
CSCI-UA 9472 Artificial Intelligence

Additional Note on Neural Networks

Augustin Cosse

October 2020

1 A simple neuron

Recall that each unit of a neural network can be seen as an instance of the general model

y(x) = σ(w0 +

D∑
j=1

wjxj) (1)

A popular approach is to take the activation σ(x) to be the sigmoid function σ(x) = 1
1+e−x . Such

a choice is convenient as it makes it possible to interpret the output of the classifier (or neuron) (1)
as a proability. Indeed, since the sigmoid maps the real line onto the [0, 1] interval, one can decide
to use model (1) to represent the probability that a particular example should be classified in
class C1. Consequently, in the binary classification framework, the probability that an example

x(i) should be classified in class C0 will be given by 1 − σ(w0 +
∑D

j=1 wjx
(i)
j ). For this particular

approach, we thus write

p(x(i) ∈ C1) = p(t(i) = 1|x(i)) = σ(w0 +

D∑
j=1

wjx
(i)
j ) (2)

p(x(i) ∈ C0) = p(t(i) = 0|x(i)) = 1− σ(w0 +

D∑
j=1

wjx
(i)
j ) (3)

Now that we have chosen a model for our classifier, we are left with ”learning” that model. An
approach is to look for the weights w that maximize the probability of observing the data sample{
x(i), t(i)

}
we have. If we assume that our examples have been generated independently and that

for x(i) ∈ C1, we let t(i) = 1, and for x(i) ∈ C0 we let t(i) = 0, the total probability of observing the

set
{
x(i), t(i)

}N
i=1

can read as

p({ti}Ni=1 |{x
(i)}Ni=1) = p(

{
t(x(i)) = t(i)

}N

i=1
|{x(i)}Ni=1) (4)

=

N∏
i=1

p(x(i) ∈ C1)t
(i)

p(x(i) ∈ C0)1−t
(i)

(5)

=

N∏
i=1

σ(w0 +

D∑
j=1

wjx
(i)
j )

t(i) 1− σ(w0 +

D∑
j=1

wjx
(i)
j )

1−t(i)

(6)

instead of maximizing the probability (6), a common approach (in order to get rid of the product)
is to maximize the log of this probability.

1



We can do this because the probability is non negative and the log is an increasing function so any
x∗ such that p(x∗) ≥ p(x) for all x also satisfies log(p(x∗)) ≥ log(p(x)) for all x.

When maximizing the log of (6), we get

log

N∏
i=1

σ(w0 +

D∑
j=1

wjx
(i)
j )

t(i) 1− σ(w0 +

D∑
j=1

wjx
(i)
j )

1−t(i)

(7)

=

N∑
i=1

t(i) log(σ(w0 +

D∑
j=1

wjx
(i)
j )) + (1− t(i)) log(1− σ(w0 +

D∑
j=1

wjx
(i)
j )) (8)

=

N∑
i=1

t(i) log(y(x(i);w)) + (1− t(i)) log(1− y(x(i);w)) (9)

Expression (9) is known as the log loss or binary cross entropy loss and it corresponds to the
maximum likelihood estimator. It is also common to minimize the opposite of (9) which is known
as the negative log likelihood (recall that finding the value x at which a function f(x) is maximized
is the same as finding the value x at which the function −f(x) is minimized). In this case the
weights are obtained as

w∗ = argmin
w

−
N∑
i=1

t(i) log(σ(w0 +

D∑
j=1

wjx
(i)
j )) + (1− t(i)) log(1− σ(w0 +

D∑
j=1

wjx
(i)
j )) (10)

Learning can be done through gradient or stochastic gradient descent.

2 Neural Network

In section 1 above, we saw how we could learn the weights of a simple neuron (i.e. simple generalized
linear classifier with a sigmoid activation). As we saw in the labs, the simple neuron (1) is limited
to linearly separable data. As soon as the data is more complex, we have to turn to more advanced
models. We can keep the approach of section (1) but replace the single neuron σ(w0 +

∑D
j=1 wjxj)

by a network which will be able to capture more complex patterns from the data. The general
form of a one hidden neural network is the following

y(x;w) = σ

w(2)
0 +

N2∑
j=1

w
(2)
j σ

(
w

(1)
0 +

N1∑
k=1

w
(1)
jk xk

) (11)

If we still work on a classification model, we can still view the more sophisticated model (1) as
encoding the probability that a particular example x(i) will belong to class C1 or C0. Consequently,
we can substitute this model in the log loss (10) and learn the weights through gradient or stochastic
gradient descent. Now the difficulty with (1) is that the gradient (especially for a large number of
layers) can be considerably more difficult to derive. Fortunately we can rely on a particular efficient
approach known as back propagation which derive the derivatives recursively, starting from the
output unit. The idea can be summarized as follows.

We can introduce the notation a
(`)
i to denote the sum

a
(`)
i =

∑
j

w
(`)
ij z

(`−1)
j (12)

and use z
(`−1)
j to denote the output to the jth unit in layer `

z
(`−1)
j = σ(a

(`−1)
j ) = σ(

∑
k

w
(`−1)
jk z

(`−2)
k ) (13)

2



For any weight w
(`)
ij the derivative of the log loss can read as

∂L

∂w
(`)
ij

=
∂L

∂a
(`)
i

∂a
(`)
i

∂w
(`)
ij

(14)

we then let δ
(`)
j to denote the first factor δ

(`)
j = ∂L

∂a
(`)
j

. For the second factor, it is easy to see

from (12) that

∂a
(`)
i

∂w
(`)
ij

= z
(`−1)
j (15)

That is to say once we have all δ
(`)
j and z

(`)
j , we can compute all gradients. For the log loss, and

for a single example
{
x(i), t(i)

}
(stochastic gradient framework) one can check that the last δ,

δout = ∂L
∂aout is given by δout = y(x(i))− t(i)

For all the other delta’s, we use the chain rule and write

δ
(`−1)
j =

∑
k

∂L

∂a
(`)
k

∂a
(`)
k

∂a
(`−1)
j

(16)

The sum comes from the fact that any particular unit from layer `− 1 appears in all the units of
the next layer (see Fig. 1 below).

From (16) we thus get δ(`−1) from the δ
(`)
k = ∂L

∂a
(`)
k

, as soon as we can express the second factor

∂a
(`)
k

∂a
(`−1)
j

. Yet from (12), (13) we can write

a
(`)
k =

N∑̀
j=1

w
(`)
kj σ(a

(`−1)
j ) (17)

and the second factor in (16) can thus read as

∂a
(`)
k

∂a
(`−1)
j

= w
(`)
kj σ

′(a
(`−1)
j ) (18)

Substituting this expression in (16), we then get

δ
(`−1)
j = σ′(a

(`−1)
j )

∑
k

δ
(`)
k w

(`)
kj (19)

In short, all the gradient can then be computed through the following steps

• Apply an input vector x(i) to the network on compute all the values a
(`)
i and z

(`)
i for every

layer

• Evaluate the δout for the output layer

• Backpropagate the δk using (19) in order to derive all δ
(`)
k for every `

• Evaluate the gradients using (14).

3



x1

x2

x3

x4

F (x,w)

Figure 1: Feedforward Neural Network

Once we have the derivatives, we can apply the gradient step as

w
(`)
ij ← w

(`)
ij − η

∂L

∂w
(`)
ij

(20)

~w ← ~w − η∇L (21)

where the gradient is obtained by stacking the derivatives of the log loss with respect to all the
weights

∇L = gradwL =

[
∂L

∂w
(1)
10

,
∂L

∂w
(1)
11

. . .
∂L

∂w
(`)
ij

, . . .
∂L

∂wLout

jk

]
(22)

4


