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So far

e Simple reflex, random agents, Utility based, Goal based

e Improvement through Search Methods (uninformed (DFS,
BFS), informed (BS, A*)).

e Logical Reasoning, Propositional logic + First Order Logic,
Inference



This week

e Human cognition consists of three remarkable capabilities:
perception, learning, and reasoning,

e Modern artificial intelligence (Al) systems exhibit all three of
those abilities

e Machine learning techniques such as deep neural networks
have achieved extraordinary performance in solving
learning/perception tasks

e Meanwhile, logic-based Al systems have succeeded in
demonstrating human-level reasoning abilities in theorem
proving and inductive reasoning.



Reasoning

e Reasoning is the generation or evaluation of claims in relation
to their supporting arguments and evidence

e Reasoning skills are also crucial for being able to generate and
maintain viewpoints or beliefs that are coherent with, and
justified by, relevant knowledge

e What really separates learning from reasoning is the ability for
the technology to become smarter over time. Not just from
logical entailment, but from new, possibly unexpected pairs of
observations and feedbacks.



Learning vs Reasoning

e An agent is learning if it improves its performance on future
tasks after making new observations about the world.

e There are several reasons why we might want our agent to
learn.

e First the designer cannot anticipate all possible situations that
the agent might find itself in

e Second, the designer might not be able to anticipate all
changes over time. A program designed to predict tomorrow's
stock market prices must learn to adapt when conditions
changes from boom to burst

e Finally, the designer often has no idea how to program a
solution. In this case it is therefore better to let the agent
learn by itself, and improve through the data it acquires.



Forms of learning

e Any component of an agent can be improved by learning from
data

e The improvements depend on four main factors:

e Which component is to be improved
e What prior knowledge the agent has

e What representation is used for the data and the component
(e.g. a neural network (component) is used to learn to
recognize faces stored as images (data))

e What feedback is available to learn from (e.g. is it possible to
know whether a guess is correct or not 7 —; supervised vs
unsupervised)



Components to be learned

e So far we have discussed several approaches at designing an
agent. Among the components we discussed, several of them
could be learned.

e A first component that we might want the agent to learn is
the mapping between its internal representation of the
environment and the actions it can take

e Another component that one might want the agent to learn is
a means to infer relevant properties of the world from its
percept sequence

e Finally, besides learning the mapping between the
representation of the environment and the optimal action to
take, it can sometimes be useful to learn a more general
mapping between each action and its value in the long run



Representation and Prior knowledge

e We have already covered two knowledge representations,
when learning to code logical agents: Propositional Logic and
First Order Logic

e When discussing learning in uncertainty, we will introduce yet
another knowledge representation approach known as
Bayesian networks.

e In this third part, our interest will focus on mapping between
inputs that are encoded through a factored representation (a
vector of attribute values) and outputs that can be either
continuous (regression) or discrete (classification).

e The approach of learning a rule form specific input/output
pairs is called inductive learning



Representation and Prior knowledge

e The alternative, deductive learning corresponds to going from
from a known general rule to a new rule that is logically
entailed but useful because it allows more efficient processing



Feedback to learn from

e There are three types of feedbacks that determines the three
types of learning.

e In unsupervised learning, the agent learns patterns in the input
even though no explicit feedback is provided. The most
common unsupervised learning task is clustering: detecting
potentially useful clusters of input examples. An autonomous
car might for example be able to discriminate between good
traffic days and bad traffic days without being explicitly told
that the data it gets corresponds to good or bad days

e In reinforcement learning, the agent learns from a series of
reinforcements, rewards or punishments. For example the lack
of tip at the end of a journey gives the taxi agent an indication
that it did something wrong. The two points corresponding to
a win at the end of a chess game tell the agent that it did
something right.



Feedback to learn from

e In supervised learning, the agent observes some example
input-output pairs and learns a function that maps from input
to output. An autonomous cab could receive images of traffic
light. In a first step, it would be provided with the explicitly
meaning of the images: red light, orange light or green ligtht.
In a second time, it would have to determine the meaning of a
new image from the mapping between the previous images
and their associated meaning it was given.



Feedback to learn from

e The distinction between those different forms of feedback is
not always so crisp. In particular some hybrid approaches are
also possible

e In semi-supervised learning, we are given a few labeled
samples and we must make what we can out of a large
collection of unlabeled examples. As an example, imagine that
the agent is given a set of images and has to guess the age of
the persons whose faces have been captured by the pictures.
Let us say that the agent receives some feedback (i.e. some of
the people tell it explictly their age). Some of them lie though
and the agent therefore has to compare the picture and the
associated age information in order to detect the liars. This
second component thus requires some unsupervised learning
component.



Supervised learning

e The task of supervised learning is the following:
Given a training set of N example input-ouput pairs

(Xlay1)7 (X2ay2)7 ERE} (XNayN)

where each y; was generated by an unknown function
y = f(x), discover a function h that approximates the true
function f

Here x and y can take any value. They need not be numbers.

The function h is called a hypothesis

e Supervised learning can be seen as a search through the space
of all hypotheses for one that will perform well.



Supervised learning

e To measure the accuracy of a hypthesis, we give it a test set
of examples that are distinct from the training set. We say
that a hypothesis generalizes well if it correctly predicts

e We say that a hypothesis generalizes well if it correctly
predicts the value of y for new examples. Sometimes the
function is stochastic (it is not strictly a function of x) and
what we have to learn is a conditional probability distribution
P(t|x).

e When the output y is one of a finite set of values (such as
'sunny’, 'cloudy’ or 'rainy’), the learning problem is called
Classification (we talk about boolean or binary classification if
there are only two possible values. When y is a number (such
as tomorrow’s temperature), the learning problem is called
Regression)



Supervised learning

e In both problems, we want to learn the mapping f from x to
y. Since we cannot store all possible such mappings, we need
to restrict to particular classes of mappings that can be
efficiently stored by the agent.

e Consequently, we will usually select our mappings from a
particular hypothesis space H.

e A particular hypothesis is called consistent when it agrees with
all the data (i.e. for all training examples (x;, y;) from D,

hs(xi) = yi)-

e This illustrates a fundamental problem in inductive learning:
how do we choose from among multiple consistent
hypotheses?



Supervised learning

e One answer is to prefer the simplest hypothesis consistent
with the data

e This principle is known as Ockham'’s razor after the 14th
century English philosopher William of Ockham who used to
argue sharply against all sorts of complications.

e In general there is a tradeoff between complex hypotheses
that seem to fit the data well and simpler hypotheses that
may generalize better.

e We say that a learning problem is realizable if the hypothesis
space contains the true function.



Learning Decision Trees

e Decision Trees is one of the simplest yet most successful
learning algorithm

e A decision tree is used to encode a function that takes as
input a vector of attribute values A= (Ai,...,Ap) and
returns a decision (i.e. a single ouput value)

e At first we will focus on examples where the input is
represented by discrete values and the output has exactly has
two possible values

e An input is classified either as a positive, or as a negative
example



Learning Decision Trees

e A decision tree reaches its decision by performing a sequence
of tests

e Each internal node in the tree corresponds to a test of the
value of one of the input attributes, let's say A;, and the
branches from that node are labeled with the possible values
of this input attribute, A; = v;

e Each leaf node in the tree specifies a value to be returned by
the function



Learning Decision Trees

e As an example we could build a decision tree to decide
whether to wait for a table at a restaurant.

e The goal here is to learn a representation for the goal
predicate '"Will Wait'. We first list the attributes that will
determine the output

1.

2.

Alternate. Whether there is suitable alternative nearby

Friday/Saturday. True if it is either Friday or Saturday

. Bar. Whether the restaurant has a comfortable bar area nearby
. Hungry Whether we are hungry

. Crowded. How many people are in the restaurant (possible

values are None, Some and Full)



Decision Tree (deciding whether or not to look for a table)

FriSat?



Learning Decision Trees

e Note that a Boolean decision tree is logically equivalent to the
assertion that the goal attribute is true if and only if the input
attributes satisfy one of the path leading to a leaf with value
true.

e Writing this in propositional logic gives
Goal < (PathlV Path2Vv...)

where each path is a conjunction of attributes-values test
required to follow that path

e The whole expression is therefore equivalent to a disjunctive
normal form.

e This also means that any function in proposional logic can be
encoded as a decision tree.



Learning Decision Trees

e Decision trees are learned on (x, t) pairs, where x is a vector
of values for the input attributes and t is a single Boolean
output value.

e The decision tree learning algorithm adopts a greedy divide
and conquer strategy. Always test the most important
attribute first. By most important attribute, we mean the one
that makes the most difference to the classification of an
example.

e This way we hope to get the correct classification with a small
number of tests (all paths in the tree should be short and and
the tree as whole should be shallow)



Learning the tree

if Examples is empty then
| return most_common(parent_examples)

end

else if all examples have the same classification then
| return the classification

end

else if attributes is empty then

return most_common (examples)

end

else

A+ argmax Importance(a, examples)
acattributes . .

tree < a ne decision tree with root test A

for each value v, of A do
exs < {e : e € examples and e.A = v, }
subtree +
decision_tree_learning(exs, attributes - A, examples)
add a branch to tree with label (A = v,) and subtree subtree
end
end

Algorithm 1: Learning a Decision Tree



Choosing the attributes

e At each step, the construction of the tree considers the
following four criteria:

e If the remaining examples are all positive (or all negative),
then we are done. We can answer yes or no.

e |f there are some positive and some negative examples, then
choose the best attribute to split them.

e If there are no examples left, it means that no example has
been observed for this combination of attribute values. One
approach is to return a guess based on the most common
attribute among the parents

e If there are no attributes left, but both positive and negative
examples, it means that these examples have exactly the same
description but different classifications. (can arise from errors,
noise,..). One approach is then to return the most common
decision among the examples as the final decision for the node.



Choosing the attributes

e The gready learning algorithm just discussed is designed to
minimize the depth of the tree.

e When possible, a perfect splitting should divide the tree into
two sets, each of which only contains positive or ngative values

e To optimize the tree, we thus need a formal measure of how
good a splitting can be.

e One approach is to use the notion of information gain, which
can be represented by the notion of entropy, a fundamental
quantity in information theory.

e Entropy is a measure of the uncertainty of a random variable.
Acquisition of information leads to a reduction of entropy.



Choosing the attributes

A random variable with only one value (e.g. a coin that
always comes up heads) has no uncertainty and its entropy
thus takes the value 0

That also means that we gain no information by observing its
value

A flip of a fair coin is equally likely to come up heads or tails,
0 or 1, and we will show that this counts as '1bit’ of entropy.

The roll of a fair four sided die has to bits of entropy because
it takes two bits to describe one of four equally probable
states.



Choosing the attributes

e Consider an unfair coin that comes up heads 99% of the time.
Intuitively that coin has less uncertainty than the fair coin (i.e
if we guess heads we will be wrong only 1% of the time) so we
would like it to have an entropy measure that is close to 0

e The Entropy of a variable V with values v, each with
probability P(vk) is defined as

Entropy : H(V ZP vk) logy ———— P ZP vk) log, P

e We can check that the entropy of a flipped fair coin is indeed
1 bit
H(Fair) = —(0.5log, 0.5 + 0.5l0og, 0.5) =1
e If the coin is loaded to give 99% heads, we get

H(Loaded) = —(.99 log, 0.99 + 0.01 log, 0.01) ~ 0.08 bits

Vi)



Choosing the attributes

e it will be helpful to use the short notation B(q) to denote the
entropy of a Boolean random variable that is true with
probability g

B(q) = —(qlogz g + (1 — q) logy(1 — q))

e Let us get back to the decision tree. If a training set contains
p positive examples and n negative examples, then the
entropy of the goal attribute on the whole set is

H(Goal):B( P )

p+n




Choosing the attributes
e An attribute A with d distinct values divides the training set
into E into subsets Eq,..., Ey

e Assume that we want to split a note which has p positive and
n negative examples by selecting a feature E which can take
one of d distinct possible values

e Further assume that each of the Ej siubset has pj positive
and nyg negative values.

e We can compute the average entropy after the split has

d +n
remainder(A) = P kg < Pk >
— Ptn Pk =+ ng




Choosing the attributes

e Intuitively, one can understand the term B(pk’irknk) as the
number of bits of information we will need to answer the

initial question if we go along that branch.

e To make this clear, we cna further define an notion of
information gain representing the expected reduction in
Entropy,

Gain(A) = B <n _‘; - Remainder(A))

e Gain is what we will use in our importance function.



Choosing the attributes

e Intuitively, one can understand the term B(pk’irknk) as the
number of bits of information we will need to answer the

initial question if we go along that branch.

e To make this clear, we cna further define an notion of
information gain representing the expected reduction in
Entropy,

Gain(A) = B <n _‘; - Remainder(A))

e Gain is what we will use in our importance function.



Choosing the attributes

e A important risk in learning is to excessively rely on the
training examples.

e As an illustration of this, consider building a tree that has to
predict when a die will return a value of 6.

e The training set consists of examples that encoded though a
set of features containing for example the color of the die, the
fact that you crossed your fingers when the die was thrown, ...

e If it happens that there are two rolls of a blue die which you
threw with your fingers crossed, that return the value 6, the
decision tree will conclude that launching a blue die with your
fingers crossed consistently returns a 6.

e This problem is known as overfitting.



Choosing the attributes

e For decision trees, a technique called decision tree pruning can
be used to combat overfitting.

o We start from a full tree. We then look for a node that only
has leaf nodes as descendants

e If the node is irrelevant in terms of the classification (low
information gain or proportion of positive samples equivalent
to the total proportion), we eliminate the test (parent +
children) and replace it with a leaf node.

e The test is then repeated until each node has either been
removed or accepted as is.



Decision tree pruning

e How large a gain should we consider before pruning a
particular attribute?

e One approach is to consider a Statistical significance test

e Let p denote the total number of positive and n denote the
total number of negative in the parent node. In the case of a
meaningless split, the number of positive and negative
samples in the k™ child can be estimated approximately as

N Pk +ng 5 Px + N

=pX ———, Ng=n
Pk =P b+ n k p+n



Decision tree pruning

e We can then estimate how much our split deviates from a
meaningless split, by considering the y? test

N

d Pk — Px) (”k — Ap)?
A=
> 7
k=1
which is used to answer the question: Does the split matches
the Null Hypothesis (= random splitting of the examples)?

e Under the null hypothesis, A follows a x? distribution with
v = n+ p degrees of freedom

e Quantitatively it corresponds to the probability of rejecting
the null hypothesis given that this null hypothesis was
assumed to be true



Decision tree pruning

e For example, a significance level of 0.05 indicates a 5% risk of
concluding that a difference exists when there is no actual
difference.

e E.g. For a x? with 3 degrees of freedom, a value of A = 11.35
or more would reject the null hypothesis at a 1% level

chi-square (y2) Distribution
Area to the Right of Critical Value

Degrees of
Freedom 0.99 0.975 0.95 0.90 .10 0.05

1 - 0001 0.004 0.016 2706 3541

2 0.020 0051 0.103 0211 4.605 5.901

3 0.115 0216 0.584 6.251 7.815

4 0297 0454 1.064 7.779 0488

5 0554 0831 1610 9.236 11071

6 0872 1237 2204 10,645 12.592 16812
T: 1239 1.690 2.833 12017 14.067 18475
8 1.646 2.180 3490 13.362 15.507 20,090
9 2.088 2700 4.168 14.684 16919 21.666
10 2558 3247 4.865 15.987 18307 23209
11 3053 3816 5.578 17.275 19.675 24725
12 3571 4404 6.304 18.549 21.026 26217
13 4.107 5009 7.042 19.812 27688
14 4660 5629 7790 21064 20.141
15 5229 6.262 8,547 22.307 30.578
16 5812 6.908 9312 32.000
17 6408 7.564 10.085 33400
18 7015 8231 10.865 34,805
9 7633 8.907 11.651 36.191
20 8260 9.591 12443 37.566




Another example: polynomial regression

e When we learn, we do not know the true mapping f but we
approximate it from the hypothesis space H

e As an example we could take this space to be the space of
polynomial with bounded degree.

e For any particular dataset {x(i),y(i)};\lzl, polynomials of
higher degree will always interpolate the data better than
polynomials of low degree.



Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

Another example: polynomial regression

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

Degree 15
MSE = 1.83e+08(+/- 5.48e+08)

—— Model
—— True function
o Samples

— Model
—— True function
o Samples

— Model
—— True function
o Samples




Model

selection: Complexity vs Goodness of fit

When the agent will learn a model, we will also want it to
learn a hypothesis that we will fit future data well

A professor knows that an exam will not accurately evaluate
the students if they have already seen the exam questions.

Similarly, to get an accurate evaluation of a hypothesis, we
need to test it on a set of examples it has not seen yet

How then select the optimal degree in the regression problem
?



Model selection: Complexity vs Goodness of fit

e A simple approach is to randomly split the data into a training
set (from which the learning algorithm procduces h) and a
test set on which the accuracy of h is evaluated

e This approach known as holdout cross validation has the
disadvantage that it fails to use all the available data. If we
use half the data for the test set, then we are only training the
agent on half the data and we may get a poor hypothesis



Model

selection: Complexity vs Goodness of fit

We can squeeze more out of the data using a technique called
K-fold cross validation.

The idea of K-fold cross validation is that each sample serves
double duty (both training and test).

First we split the data into K equal bins.

We then perform K rounds of learning. On each round, 1/k
of the data is held out as a test set and the remaining
examples are used as training data.

The average test set score should provide a better estimate
tha a single score.



Model selection: Complexity vs Goodness of fit

e Machine learning models can also be represented by means of
a utility function

e In machine learning, it is common to encode such a utility by
means of a loss function

e The loss function L(x, y,y) can be interpreted as the amount
of utility lost by predicting h(x) = y when the correct answer

is y = f(x).



Model selection: Complexity vs Goodness of fit

e Two popular functions for the loss are the absolute value of
the difference (called L; loss) and the square of the difference
(called L; loss). If what we want is to minimize error rates, a
popular choice is the binary Ly/; loss function,

Absolute value loss : Li(y,y) = |y — 9|
Squared error loss : Lo(y,9) = (y — 9)?
0/1loss: Ly/1(y,y)=0ify =y, else 1



Model selection: Complexity vs Goodness of fit

e A learning agent can theoretically maximize its expected
utility by choosing the hypothesis that minimizes expected
loss over all input-output pairs it will see.

e |t does not make sense to talk about the expectation if we do
not introduce the prior probability distribution P(x,y) over
the examples

e Let £ denote the set of all possible input-output examples.
Then the expected generalization loss for a hypothesis h with
respect to the loss L is

GenlLoss,(h) = > L(y, h(x))P(x,y)
(x,y)e€
and the best hypothesis is the one with the minimum

expected generalization loss

h* = argminGenLoss; (h)
heH



Model selection: Complexity vs Goodness of fit

e Because P(x,y) is not known, the learning agent can only
estimate the generalization loss from the empirical loss on a
particular subset of the examples

Emploss; g(h Z L(y,h
( y)eE

e The esimated best hypothesis h* is then the one with
minimum empirical loss

h* = argminEmpLoss; £(h)
heH ’



Model selection: Complexity vs Goodness of fit

e There are four reasons why h* may differ from the true model

f:
e First f may not be realizable (may not be in #)

e Second, a learning algorithm will return different hypotheses
for differnet sets of examples, even if those are drawn from the
same function f

e Third, f may be non deterministic or noisy. It may return
different values for f(x) each time x occurs

e Finally when H is complex, it may be computationally
intractable to systematically search the whole hypothesis space.



Regularization

e As we saw, one approach at selecting our model is to do cross
validation on the model complexity or size

e An alternative approach is to search for a hypothesis that
directly minimizes the weighted sum of the empirical loss and
the complexity of the hypothesis, which we call the total cost

Cost(h) = EmpLoss(h) + A\Complexity(h)
The optimal hypothesis then being given by

h* = argminCost(h)
heH
e Here X is a parameter, a positive number that serves as a
converstion rate between loss and hypothesis complexity

o We however still need to do cross validation in order to
determine the optimal value for A (i.e the value that gives the
best validation set score)



Regression and classification

e Let us now move away from trees and consider a different
hypothesis space, one that has been used for hundred of years:
the class of linear functions of continuous inputs

e A univariate linear function (a straight line) with input x and
output y has the form y = B1x + Bg where 8y and 7 are real
coefficients to be learned.

o Let B = [B1, Bo]. The task of finding the hypothesis hg that
best fits the data is called linear regression

e To fit a line to the data, all we have to do is find the values of
the weights (31, 5op) that minimize the empirical loss



Regression and classification

e |t is traditional to use the squared loss function, L, summed
over all training samples

N
Loss(hg) = Z La(yj, ha(x)))
=1

-
Il

(yj — ha(x3))

I
M=

.
Il
—

(v; — (Bix; + Bo))?

Il
™=

—.
|
-

e We woud like to find the 5* = argminLoss(hg)
B



Regression and classification

e the sum

N

Loss(hg) = Z(yj — (B1x + Bo))?

Jj=1

is minimized when its partial derivatives with respect to 31
and By are zero

8 N

A ;(}’j — (B1xj + B0))2 =0
8 N

RER ;(Yj — (B1x; + B0))*> =0

Those equations have a unique solution



Regression and classification

e For univariate linear regression, the weight space (the space of
all possible settings of the weights) is two dimensional and
convex which implies that there are no local minimas.

e When consider more complex models (such as neural
networks), finding the optimal value for the weights will
involve a general optimization search problem in a continuous
weight space

e Such problems can be addressed by a hill climbing algorithm
that follows the gradient of the function to be optimized

e In this case, because we are trying to minimize the loss, we
use gradient descent



Gradient descent

3 < any point in the weight space
while num_iter < max_iter do
for each 3; in B do

0
i i— N4z L
i 4 B = 15 -Loss(9)
num_iter + =1
end

end
Algorithm 2: gradient descent

e The parameter 7 is called the learning rate or step size

e |t can be a constant or it can decay over time as the learning
process proceeds



Gradient descent

e in the univariate case, the partial derivatives are given by

oL _ Oy — hg(x))?
95 Loss(B3) = o8
=2(y — hﬁ(X))a%,- (v — ha(x))
= 2(y — ha(x)) 0 (v — (Bix + Bo))

0B

From which we get

0
%Loss(ﬁ) = —2(y — hg(x)),

(%Loss(ﬂ) = —2(y — hg(x))x



Gradient descent

e The gradient iterations thus yield

ﬂo<—50+772 ) — h(x1)),

j=1
N
By + B1+ nZ(y(J) _ hB(X(J)))X(‘/)
j=1
e Those iterates are referred to as Batch gradient descent
e An alternative consists in considering a single training example
{x(’),y(’)} at each iteration, cycling over the whole set of

examples. This second approach is known as Stochastic
gradient descent.



Multivariate linear regression

e We can easily extend the previous discussion to the
multivariate framework

e In this case, the hypothesis hg for an example x() reads as

D
ha(xD) = o+ Bix) + ...+ Buxl? = o+ >

j=1
e The 5y term is often called the intercept or the bias.

e If we introduce the weight vector 3 = [Bo, - -, Bp], and write

the input vector as x() = [1, x() . xD)] then we can
simply write the model as the dot product of the weight

vector and the input vector hg = B X



Multivariate linear regression

e As in the univariate framework, we can find the vector of
weights by minimizing the sum of squared errors

N
B* = argmin Zﬁg(y(i),BT)"((i))
B i

e The corresponding gradient descent iterates are then defined
as

N
8 B +ny_x (D = h(x))
i=1

e The solution 5* can also be found by setting the derivatives
to 0, as

B - XKy

Where X is the data matrix (having the examples x() as
rows.)



Multivariate linear regression

e When using multivariate linear, it is possible that some
dimension that is actually irrelevant, appears by chance to be
useful, resulting in a phenomenon known as overfitting

e A common approach to mitigate that risk is to rely on
regularization

e The total cost of an hypothesis hg being then given by
Cost(hg) = EmpLoss(hg) + AComplexity(hg)

e When the hypothesis is linear, such as in multilinear
regression, the complexity can be specified as a function of
the weights

Complexity(hg) = £>(B Z 16;1?



Multivariate linear regression

e Other possible regularizers include the ¢1 norm,

Complexity(hg) = Z |B;]
e (1 will usually favor sparser solutions (i.e solutions with more
weights set to 0).

e /1 can be seen to favor the axes while ¢, treats every direction
similarly



Multivariate linear regression

e This can be explained intuitively from the fact that for a
generic loss, the corners of the ¢1 ball will usually be located
closer to the minimum of the loss

B, B,

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2| < t and BF + B3 < t2, respectively,
while the red ellipses are the contours of the least squares error function.



Classification w/ hard threshold

e Consider for example a dataset that would consists of two
classes: earthquakes (which are of interest to seismologist)
and underground explosions (which are of interest to arms
control experts). Each point is defined by two values x; and
x> that refer to body and surface wave magnitudes.

e Given this training data, we want to learn a hypothesis hg
that will take a new measurement (x1,x2), and return either 0
for eartquakes and 1 for explosions.

e We call decision boundary the line that separates the two
classes

e A dataset that admits a linear decision boundary is called
linearly separable.



Classification w/ hard threshold

e Linear function can be used to do classification as well as
regression
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Classification w/ hard threshold

e Linear function can be used to do classification as well as
regression
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Classification w/ hard threshold

e In the case of the seismic dataset, the linear separator is given
by xo =1.7x1 —4.90or =49+ 1.7x1 —x =0

e The explosions that we want to classify with value 1 are those
on the right of the plane, i.e. they correspond to the pairs
(x1,x2) for which —4.9+1.7x3 — x» > 0

e While earthquakes correspond to the points
—494+1.7x1 —x < 0.

e From this, we can thus define the classification hypothesis as

hg(x) =1if 37x >0, and 0 otherwise



Classification w/ hard threshold

e Alternatively, we can think of our model hg as the result of

. . . ~T. .
passing a linear function 3 X through a threshold function

hs(x) = Threshold(3 %),
where Threshold(z) = 1, if z > 0, and 0 otherwise

e The issue with this model is that the gradient is now 0 almost
. ~T .
everywhere except at those points where 3 x = 0.

e There is however a simple weight update rule that converges
to a solution. For a single example (x(’),y(’)), we can indeed
take

B 4= 5+ (D — hg(x))x”

This rule is known as the percepton learning rule



Classification w/ hard threshold

e The perceptron learning rule works as follows:

e If the example (x(’),y(i)) is correctly classified by the model,
ie. if y() = hg(x)
o If y()is 1 but hg(x(")) is 0, the weight §; is increase when the

corresponding input Xj(i)
is negative. This makes sense as we want to make hg(x(’))

bigger so that it outputs a 1 instead of a 0

is positive and decreased if this input

o If y0is 0 but hg(x()) =1, then B; is decreased if xj(i) is
positive and increased when ><J.(i) is negative. This again makes

sense as we want to decrease the value of hg(x(i)) to zero.

e The Perceptron learning rule is guaranteed to find a separating
boundary provided that the data is linearly separable



