with any of the available computers

Intro to java

• The first Java compiler was designed by Gosling for Sun
around the 90’s

• Today the compiler is provided as part of the Java
Development Kit (JDK) or Standard Development Kit (SDK)
which is available for Solaris, PC, Mac or Linux.

• The JDK is a toolbox designed for the development of
applications which contains multiple tools/programs which
can be executed as particular commands

• Two of the most important ones are the compiling (javac)
and the execution (java) commands

Intro to java

• So what are examples of Java applications?

Data Types

• Most commonly used data types in Java:

boolean true or false
char 16 bit Unicode character
byte 8 bit signed two’s complement integer
short 16 bit signed two’s complement integer
int 32 bit signed two’s complement integer
long 64 bit signed two’s complement integer
float 32-bit floating point number (IEEE 754-1985)
double 64 bit floating point number (IEEE 754-1985)

• The two’s complement of an N-bit number is defined as its
complement with respect to 2N . I.e. the sum of a number
and its two complement is 2N . For example 010 + 110 = 100
= 8. So the two complement of 010 is 110

• Two’s complement is the most common method of
representing signed integers on computers. If the binary
number 010 encodes the signed integer 2 then its complement
110 encodes the inverse −2

• The IEEE 754-1985 standard consists of a sign bit (+1/-1), a
sequence of 8 bits encoding the exponent and a sequence of
23 bits encoding the mantissa.

• As an example, consider the number 85.125 For this number

we have

85 = 1010101
0.125 = 001
85.125 = 1010101.001

=1.010101001 x 26

sign = 0

• In single precision the biased exponent is obtained by adding
127 to the exponent

biased exponent 127+6=133
133 = 10000101
Normalised mantisa = 010101001

• We then add 0’s to complete the 23 bits

• The IEEE 754 Single precision representation of 85.125 is then
given by

0 10000101 01010100100000000000000

Intro to java

• In Java the name of a class, method or variable is called an
identifier which can be any string of characters as long as it
begins with a letter and consists of letters, numbers and
underscore characters (besides a couple of reserved words)

Intro to java

• In addition to executable statements and declarations, just as
any other language, Java allows programmers to embed
comments (i.e annotations that are not processed by the
compiler) in the script.

• There are two types of comments: inline comments (ignoring
everything subsequently on the line) and multiline comments
(which open with /* and close with */)

// This is an inline comment

/*

* This is a block comment

*/

Intro to java

• A variable having any of the types char, int, double,.. simply
stores a value of that type

• Variables can be declared as follows

boolean flag = true;

boolean verbose, debug;

char grade = ’A’;

int i, j, k = 257;

double e = 2.71, a = 6.22e23

Intro to java

• In more complex java programs the primary actors are objets

• Every object is an instance of a class which serves as the type
of the object

• The critical members of a class in java are the following:

• Instance variables (also called fields) which represent the data
associated with an object of a class. Instance variables must
have a type (base type such as int, float, double, or a class
type)

• Methods = blocks of code that can be called to perform
actions (similar to functions and procedures). Methods can
accept parameters as argument and their behavior depends on
the object upon which they are called

Intro to java

• A Method that returns information to the caller without
changing any instance variable is called an accessor method

• An Update method is a method that may change one or more
instance variables when called.

Intro to java

• Consider the class below.

public class Counter {

private int count;

public Counter() {}

public Counter(int initial) { count = initial; }

public int getCount() {return count; }

public void increment() {count++; }

public void increment(int delta) {count = 0; }

public void reset() {count = 0; }

• This class contains one instance variable named ’count’

• It also contains two special methods known as constructors

• Finally it contains one accessor method and three update
methods

Intro to java

• Here is another example of a class

public class CounterDemo {

public static void main(String[] args){

Counter c;

c = new Counter();

c.increment();

c.increment(3);

int temp = c.getCount();

c.reset(); // value becomes 0

Counter d = new Counter(5);

d.increment();

Counter e = d;

temp = e.getCount();

e.increment(2);

}

}

Base type vs Reference Type

• There is an important distinction in java between base type
variables and reference type variables.

• Classes in java are known as reference types and variables of
that type are called reference variables

• A reference variable is capable of storing the location
(memory address) of an object of the declared class

• In particular, we might use it to reference an existing instance
or a newly created one

• A reference variable can also store the special value null that
represents the lack of an object

Base type vs Reference Type

• From the class CounterDemo, we also see that in java, a new
object is created by using the new operator followed by a call
to a constructor to the desired class

c = new Counter();

Counter d = new Counter(5);

• A constructor is a method that always shares the same name
as its corresponding class

• The new operator returns a reference to the newly created
instance and the returned instance is then typically assigned
to a variable for further use

Constructors

• A Constructor that takes no argument, e.g. Counter() is
known as a default constructor

• When creating a new instance of a class, three events occur:

• A new object is dynamically allocated in memory with all
instance variables initialized with default values (null for
reference types and 0 for base type). That is the object is not
yet associated with the memory address

• The constructor for the object is called, assigns more
meaningful values to the variables and/or perform additional
operations needed

• The new operator returns a reference (memory address) to the
newly created object. If the statement is of the form of an
assignment, then the address is stored in the object variable.

The dot operator

• An object reference variable is useful to access the instance
variables and the methods associated with the object

• This access is performed with the dot (.) operator

• We call the method associated with an object by using the
reference variable name followed by the dot and then the
method name and its parameters

c.increment();

c.increment(3);

c.reset(); // value becomes 0

d.increment();

temp = e.getCount();

e.increment(2);

The dot operator

• If the dot operator is used on a reference that is currently null,
the Java Runtime environment will throw a NullPointer
Exception

• If there are several methods that match a same name, the
Java runtime system uses the method that matches the
number of parameters

• A method’s name together with the number and type of its
parameters is called a method’s signature

• the signature in Java does not include the type that the
method returns. As a consequence Java does not allow tow
methods with the same signature to return different types.

The dot operator

• A reference variable can be viewed as a pointer to the
corresponding object.

• In other words the reference variable acts as a remote control
that can be used to control the newly created object

Modifiers

• Before the definition of classes, instance variables or methods,
we always find a series of keywords known as modifiers that
can convey additional stipulations about the definition

• There are 4 main such modifiers:

• Access control modifiers public, protected, private

• The static modifier

• The abstract modifier

• The final Modifier

Modifiers

• Access control modifiers control the level of access (also
known as visibility) that the definining class grants to other
classes within the context of a larger Java program

• The three access control modifiers are the following:

• public: If a member of a class has public visibility, it can be
directly referenced from outside the object (for example
through a call to the dot notation from an instance of the
corresponding class)

• When a member of a class has private visbility it can be used
anywhere inside the class definition but cannot be referenced
externally

• Finally the protected class modifier restrict access to
subclasses of the given class (i.e classes that inherit from the
given class) and classes that belong to the same package (we
will discuss this later)

Modifiers

• If no explicit control modifier is given, the defined aspect has
what is known as package-private access level. This allows
other classes in the same package to have access but not
classes from other packages

• This idea of limiting access supports a key idea of object
oriented programming known as encapsulation

• In particular, instance variables should be declared with
private visibility to promote encapsulation

Modifiers

• Classes will usually be public except if they encode some
implementation details.

• More specifically, we only declare a class private when it is
nested within another class and it is meant to be an
implementation detail

• Similarly constructors are usually public as well (aside from a
couple of exception such as singleton class for which we want
to limit the number of objects to one)

• Together those two aspects mean that the statement public
class Counter means that all the other classes are allowed to
construct new instances of the counter class.

Modifiers

• To illustrate Access control modifiers one last time, consider
the example of the class Counter(). In this class, the variable
counter is private which means that we are allowed to read or
edit its value from within methods of that class

• The method getCount on the other hand is declared as public,
which, since the class and constructor are public as well,
means that any other class can make a call to that method
(as an example of this, the class CounterDemo makes the call
to c.getCount())

public Class Counter {

public Counter() {}

private int count;

public int getCount() {return count; }

}

Modifiers

• Note that although it is recommended to declare your
variables as private, you can always define public methods
that grant access to those variables to oustide classes in a
controlled manner. Such methods are known as accessors and
mutators

• An example of an accessor method is the method is the
getCount method from the Counter class

public class Counter {

private int count;

public int getCount() {return count; }

Modifiers

• One could then wonder why to set some members as private if
we can still modify those members through accessors and
mutators.

• When a member of a class is public it can be accessed from
anywhere in the code. This also means that anybody can
modify the value of the variable the way he/she wants
anywhere in the code.

• Through the accesssors and mutators however, you can
directly control how other programmers can interact with the
members of your classes.

Modifiers

• As an illustration of this, consider the example of piece of
code that enable a use to specify the number of passengers on
a particular flight. If you set the variable in your class as
public, any user can then specify any value for that number

• In particular a user could specify a number of passenger that
exceed the number of seats in the aircraft.

• To avoid this, you could set the passenger variable of the
aircraft private and create a method that makes it possible for
another programmer to change its value provided that it does
not exceed the plane size and return an error if it does

• Setting a variable as public can be understood as putting no
restriction on what other programmers can do with the
variable.

Modifiers

• If you later want to add some control on a particular member,
you will then have to screen the whole program and manually
control each of the spots where this member is used.

Modifiers

• The static modifier in Java can be used for any variable or
method of a class

• When a variable is declared as static, its value is associated
with the class as a whole an not with the individual instances
of the class

• A static variable is shared among all instances of a class. I.e.
there is only one copy of a static variable for all the objects of
the class.

• As a consequence, changing the value of a static variable for
one object changes it for all the others

• Memory space for a static variable is established when the
class that contains it is referenced for the first time in a
program. A local variable declared within a method cannot be
static.

Modifiers

• When a method of a class is declared as static, it too is
associated with the class itself.

• That means that the method is not invoked using an instance
of the class through the dot notation

• Instead, it is invoked throught the class name

Modifiers

• To illustrate this, consider the following code snippets

public class SloganCounter{

public static void main (String[] args) {

obj = new Slogan("Yes we can");

System.out.println(obj);

obj = new Slogan("Make America Great Again");

System.out.println(obj);

System.out.println();

System.out.println("Total slogans created: " +

Slogan.getCount());

}

Modifiers

public class Slogan{

private static int count = 0;

public Slogan (String str){

phrase = str;

count++;

}

public static int getCount () {

return count

}

}

Modifiers

• In your opinion, what will the value of count be ?

• You see that the getCount method is static which allows it to
be invoked directly through the class name.

• Also note that as a static method, getCount cannot reference
any non static variable

Modifiers

• The abstract modifier. A method of a class may be declared
as abstract. In this case its signature is provided but without
an implementation of the method body. Abstract methods are
usually combined with inheritance.

• Any subclass of a class with abstract methods is expected to
provide a concrete implementation of the abtract methods

Modifiers

• The last modifier, the final modifier is used to declare data
that will remain constant throughout the program. In Java a
variable that is declared final can be initialized as part of a
declaration but can never be assigned a new value.

• If a base type is declared as final, then it is considered a
constant (and it is usually a good idea to write it in capital
letters as shown below). If a reference variable (object) is
declared as final, it will always refer to the same object

• When a member variable of a class is declared as final, it will
typically be declared static as well. This is explained by the
fact that it is unnecessary to have every instance of a class
store the identical value when that value can be shared by the
entire class

final int MAX_OCCUPANCY = 427

Modifiers

• Declaring a method or class with the final modifier has a
completely different meaning which really makes sense in the
context of inheritance.

• A final method cannot be overriden by a subclass and a final
class cannot be inherited.

Instance variables

• In Java, when defining a class, we can simultaneously declare
any number of instance variables

• Each instance of a class maintains its own individual set of
instance variables

• The general syntax for declaring one or more instance
variabels of a class is the following

[modifiers] type identifier1(=initialValue1),

identifier2(= initialValue2);

• Note that when no initial value is provided, the variable is
automatically assigned the value 0

Methods

• A method has two parts: the signature (which defines the
name and parameters) and the body which defines what the
method does when it is called

[modifiers] returnType methodName(type1 param1, ...

typeN paramN){

// method body

}

• The returnType specifies the type of the value returned by the
method

• The method name can be any valid Java identifier

Methods

• The list of parameters and their type declares the local
variables that will store the values passed to the method when
invoked. Those can be of any type and identified by any
proper Java identifier. The bracket can also be empty
(meaning no params are needed).

• Those parameters, as well as the instance variables and the
methods of the class can be used within the body of the
method.

• When a non static method of a class is called, it is invoked on
a specific instance of the class and it can change the state of
the this instance.

public void increment(int delta){

count +=delta;

}

Methods and return types

• A Method definition must specify the type of value that the
method will return

• If a method does not return a value, then the keyword void
must be used

• To return a value in java, the body of the method must use
the return keyword followed by a variable of the appropriate
type

public int getCount(){

return count;

}

• Note that in Java methods can return only one value. To
return multiple values you must return them in a single
compound object.

Methods and parameters

• A method’s parameters are defined in a coma separated list
enclosed in parentheses

• the parameters declaration consists of two parts, the
parameter type and the parameter name

• In Java, all parameters are passed by value which means that
any time we pass a variable to a method, a copy of the value
of that variable is made for use within the method body.

• If we pass an int variable, the variable’s integer value is
copied. If we pass an object, the reference of the object is
copied as well

Methods and parameters

• Note that this in particular means that the method cannot
change a variable associated to a base/primitive type (as it
will only be able to act on the value itself) but it can change
the object (as it can act on the copy of the pointer to the
object)

• When a method is called, the value in each actual parameter
is copied and stored in the corresponding formal parameters

• The formal parameter names in a method header serve as
local data for that method. In particular, they don’t exist until
the method is created and they cease to exist when the
method is exited.

A short Illustration (primitive type, Part I)

public class Counter{

public int count;

public Counter(){}

public int CountIncrease(int count){ count++;

return count; }

public void CountIncrease2(int count){ count++; }

public void CountIncrease3(){ count++; }

}

A short Illustration (primitive type, Part II)

public class displayTest{

public static void main(String[] args){

Counter countObj = new Counter();

int count2 = 0;

int count3 = 0;

int count4 = 0;

count3 = countObj.CountIncrease(count2);

countObj.CountIncrease2(count4);

A short Illustration (primitive type, Part III)

System.out.print(countObj.count);

System.out.printf("%n");

System.out.print(count2);

System.out.printf("%n");

System.out.print(count3);

System.out.printf("%n");

System.out.print(count4);

System.out.printf("%n");

System.out.print(countObj.count);

System.out.printf("%n");

countObj.CountIncrease3();

System.out.print(countObj.count);

}}

A short Illustration (reference type, Part I)

public class testObject{

public int valueO;

public testObject(){}

}

A short Illustration (reference type, Part II)

public class testObject2{

public static void increasetO(testObject to){

to.valueO = to.valueO + 1;

}

public static void main(String[] args){

testObject to1 = new testObject();

System.out.print(to1.valueO);

System.out.printf("%n");

increasetO(to1);

System.out.print(to1.valueO);

System.out.printf("%n");

}}

A short Illustration (reference type, Part III)

• Why do I need the first method to be static ?

Another Illustration

• Recall the counter class

public class Counter {

private int count;

public Counter() {}

public Counter(int initial){count = initial; }

public int getCount() {return count; }

public void increment() { count++; }

public void increment(int delta) {count += delta; }

public void reset() {count = 0; }

}

Another Illustration

• We then define a new class with the following two methods

public static void Method1(Counter c){

c = new Counter();

c.increment();

}

public static void Method2(Counter c){

c.increment();

}

• Imagine that we apply each method to an object, let’s call it
striker from the Counter class that has just been initialized
(i.e striker.count = 0). What will be the value of striker.count
after calling each method?

Constructors

• Constructors (which we have already encountered in the
previous snippets) are a special kind of method that are used
to initialize a newly created instance of the class

• Constructors initialize each instance variable of the object
(note that we have seen that we can have multiple
constructors that initialize part of the instance variables)

• The general syntax to call a constructor is the following

modifiers name(type0 parameter0, ..., typeN parameterN){

// constructor body

}

Constructors

• Constructors cannot be static, abstract or final so the only
modifiers that are allowed are the visibility modifiers: public
protected, private

• The name of the constructor must be identical to the name of
the class it constructs

• We don’t specify a return type for a constructor (not even
void)

• When a user of class creates an instance using the syntax

Counter d = new Counter(5)

The new operator is responsible for returning a reference to
the new instance. The constructor only initializes the state of
the new instance

Constructors

• A class can have multiple constructors but each must have a
different signature

public Counter() {}

public Counter(int initial){count = initial; }

• If no constructor is defined, java provides a default implicit
constructor having zero argument and leaving all instance
variables initialized to their default values

The keyword this

• Within the body of a non-static (recall that the word static
refers to the class itself) method, the keyword this is defined
as a reference to the instance upon which the method was
invoked

• There are three main reasons why the keyword this may be
useful:

• To store the reference in a variable or pass it to a method that
can take an instance of that type as an argument

• To differentiate between an instance (i.e. class) variable and a
local variable of the same name

public Counter(int count){

this.count = count;

}

The keyword this

• There are three main reasons why the keyword this may be
useful:

• To store the reference in a variable or pass it to a method that
can take an instance of that type as an argument

• To differentiate between an instance (i.e. class) variable and a
local variable of the same name

• To allow one constructor body to invoke another constructor
body

public Counter(){

this(0) /* use one parameter constructor

with value 0 */

}

The main method

• Some Java classes are meant to be used by other classes but
are not intended to serve as a self standing program

• The primary control for an application in Java must begin in
some class with the execution of a special method named
main.

• The main method is declared as follows:

public static void main(String[] args){

// main method body

}

The main method

• The args parameter is an array of String objects, that is
args[0] is the first string, args[1] is the second string,...

• Those represent what are known as command line arguments
that are given by the user when the program is executed (we
will say more on this later)

• a Java program can be called from the command line using
the java command followed by the name of the Java class
whose main method we want to run plus additional arguments

• If we had defined our program to take an argument, we would
have invoked the program as the second line below

java class1

java class1 string1

The main method

• In the case of an additional argument, it is up to the body of
the main method to interpret string1 as the required
information, just as in the example below

for(int i = 0; i < args.length; i++) {

System.out.println("Argument is: "+args[i]);

}

