
Mathematics for Machine Learning

NYU Paris, CSCI-UA 9473

Augustin Cosse

Draft, May 26, 2019

These notes provide a summary of the mathematics needed for an introductory class in machine
learning. The version is temporary. Please direct any comments or questions to acosse@nyu.edu
or acosse@ens.fr

1 Notations

R,Z,N, Real, integer and natural numbers
〈·, ·〉 Inner product, 〈v,w〉 =

∑n
i=1 viwi, 〈A,B〉 =

∑n
i=1

∑m
j=1AijBij

Tr(A) Trace of a matrix Tr(A) =
∑n
i=1Aii

N (µ, σ2) Normal distribution with mean µ, variance σ2 (see below)
θ vector encoding the parameters of a distribution, e.g. for the Gaussian, θ = (µ, σ2)
A ∝ B A Proportional to B. We will use this symbol often when discussing inference.

For example we will often write p(θ|x) ∝ P (x|θ)p(θ)
where we neglect the normalizing constant p(x).

δ(x = k) Indicator function, δ(x = k) = 1 if x = k and 0 otherwise

D Usually used to represent a dataset, D = {xi, yi}Ni=1

φ(x) For a given prototype x, we usually reserve the notation φ(x)
to denote the corresponding feature vector generated from x

∂f
∂xi

partial derivative of f(x1, . . . , xN) with respect to the variable xi

∇f(x) gradient, ∇f(x) = (∂f∂x1
, . . . , ∂f∂xn

)

UΛUT Eigenvalue decomposition, Λ = diag(λ1, . . . , λN)

UΣV T Singular value decomposition Σ = diag(σ1, . . . , σN)
H(p) Shannon Entropy

Table 1: Notations

1.1 Notions from optimization

When discussing optimization, we will often make use of the notations max, min as well as argmax
and argmin. When looking for the minimum value, f∗, of a function, we write

f∗ = min
x

f(x) (1)

When looking for the point x∗ at which the function achieves a minimal value (minimal argument),
we write

x∗ = argmin
x

f(x) (2)

1

When looking for the solution of an optimization problem (such as the computation of the
MLE or MAP) below, a common approach is to use a gradient descent iteration,

xk+1 = xk − α∇f(xk) (3)

By moving in the direction of −∇f(xk), provided that we use a sufficiently small step length (or
learning rate) α, we are guaranteed to decrease the value of the function at each step. Whenever
the Hessian is available and not too expensive, one can turn to second order methods, the most
popular of which is Newton’s method, whose iterations are defined as

xk+1 = xk −
(
∇2f(xk)

)−1∇f(xk) (4)

The use of the Hessian enables faster convergence (we can think of second order methods as
methods that are using a more global view of the optimization landscape than gradient descent
steps) but induces a higher computational cost. In practice we therefore turn to approximations
of this Hessian. The corresponding optimization methods are then called quasi-Newton methods.
The iterations corresponding to those methods are defined as

xk+1 = xk −B−1k ∇f(xk) (5)

where Bk is an approximation of the Hessian which is updated at each step. The most popular
quasi Newton method is the BFGS algorithm (see for example [17], chapter 8).

1.2 Statistical Inference

For a given probability model p parametrized by the parameter θ which takes values in {θ1, θ2, . . . , θN},
Bayes’s Theorem (see below) gives

p(θ|x) =
p(x|θ)p(θ)
p(x)

(6)

p(θ|x) is called the posterior, p(x|θ) is called likelihood. Finally p(θ) is called the prior.

Contents

1 Notations . 1

2 Linear algebra . 3

3 Differential Calculus . 4

4 Statistics and probability . 5

5 Probabilistic classifiers . 11

6 Optimization . 14

7 Halfspaces and hyperplanes . 16

8 Regression and regularization . 17

9 Bias Variance tradeoff . 20

10 Kernels . 26

11 Support Vector Machines (SVM) . 28

12 Neural Networks . 30

13 Clustering . 34

14 Linear latent variable models . 38

15 Manifold Learning . 46

16 Reinforcement learning . 52

2

2 Linear algebra

Given a matrix A ∈ Rm×n,

A =

a11 a12 . . . a1n
a21 a22 . . . a2n
...

. . .
...

am1 am2 . . . amn

 (7)

we define its transpose as the matrix AT ∈ Rn×m whose jth column is defined as the jth row of
A, i.e.

AT =

a11 a21 . . . am1

a12 a22 . . . an2
...

. . .

a1n . . . am−1,m amn

 (8)

If A and B are m× n matrices, we have the following properties

• (AT)T = A

• (A+B)T = AT +BT

• (αA)T = αAT

• (AB)T = BTAT

Definition 1 (PseudoInverse). Given a matrix A, the pseudo inverse is defined as the matrix
A+ that satisfies the following conditions

AA+A = A (9)

A+AA+ = A+ (10)

(AA+)T = AA+ (11)

(A+A)T = A+A (12)

When the matrix ATA is invertible, the pseudo inverse can be defined as (ATA)−1AT

2.1 Norms and inner products

Given two vectors v ∈ Rn and w ∈ Rn, one can define an inner product as

v ·w = 〈v,w〉 =

n∑
i=1

viwi (13)

Generally speaking, a function 〈·, ·〉 is an inner product if it satisfies the following properties

• 〈x, x〉 ≥ 0, 〈x, x〉 = 0 ⇐⇒ x = 0 (positivity)

• 〈x, y〉 = 〈y, x〉 (symmetry)

• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (additivity)

• 〈αx, y〉 = α〈x, y〉, for all α ∈ R (homogeneity)

3

So far, we have discussed inner products for vectors, but it is also possible to define an inner
product on matrices. A standard inner product can be defined in a similar way on matrices
X,Y ∈ Rm×n,

〈X,Y 〉 = Tr(XTY) =

m∑
i=1

n∑
j=1

XijYij (14)

Here we used the notation Tr(A) to denote the trace of a square matrix A ∈ Rn×n, i.e. Tr(X) =∑n
i=1Aii.

Another important function is the norm. A norm is a function f : Rn 7→ R and which has
the following properties

• f(x) ≥ 0, f(x) = 0 ⇐⇒ x = 0 (positivity)

• f(αx) = |α|f(x), ∀α ∈ R (homogeneity)

• f(x+ y) ≤ f(x) + f(y) (triangle inequality)

Examples of norms include

• The `2 norm: ‖v‖2 =
√∑n

i=1 v
2
i

• The `1 norm: ‖v‖1 =
∑n
i=1 |vi|

• The `∞ norm: ‖v‖∞ = maxi |vi|

• More generally, the `p norms are defined for p ≥ 1 as ‖v‖p = (
∑n
i=1 |vi|p)

1/p

Just as for vectors, one can define norms on matrices. Those norms will satisfy the same
properties. The most popular one is the Frobenius norm

‖A‖F = ‖A‖2 =

√√√√ n∑
i=1

n∑
j=1

|Ai,j |2 =

√
Tr(ATA) (15)

In fact given any inner product (on vectors or matrices), one can define an ”induced” norm
by letting f(v) = ‖v‖ =

√
〈v,v〉

3 Differential Calculus

Given a multivariate scalar function f(x), x = (x1, . . . , xn) ∈ Rn, one defines the gradient of
the function as the vector encoding the derivatives of the function f with respect to each of the
components of x, i.e.,

∇f(x) =
∂f

∂x
=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
(16)

Note that when we differentiate a field or vector function, we get a matrix, whose entries cor-
respond to the partial derivatives of each of the components of the field with respect to each of the
variables. This matrix is known as the Jacobian matrix. For ~f(x) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),
we have

∂ ~f

∂x
≡
(
∂fi(x)

∂xj

)
ij

= J =

∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
. . .

...
∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 (17)

4

The Hessian matrix of a multivariate function f : Rn 7→ R, is the matrix encoding all
second order partial derivatives of f ,

∇2f =

∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n

 (18)

Compactly we can write

H = ∇2f =

(
∂2f

∂xi∂xj

)
ij

(19)

3.1 Matrix differentiation

When considering the derivative of a function f(A), A ∈ Rm×n with respect to any matrix A, we

will use the abridged notation ∂f(A)
∂A to denote the m×n matrix encoding the first order (partial)

derivatives of the function f with respect to each of the entries of the matrix A, i.e.

∂f(A)

∂A
=

∂f(A)
∂a11

∂f(A)
∂a12

. . . ∂f(A)
∂a1m

∂f(A)
∂a21

∂f(A)
∂a2,2

. . . ∂f(A)
∂a2m

∂f(A)
∂a31

. . .
...

∂f(A)
∂am1

. . . ∂f(A)
∂am,n−1

∂f(A)
∂amn

 (20)

4 Statistics and probability

4.1 Probability

Definition 2. Given a sample space S and an associated algebra B, a probability function is a
function P with a domain B that satisfies

• P (A) ≥ 0 for all A ∈ B

• P (S) = 1

• If A1, A2, . . . ∈ B are pairwise disjoint, then P (∪∞i=1Ai) =
∑∞
i=1 P (Ai)

Theorem 1. If P is a probability function and A is any set in B, then

• P (∅) = 0, where ∅ is the empty set

• P (A) ≤ 1

• P (Ac) = 1− P (A)

Theorem 2. if P is a probability function and A and B are any sets in B, then

• P (B ∩Ac) = P (B)− P (A ∩B)

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

• If A ⊂ B, then P (A) ≤ P (B).

5

Definition 3. If A and B are events in S, and P (B) > 0, then the conditional probability of A
given B, written P (A|B) is

P (A|B) =
P (A ∩B)

P (B)
(21)

Given definition (3), it is easy to see that P (A∩B) = P (A|B)P (B) = P (B∩A) = P (B|A)P (A)
(this idea is sometimes known as the chain rule). The generalization of this gives Bayes’ rule:

Theorem 3 (Bayes’ rule). Let A1, A2, . . . be a partition of a sample space, and let B be any set.
Then, for each i = 1, 2, . . .,

P (Ai|B) =
P (B|Ai)P (Ai)∑∞
j=1 P (B|Aj)P (Aj)

(22)

(the denominator is simply the expansion P (B) =
∑∞
j=1 P (B|Aj)P (Aj))

Sometimes, it could happen that the occurence of an eventB has no influence on the probability
of another event A, i.e.

P (A|B) = P (A) (23)

If this condition holds, using Bayes’s Theorem, it immediately implies P (B|A) = P (A|B)P (B)
P (A) =

P (B). From this, we also have P (A∩B) = P (A)P (B). This last relation is the precise definition
of statistical independence

Definition 4 (Independence). Two events A and B are statistically independent if

P (A ∩B) = P (A)P (B) (24)

Definition 5. A collection of events A1, . . . , An are mutually independent if for any subcollection
Ai1 , . . . , Aik , we have

P

 k⋂
j=1

Aij

 =

k∏
j=1

P (Aij) (25)

Theorem 4. If two events A and B are independent, the following pairs of events are also
independent

• A and Bc

• Ac and B

• Ac and Bc

4.2 Random variables

Definition 6 (Random variable). A random variable is a function from a sample space into the
real numbers

It is important to understand that the set of random variables includes the samples themselves
as one can of course choose the random variable to match a sample onto the value of this sample.
However, the probability is only defined on the sample space. For example, a simple Gaussian
random variable X is a function from the sample space S ≡ (−∞,∞) into this same sample space
(or if you prefer the value of the sample). I.e. X(si) = si in this case. But the definition is more
general and one could for example define another random variable Y = X2. Now the random
variable is not the identity anymore. It a function which takes samples from the sample space
S and raise them to the power 2. The connection to the sample space is important because the

6

notion of probability P is defined only on this sample space. I.e we only know how likely an event
si is, we don’t know about X(si). It is however possible to define an induced probability on the
random variable X, by using P ,

PX(X ∈ A) = P ({s ∈ S : X(s) ∈ A}) (26)

In words, we look at the samples s for which X(s) ∈ A and we define the probability of the event
X ∈ A from the probability of the corresponding sample {s ∈ S : X(s) ∈ A}.

We are now ready to introduce the notions of cumulative distribution function (cdf), proba-
bility mass function (pmf) and probability density function (pdf).

Definition 7. The cumulative distribution function or cdf of a random variable X which we
denote FX(x), is defined by

FX(x) = P (X ≤ x), for all x (27)

Definition 8. The probability mass function (pmf) of a discrete random variable X defined as

fX(x) = P (X = x), for all x (28)

Definition 9. The probability density function or pdf, fX(x) of a continuous random variable X
is the function defined as

FX(x) =

∫ x

−∞
fX(t) dt, for all x (29)

We now introduce the notion of expectation or expected value (a.k.a mean or average) of
a random variable. The expected value E {X} of a random variable X can be thought of as an
indication of a typical value that the random variable X will take, hence a measure of the ”center”
of the distribution.

Definition 10. The expected value of a random variable h(X), which we denote E {h(X)} is
defined as

Eh(X) =

{ ∫∞
−∞ h(x)fX(x) dx if X is continuous∑
x∈X h(x)fX(x) =

∑
x∈X h(x)P (X = x) if X is discrete

(30)

In the definition above, X is used to denote the set of all possible outcomes of the random
variable X.

Theorem 5. If X is a random variable and α, β, γ are constants, then for any functions h1 and
h2 with well defined expectations, we have

• E {αh1(X) + βh2(X) + γ} = αE {h1(X)}+ βE {h2(X)}+ γ

• If h1(x) ≥ 0 for all x, then E {h1} ≥ 0

• If h1(x) ≥ h2(x) for all x, then E {h1(X)} ≥ E {h2(X)}
• If α ≤ h1(x) ≤ β for all x, then α ≤ E {h1(X)} ≤ β.

A particular class of expectations can be defined for a random variable X by choosing the
function h1(X) to encode the monomials Xα, α ∈ N. Those expectations are then called moments
of the random variable X.

Definition 11. For each integer n ∈ N, the nth moment of X, µ′n is defined a

µ′n = E {Xn} (31)

Accordingly, the nth central moment of X, µn is defined as

µn = E {(X − µ)n} (32)

In particular, note that we have µ = µ′1 = EX.

7

Definition 12. The variance of a random variable X is its second central moment, i.e. σ2 =
Var(X) = E

{
(X − E {X})2

}
. The (positive) square root of σ2, σ is called standard deviation.

For two random variables X and Y , one can also define the correlation and covariance of X
and Y ,

Definition 13. The covariance of X and Y is the number defined by

Cov(X,Y) = E {(X − µX)(Y − µY)} (33)

Definition 14. The correlation or correlation coefficient of X and Y is the number defined by

ρXY =
Cov(X,Y)

σXσY
(34)

If similar values of X and Y occur at the same time, the covariance will be large and positive.
If on the contrary, large positive values of X occur with large negative values for Y , the covariance
Cov(X,Y) will be large and negative. Hence we can already say that the sign of Cov(X,Y) gives
information on the type of relation that exists between X and Y .

The correlation coefficient ρX,Y between X and Y takes value between −1 and 1 with a value
of 1 indicating a perfect linear relationship between the two variables. Another important aspect
of the correlation coefficient is its connection to statistical independence.

Theorem 6. If two variables X and Y are independent, then Cov(X,Y) = 0 and ρX,Y = 0.

Proof. The proof follows form the definition of independence and the fact that independence
implies E {XY } = EXEY

4.3 Classical PDFs

We start by listing some important distributions:

• The Gaussian/Normal Distribution is the most popular distribution in statistics. The uni-
variate distribution reads as

N (x|µ, σ2) =
1√
2πσ

exp(− 1

2σ2
|x− µ|2) (35)

The multivariate distribution, for a d-dimensional vector x, reads as

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

{
−1

2
(x− µ)

T
Σ−1(x− µ)

}
(36)

• The Binomial distribution (which we write Bin(k|n,θ)) is used to represent the probability
of observing the positive/successful outcomes (the probability of success is given by θ) that
repeats itself k times over n successive trials.

Bin(k|n, θ) =

(
n

k

)
θk(1− θ)n−k (37)

The first factor encodes the number of possibilities of choosing k elements among the n
without replacement. (

n

k

)
=

n!

(n− k)!k!
(38)

The mean and variance for this distribution are given by µ = nθ and σ2 = nθ(1− θ)

8

• The Bernoulli distribution. The Bernoulli distribution is defined on a binary variable. I.e if
we consider a single experiment (tossing a coin) with only two possible outcomes which are
encoded by the variable y = {1, 0} and appear with probability p and 1− p respectively. to
encode the probability of an outcome 0 or 1 we can thus just raise the probability θ to the
power y, as show below. This gives the Bernoulli pdf

Ber(x|θ) = θy(1− θ)1−y (39)

(40)

This is also sometimes written

Ber(x|θ) = θδ(y=0)(1− θ)δ(y=1) (41)

(42)

Where δ(C) = 1 if the predicate C is satisfied.

• Categorical distribution or Multinoulli distribution. When considering a variable with K
possible states (e.g. a dice with 6 faces), we will often encodes those states through dummy
variables. This means that for example for a variable that can take three different values,
y = 1, y = 2 or y = 3 (we will see later that this applies to features or classes in classification
problems), we would encode each of these feature through the 3-tuples t = (1, 0, 0) (y = 1),
t = (0, 1, 0) (y = 2) and t = (0, 0, 1) (y = 3). If we use θj = pj , j = 1, . . . , 3 to denote
the probability to get each feature, the total probability density function can now read
compactly as

Cat(x|θ) = Mu(x|θ) = p(x|θ) =

K∏
j=1

θ
tj
j = θt11 . . . θtKK = θt (43)

• The Laplace distribution is characterized by ”fatter” tails than the Gaussian distribution
(i.e the probability of getting values that are very different from the mean will be higher in
the Laplace distribution). The pdf of the Laplace distribution reads as

p(x|µ, β) =
1

2β
exp(−|x− µ|

β
) (44)

one way to see this is that in the Laplace distribution the argument of the exponential is the
absolute value whether in the Normal distribution, the argument is squared which implies
a faster decrease in the pdf for large values of the deviation to the mean, |x− µ|.

4.4 A few important Theorems

Theorem 7 (Weak Law of large numbers). Let X1, X2, . . . be identically and independently dis-
tributed (i.i.d) random variables with EXi = µ and VarXi = σ2. Define Xn = (1/n)

∑n
i=1Xi.

Then, for every ε > 0,

lim
n→∞

P (|Xn − µ| < ε) = 1 (45)

That is, Xn converges in probability to µ.

Theorem 8 (Strong Law of large numbers). Let X1, X2, . . . be i.i.d. random variables with
EXi = µ and VarXi = σ2 <∞ and define Xn = (1/n)

∑n
i=1Xi. Then for every ε > 0,

P (lim
n→∞

|Xn − µ| < ε) = 1 (46)

that is Xn converges almost surely to µ

9

Theorem 9 (Central Limit Theorem). Let X1, X2, . . . be a sequence of i.i.d random variables
whose mgf’s exist in a neighborhood of 0 (that is MXi

(t) exists for t < |h|, for some positive h).
Let EXi = µ and VarXi = σ2 (both µ and σ2 are finite since the mgf exists). Define the empirical
mean Xn as Xn = (1/n)

∑n
i=1Xi. Let Gn(x) denote the cdf of

√
n(Xn − µ)/σ. Then for any x,

−∞ < x <∞,

lim
n→∞

Gn(x) =

∫ x

−∞

1√
2π
e−y

2/2 dy (47)

That is,
√
n(Xn − µ)/σ has a limiting standard normal distribution.

4.5 MAP and MLE

This part gives a very basic introduction to the difference between the Frequentist and Bayesian
notions of estimators. For more details see [4]

Definition 15. A point estimator is any function of the sample W (x1, . . . , xn)

The most popular method to derive an estimator on the parameters of a distribution is the
method of maximum likelihood. For a given probability distribution p(xi|θ1, . . . , θk) parametrized
by θ, the likelihood function is defined as

L(θ|x) = p(x|θ) =

n∏
i=1

p(xi|θ1, . . . , θn) (48)

This function encodes the ”likelihood” of observing the samples xi for a particular choice of
parameters θ (we write L(θ|x) because we view it as a function of θ). Given this function,
it seems reasonable to look for the parameters θ1, . . . , θn which give the highest probability of
observing the sample (i.e the distribution which gives the highest probability of observing the xi
is likely to be the distribution of those xi). This idea leads to the Maximum likelihood estimator
(MLE) whose formal definition is given below

Definition 16. For each sample point x, let θ̂(x) be a parameter value at which L(θ|x) attains
its maximum as a function of θ, with x held fixed. A maximum likelihood estimator (MLE) of the

parameter θ based on a sample X is θ̂(X). Mathematically, we write

θMLE = argmax
θ

p(x|θ) (49)

The MLE is considered a Frequentist estimator as it only relies on the sample itself without
making any prior assumption on the parameters.

The Bayesian approach to statistics is fundamentally different. So far, we assumed that θ was
an unknown but fixed quantity. I.e. A random sample X1, . . . , Xn was drawn from a population
and based on those observations, some knowledge on θ was obtained. In the Bayesian approach,
θ is described by a probability distribution (the prior distribution). We thus assume some level
of uncertainty on θ. The prior is a subjective distribution which is set by the observer.

The idea is that the observer updates his original prior based on the sample that he draws
from the population. The update is done by means of Bayes’ rule,

p(θ|x) ∝ p(x|θ)p(θ) (50)

We can then estimate the parameter θ by finding the value which maximizes the new prior,
p(θ|x). This idea is known as Maximum a posteriori (MAP). The MAP estimator is thus defined
as

θMAP = argmax
θ

p(x|θ)p(θ) ∝ p(θ|x) (51)

10

4.5.1 Linear Gaussian system

By linear Gaussian system, we mean here that we consider both a Gaussian likelihood and a
Gaussian prior, and connect the two by means of any linear transformation,

p(θ) = N (θ|µθ,Σθ) (52)

p(x|θ) = N (x|Aθ + b,Σx) (53)

If we write down the probability of x, from such a model, we get

p(x) = N (x|Aµθ + b,Σx +AΣθA
T) (54)

4.6 Exponential family

Many of the probability density functions discussed above are part of a general family of distri-
butions known as the exponential family.

A probability density function, f(x|θ) is said to be in the exponential family if it is of the
form

f(x|θ) = h(x)c(θ) exp

(
k∑
i=1

wi(θ)ti(x)

)
(55)

=
1

Z(θ)
h(x) exp(θTφ(x)) (56)

= h(x) exp(θTφ(x)−A(θ)) (57)

where

Z(θ) =

∫
Xm

h(x) exp(θTφ(x)) dx (58)

A(θ) = logZ(θ) (59)

Z(θ) is called the partition function and A(θ) is called the log partition function. θ are called
the natural parameters or canonical parameters.

5 Probabilistic classifiers

When discussing classification, we often either look at classifiers as geometric objects (i.e separat-
ing planes, maximal margin hyperplanes,..) or as probabilistic objects based on Bayes Theorem.
In the last framework, we consdider two main groups of classifiers

• Generative classifiers

• Discriminative classifiers

The first class defines a model for the joint probability distribution p(x, y) (or equivalently
for the class conditional density p(x|y)) and hence provides a way to generate new samples x.
The second class defines a model for the probability distribution p(y|x) (i.e the class posterior)
and hence only provides a way to discriminate between classes. Below we discuss the two most
popular discriminative models: The Naive Bayes classifier (generative) and the Logistic regression
classifier (discriminative)

5.1 Naive Bayes classifier

The Naive Bayes classifier is a generative classifier (i.e we learn a model for p(x|y) or p(x, y)).
We consider a classification problem in which the feature vectors are D dimensional. Moreover,

11

each of the D features can take K values. I.e, x ∈ {1, . . . ,K}D. If we assume that the features
are independent within a class c (note that this is usually not the case), we can write the “class
conditional density” as

p(x|y = C`,θ) =

D∏
j=1

p(xj |y = C`,θj`) (60)

In the equation above θj` is the parameter associated to feature j in class C` (see below).

Possible choices for the probability distribution include

• the Gaussian distribution

p(x|y = C`;θ) =

D∏
j=1

N (xj |µj`, σ2
j,`) (61)

Here µj,` and σ2
j,` are the mean and variance for the jth feature in class C`.

• When the features are encoded through binary variables β = {0, 1}, the multivariate
Bernoulli distribution (or Bernoulli product model) is often used. In this case, we have

p(x|y = C`,θ) =

D∏
j=1

Ber(xj |µj,`) (62)

Again, here µj,` is the probability of getting feature j in class `.

5.1.1 Deriving the parameters through Maximum Likelihood

We want to train a classification algorithm from a set of pairs (xi, ci). The prototypes xi are
represented by D-dimensional feature vectors xi = (xi1, . . . , xiD). From this, if we assume that
the probabilities of observing the features are independent, the probability of observing a given
pair (xi, ci) reads as

p(xi, ci|θ) =

D∏
j=1

p(xij |ci,θj)p(ci|π) (63)

Here p(ci|π) encodes the probability of observing the class i, p(ci|π) = (π
δ(ci=1)
1 , . . . , π

δ(ci=N)
N)

encode the probabilities of getting a particular class C1 to CC (we use C to denote the number of
classes). Using the δ notation, we can thus write (63) as

p(xi, ci|θ) =

C∏
c=1

πδ(ci=c)c

D∏
j=1

C∏
c=1

p(xij |θc,j)δ(yi=c) (64)

Taking the product over all pairs (xi, ci) ∈ D and then the log, the log likelihood can read as

log(D|θ) =

C∑
c=1

Nc log(πc) +

D∑
j=1

C∑
c=1

∑
i s.t.yi=c

log p(xij |θjc) (65)

Maximizing the log likelihood with respect to the parameters of the model then gives

π̂c =
Nc
N

(66)

as an estimate for the class prior (the probability of being in Class c). This estimate is thus the
ratio between the number of samples in class c and the total number of training samples.

12

If we assume that all N features x1i, . . . , x1,N are binary and that all the vectors within a class
follow the same distribution, then a good choice for p(xij |θjc) is to take a Bernoulli distribution
with parameter θjc. In this case we can show the MLE for the parameter θjc is given by the ratio
of the number of vectors from class c which have their jth feature equal to 1 over the total number
of points from class c,

θ̂jc = p̂(xij = 1|y = c) =
Njc
Nc

(67)

Once we have computed the parameters of the model, this model can be used to classify new
points by relying again on Bayes (neglecting the normalizing constant), we have

p(y = c|x,D) ∝ p(y = c|D)

D∏
j=1

p(xj |y = c,D) (68)

∝ p(y = c|D)p(x|y = c,D) (69)

5.2 Logistic regression

Logistic regression is perhaps the most popular discriminative classifier. For data pairs {x, y} of
prototypes and their associated labels, the probabilistic model is defined as

p(y|x,w) = Ber(y|sigm(wTx)) (70)

where the sigmoid sigm() is defined as

sigm(x) =
1

1 + exp(−x)
(71)

We thus have

p(y = 1|x,w) =
exp(wTx)

1 + exp(wTx)
(72)

p(y = 0|x,w) = 1− exp(wTx)

1 + exp(wTx)
(73)

The interesting aspect of logistic regression is that the ratio between the probability of each
class (which can be used to do classification) is linear in the parameters of the model. You can
indeed verify that

log(
p(y = 1|x,w)

p(y = 0|x,w)
) = wTx (74)

This model in fact falls in the class of “generalized” linear models for that precise reason. This
idea easily extends to multiple classes by introducing “log-odd ratios” between the probability of
each class and the probability of the last class. For K classes, we have K − 1 such ratios (the last
probability is fixed through

∑
i p(C = i|xn) = 1)

log(
P (C = 1|x)

P (C = K|x)
) = wT

1 x (75)

log(
P (C = 1|x)

P (C = K|x)
) = wT

1 x (76)

... (77)

log(
P (C = K − 1|x)

P (C = K|x)
) = wT

K−1x (78)

13

The posterior class probabilities are then defined as

P (C = k|x) =
exp(wT

k x)

1 +
∑K−1
`=1 exp(wT

` x)
, k = 1, . . . ,K − 1 (79)

P (C = K|x) =
1

1 +
∑K−1
`=1 exp(wT

` x)
(80)

The model (and the associated parameters) can be learned through Maximum likelihood, by
writing the likelihood function for the N observation (noting cn the class of xn),

`(w`, ` = 1, . . . ,K − 1) =

N∑
n=1

log(p(C = cn|x)) (81)

And then minimizing the function (for example through gradient descent).

6 Optimization

In this section, we discuss some additional details in optimization. Finding the global minimizer
of sufficiently complex functions is usually hard because iterative algorithms will get trapped in
”local minima”. When solving optimization problems, we will often be interested in understanding
whether the particular point to which our algorithm converges is a local or a global minimum
(resp maximum) of the function. Under some conditions (smoothness of the function), the general
characterization of the local extremas of a function is relatively easy as shown by the following
two propositions

Proposition 1 (First order necessary conditions). If x∗ is a local minimizer and f is continuously
differentiable in an open neighborhood of x∗, then ∇f(x∗) = 0.

Proposition 2 (Second Order Necessary conditions). If x∗ is a local minimizer of f and ∇2f is
continuous in an open neighborhood of x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite.

Given a function f , there also exist sufficient conditions under which one can guarantee that
a point is a minimizer. This idea is summarized by proposition 3 below

Proposition 3 (Second Order Sufficient conditions). Suppose that ∇2f is continuous in an open
neighborhood of x∗ and that ∇f(x∗) = 0 and ∇2f(x∗) is positive definite. Then x∗ is a strict local
minimizer of f .

6.1 Convexity

Definition 17 (Convex set). A set of points, C is convex if the line segment between any two
points in the set is included in the set, that is to say for any x1,x2 ∈ C, and any scalar α ∈ R
with 0 ≤ α ≤ 1, we have

αx1 + (1− α)x2 ∈ C (82)

When a set is not convex, it is always possible to define the smallest convex set that contains
C. This idea in particular plays an important role when replacing non convex function (which
therefore cannot be optimized efficiently) by convex approximation whose solution can be found
and studied by iterative algorithms.

Definition 18 (convex hull). Given a set of points S, the convex hull of S is defined as

convS = {α1x1 + . . . , αkxk|xi ∈ S, αi ≥ 0, i = 1, . . . , k, α1 + . . .+ αk = 1} (83)

I.e., convS is the set defined from all possible convex combinations of points from S.

14

6.2 Constrained problems and Lagrangian

When considering a basic mathematical programming problem of the form

min f0(x)

subject to f`(x) ≤ 0, ` = 1, . . . L.
(84)

We will use K to denote the set of feasible points for the program (84) (i.e. the set of points
x satisfying the constraints in (84)), i.e. K = {x | f`(x) ≤ 0}

We can write the Lagrangian by introducing positive multipliers λ` ∈ R for each of the
constraints f`(x) ≤ 0. As those constraints are negative, the Lagrangian then reads as

L = f0(x)−
L∑
`=1

λ`f`(x) (85)

The following Theorem then gives necessary conditions (on the Lagrangian) for a point x to be a
minimizer from the feasible set, K.

Theorem 10 (Kuhn-Tucker conditions). Assume that f`(x) (` = 1, . . . , L) are all differentiable.
If the function f0(x) attains a local minimum at a point x∗ which belongs the feasible set K,
then there exists a vector of multipliers, λ∗` , ` = 1, . . . , L, such that the following conditions are
satisfied

∂f0(x∗)
∂xj

+

L∑
`=1

λ∗`
∂f`(x

∗)
∂xj

= 0, (j = 1, . . . , J) (86)

f`(x
∗) ≤ 0, (` = 1, . . . , L) (87)

λ∗`f`(x
∗) = 0, (` = 1, . . . , L) (88)

λ∗` ≥ 0, (` = 1, . . . , L) (89)

Proof. We can always replace the inequality constraints in (84), by introducing slack variables y`.
I.e., we always have the equivalence

f`(x) ≤ 0 ⇐⇒ f`(x) + y2` = 0 (90)

for some variables y`.

For those slack variables, the Lagrangian reads as

L = f0(x) +

L∑
`=1

λ`(f`(x) + y2`) (91)

Any minimum of the Lagrangian must satisfy the zero gradient condition, so we have

∂L

∂xj
=
∂f0(x∗)
∂xj

+

L∑
`=1

λ`
∂(f`(x

∗) + (y∗`)2)

∂xj
= 0, (` = 1, . . . , L) (92)

∂L

∂y`
= 2λ`y` = 0 (93)

∂L

∂λ`
= f`(x) + y2` = 0 (94)

Condition (93) above is equivalent to the ”complementary slackness” condition (88). To see
this, simply note that λ`y` = 0 implies either λ` = 0 or y` = 0.

15

In the second case, we have yi = 0 and hence f`(x) + y2` = 0 which implies f`(x) = 0. For the
reverse implication, simply note that λ` 6= 0 implies f` = 0 and hence y2` = −f` = 0 which finally
gives y`λ` = 0

If y` 6= 0 (equivalently, λ` = 0), on the other hand, then (94) implies y`λ` = −f`λ` = 0 and
the equivalence is straightforward.

Condition (94) is equivalent to (86) (i.e the slack variables can be eliminated from the deriva-
tive)

We are thus left with showing that conditions (92) to (94) imply the non negativity of the
multipliers λ`. For a general minimization problem,

min f0(x) (95)

subject to fi(x) ≤ bi, (i = 1, 2, . . . ,m) (96)

if we denote the optimal solution corresponding to a given value of the bounds bi, as x0(b), we
have

∂f0(x0(b))

∂bi
= −λi (97)

But on the other any increase in the bi leads to a larger feasible set and hence the variation in
the value of f0 for such a small increase in bi must always be negative (i.e we can only do better
when we increase the feasible set), following from this, we must have

∂f0(x0(b))

∂bi
≤ 0 (98)

which implies λi ≥ 0

7 Halfspaces and hyperplanes

Given a vector w ∈ RN , one can define a(n) (affine) hyperplane as the set of all points x ∈ R
satisfying the relation wTx+ b = 0.

The vector w encodes the normal to the hyperplane, which also means that for any two points
x1,x2 that lie on the hyperplane, we necessarily have

wTx1 + b = wTx2 + b = 0 (99)

(i.e the two points belong to the hyperplane) and hence,

wT (x1 − x2) = 0 (100)

Every hyperplane naturally defines a splitting of the space into two halfspaces. The set of
points which are lying above the plane (i.e formally, the points for which wTx+ b > 0), and the
set of points which are lying under the plane (wTx+ b < 0). Every hyperplane can thus be used
as a natural classifier,

y(x) = wTx+ b (101)

where we put the point x in class C0 if y(x) > 0 and in class C1 if y(x) < 0.

7.1 Distance of a point to a hyperplane

When discussing the robustness of a classifier (and in particular when introducing the notion of
margin), we will need the notion of distance of a point to a hyperplane.

16

w

x1

x2

x

x?

y(x)

kwk

� b

kwk

Figure 1: Distance of a point to a hyperplane

Consider Fig 1 below. We consider the plane in red defined as y(x) = wTx + w0. For any
point x (shown in blue), one can consider the decomposition

x = x⊥ + d
w

‖w‖ (102)

That is we write x as the combination of its projection onto the plane and a contribution
of length d along the normal vector to the plane, w. d thus encodes the distance of x to the
hyperplane. Now if we multiply (102) by wT,

wTx = wTx⊥ +wT d
w

‖w‖ (103)

and add the bias, we get

wTx + b = wTx⊥ + b+wT d
w

‖w‖ (104)

The left handside is simnply y(x). The first term on the right handside is 0 as x⊥ lies along the
plane (hence is orthogonal to w). We are thus left with

y(x) = ‖w‖d (105)

from which follows

d =
y(x)

‖w‖ (106)

So the signed (because d can be both positive and negative here) distance, is given by the ratio
of the prediction y(x) over the norm of the normal vector w. We will use this when discussing
Maximal margin classifiers.

8 Regression and regularization

The simplest regression model, and one of the most widely used, is the linear regression model.
In linear regression we want to learn a plane (w, b) that describes the data as well as possible.
The idea here is that if we can show that such a plane is a good representation of the relation
between y(xn) and xn for the training data we have, then it might give reliable predictions on
new data xn

To do so, for a given set of training points, (xn, yn), we minimize the sum of squared errors
between the predictions y(xn) from the plane and the exact target values , tn,

17

argmin
w,b

N∑
n=1

|ŷ(xn;w, b)− tn|2 (107)

= argmin
w,b

N∑
n=1

|wTxn + b− tn|2 (108)

= argmin
w,b

N∑
n=1

|
D∑
i=1

xni wi + b− tn|2 (109)

The model remains linear if we replace the original points by a representation in some feature
space, φ(x). In this case, the model reads as

y(xn;w; b) = b+

D∑
j=1

wjφj(x
n) (110)

and, including the bias b in the weight vector w, w̃ = [1,w] and letting φ̃(x) = [1, φ(x)], we
have

argmin
w,b

N∑
n=1

|y(xn; w̃)− tn|2 =

N∑
n=1

∣∣wTφ(xn)− tn
∣∣2 (111)

The solution to problem (111) can be computed in closed form by setting the derivatives to 0
and then solving for w and b. Setting the derivative of (107) (on the generic feature formulation)
to 0, we get

N∑
n=1

(
tn −wTφ(xn)

)
φ(xn)T = 0 (112)

(Verify this using the matrix derivatives). When solving for w, we thus have

N∑
n=1

tnφ(xn)T −wT

(
N∑
n=1

φ(xn)Tφ(xn)

)
= 0 (113)

which gives

w = (ΦTΦ)−1ΦT t (114)

Here t is the vector concatenating the targets t = (t1, . . . , tn), and Φ is the matrix whose
columns encode the feature vectors φ(xn), i.e.

Φ =

φ0(x0) φ1(x0) . . . φM (x0)
φ0(x1) φ1(x1) . . . φM (x1)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φ0(xN)

 (115)

The matrix Φ+ = (ΦTΦ)−1ΦT is precisely the Moore Penrose Pseudo inverse which was
introduced in Definition 1.

This solution highlights an important aspect of linear regression: For the solution of prob-
lem (111) to be well defined, we need the Gram matrix ΦTΦ to be invertible.

When this matrix is not invertible, it means that columns or rows, of that matrix are linearly
dependent and hence, that a given subset of the feature vectors φ(xn) can be written from the

18

knowledge of all the remaining features. The issue with such redundancy in the representation
of the data is that one can define a perfectly valid classifier for the dataset, but for which the
weights can vary arbitrarily and in particular, be arbitrarily high as they can cancel each other.
Indeed, asssume that for all training points, features φ1(xn) can be obtained as the combination
φ2(xn) + 2φ3(xn). Then for any given classifier,

y(x) = b+ w1φ1 + w2φ2 + w3φ3 (116)

adding a term

αwφ1 − w(φ2 + 2φ3) (117)

will not change the regression of the training points, for any w ∈ R, since at all those training
points we have

φ1(xn) = φ2(xn) + 2φ3(xn) (118)

In particular, we could take w arbitrarily large and get a classifier that ”fits” the training data
perfectly well. The issue however is that for new data (or test data), the two classifiers will give
very different results. In practice, we therefore want to avoid such situations and we will add a
penalty on the coefficients (w1, . . . , wN) and bias b.

8.1 Regularizers

There are three popular approaches at regularizing the linear regression problem (111).

• `2 (Ridge regression). Here we simply minimize the sum of squared weights (squared `2
norm),

argmin
w,b

N∑
n=1

∣∣wTφ(xn)− tn
∣∣2 + λ

D∑
i=1

|wi|2 (119)

• `1 (LASSO). Here we minimize the sum of the absolute value of the weights,

argmin
w,b

N∑
n=1

∣∣wTφ(xn)− tn
∣∣2 + λ

D∑
i=1

|wi| (120)

• Finally in Best Subset Selection (which can be throught of as a minimization of the number
of non zero weights), we found for each K, the best size-K subset of regression coefficients
w1, . . . , wN .

In all of those approaches, the optimal choice of λ or for best subset selection, the optimal
size of the subset of regression coefficients, is fixed through cross validation, by computing the
regression coefficients associated to a particular value of λ for a subset S1 of the whole dataset,
then testing the model on the remaining S \ S1 data. And then selecting the λ that leads to
the smallest generalization error. The two formulations (119) and (120) both admit constrained
variations,

argmin
w,b

N∑
n=1

∣∣wTφ(xn)− tn
∣∣2 (121)

subject to

D∑
i=1

|wi|2 ≤ t (122)

19

and

argmin
w,b

N∑
n=1

∣∣wTφ(xn)− tn
∣∣2 (123)

subject to

D∑
i=1

|wi| ≤ t (124)

respectively.

Finally, note that other regularization terms are possible. In particular, any `p norm, p ≥ 1

‖x‖p =

(
D∑
i=1

wpi

)1/p

(125)

can be used as a regularizer.

In the case of the ridge regression formulation (119), it remains possible to derive a closed
form solution as follows. We consider the unconstrained formulation, take the derivatives with
respect to (w, b) and set those derivatives to 0, we get

wridge = (XTX + λI)−1XT t (126)

or in the case of feature vectors φ(x),

wridge = (ΦTΦ + λI)−1ΦT t (127)

Hence you see that we have replaced the matrix (ΦTΦ) by a better conditioned version of this
matrix as it is now combined to the identity which is invertible.

9 Bias Variance tradeoff

9.1 Expected Loss

Suppose our data set is given by D = {(x, t)} where t are the labels associated to each point
x. We will assume that the data is distributed according to an ideal function y(x) plus some
perturbations.

t = y(x) + ε (128)

t is thus the observed label. In order to study how well a given regression model is fitting the
data, one can look at the expected loss

E[L] =

∫ ∫
(h(x)− t)2 p(x, t) dx dt (129)

Note that given the objective (129), the optimal model we can choose for h(x) is to solve the
minimization problem

min
h(x)

∫ ∫
(h(x)− t)2 dxdt (130)

To do this, we set the first order derivatives to 0, and get

20

δEL
δh(x)

= 2

∫
(h(x)− t)p(x, t) dx dt (131)

from this we get

∫
h(x)p(x) dx =

∫
tp(t,x) dx dt (132)

The t disappeared in the left handside because h(x) does not depend on t so we can simply
integrate over all values of t.

This last equation tells us that in general we should at every value x choose the model h(x)
corresponding to

h(x) =

∫
t p(x, t) dx dt

p(x)
=

∫
tp(t|x) dt = Et {t|x} (133)

the last line follows from p(x, t) = p(t|x)p(x). This is however not always possible.

On the other hand, we always have

(h(x)− t)2 = (h(x)− E {t|x}+ E {t|x} − t)2 (134)

= (h(x)− E {t|x})2 + (E {t|x} − t)2 + 2 (h(x)− E {t|x}) (E {t|x} − t) (135)

If you substitute this last expression into the expected Loss (129) you can see that the cross
terms will disappear as it leads to the following four terms

2

∫
h(x)E {t|x} p(x, t) dx dt = 2

∫
h(x)E {t|x} p(x) dx (136)

− 2

∫
h(x)tp(x, t) dt dx = −2

∫
E {t|x}h(x)p(x) dx (137)

− 2

∫
E {t|x}2 p(x, t) dx dt = −2

∫
E {t|x}2 p(x) dx (138)

2

∫
E {t|x} tp(x, t) dx dt = 2

∫
E {t|x}2 p(x) dx (139)

So that the average loss reduces to

E[L] =

∫
(t− h(x))2 dx dt =

∫
(h(x)− E {t|x})2 p(x) dx (140)

+

∫
(E {t|x} − t)2 dt p(x) dx (141)

=

∫
(h(x)− E {t|x})2 p(x) dx (142)

+

∫
σ2
x p(x) dx (143)

Where I used ∫
(E {t|x} − t)2p(x, t) dx dt =

∫
Var[t|x]p(x) dx (144)

21

Once again, the t is integrated over in the first integral because none of the functions h(x) and
E {t|x} depend on t anymore.

The final expression of the average loss is then

E[L] =

∫
(h(x)− E {t|x})2 p(x) dx+

∫
σ2
x p(x) dx (145)

You see that there is a first term (MSE) that depends on the model and s second term that
depends only on the data. Now we will show that the first term can decomposed into a Variance
and a bias contributions.

9.2 Bias Variance Tradeoff

In the derivations above, we haven’t make any assumption on the regression model learned h(x).
In general, when we learn a regression model, we learn it from a subset of the data. We will
denote this subset Di so that Di ⊂ D and I will now denote our regression model as h(x|Di) to
emphasize the dependence on the particular choice of Di. Now that being said, if we use t(x) to
denote E {t|x}, we have the decomposition

(
h(x;Di)− t(x)

)2
(146)

=
(
h(x;Di)− EDi {h(x;Di)}+ EDi {h(x;Di)} − t(x)

)2
(147)

=
(
h(x;Di)− EDi {h(x;Di)}

)2
+
(
EDi {h(x;D)} − t(x)

)2
(148)

+ 2
(
h(x;Di)− EDi {h(x;Di)}

)(
EDi {h(x;Di)} − t(x)

)
(149)

If we take the expectation over all possible datasets Di, we will get a measure on how well the
model h(x) performs on average for the different datasets. Below I use EDi

to denote the average
when sample random datasets Di from the full set of samples D.

EDi

{
h(x;D)− t(x)

}2
(150)

= EDi

(
h(x;Di)− EDi

{h(x;Di)}
)2

+ EDi

(
EDi
{h(x;D)} − t(x)

)2
(151)

+ 2EDi

(
h(x;Di)− EDi

{h(x;Di)}
)(

EDi
{h(x;Di)} − t(x)

)
(152)

=
(
ED {y(x;D)} − t(x)

)2
︸ ︷︷ ︸

bias2

+ED
[
(h(x;D)− ED {h(x;D)})2

]
︸ ︷︷ ︸

variance

(153)

What this tells you in terms of the complexity of the regression models is that complex models
will usually have a large variance because within the class of complex models, the models will
usually vary a lot. I.e if you have a very complicated model with many many parameters that
perfectly fits the data in Di, then when you will take another dataset Dj , the model that you
build for Dj will be completely different from the model you built with Di. So complex models
usually have larger variance.

The bias, on the other hand is a measure of how well the model ”captures” the average behavior
of the data E {t|x}. In general (except if the data is assumed to be linear which is the framework
of the Gauss Markov Theorem discussed below), the simpler models will not be able to capture
such behavior. As an example, imagine we have data of the form

t = y(x) + ε = sin(x) + ε (154)

22

simpler models complex models
bias large small

variance small large

Table 2: The bias variance trade-off and the model complexity

Then without using non linear terms (and defining our new variables as x′ = φ(x) where φ(x)
encodes the non linearity), it is impossible to design a model of the form h(x) = β0 + 〈β1, x〉 such
that

h(x) = sin(x) (155)

This should illustrate the fact that simpler models have a large bias (When we don’t make
assumptions on the data distribution)

In general we thus have the relation summarized in table 2.

9.3 The particular case of linearly generated data and the Gauss Markov
Theorem

So far we haven’t made any assumptions on the data. When we don’t make assumptions on the
data, the relation of table 2 holds in general.

However, when we know that the data has a particular distribution, we can better describe the
quality of approximation of given models. This is the framework of the Gauss Markov Theorem
(GMT).

When the data is distributed according to a linear model, so that

t = y(x) + ε = α0 + α1x+ ε, (156)

then the linear model has no bias (note that this might seem counterintuitive compared to table 2
but this is because here we assumed that the data is linear).

Moreover, the Gauss Markov theorem states that among all possible linear estimators of the
α0 and α1 appearing in (for linear data), the linear regression model, which is computed by
minimizing the residual sum of squares,

argmin
β

N∑
i=1

(ti − β0 − β1xi)2 (157)

is the best estimator. In the Gauss Markov framework, when we say data, we mean the ti.
What we now call data are the noisy measurements ti = β0 + β1Xi + ε. Because we’ve put
ourselves in a framework where we now know how the data is distributed, ti(x) = β0 +β1xi+ε, ti
is enough to recover the data when there is no noise and we thus call ti the data. In this particular
framework, a linear estimator for the coefficients β is an estimator of the form

β̃ = Mt (158)

where t = [t1, t2, . . . , tN] encode the labels from Di. The estimator provided by the linear
regression approach (157) is a particular such estimator as it can read as

β̂RSS = (XTX)−1XT t (159)

= (XTX)−1XT (Xβ + ε) (160)

23

To prove the GMT, we consider any other linear estimator of the coefficients β = β0, β1,
β̃ = β̂RSS + ∆t where ∆ is a perturbation.

We first require the linear estimator β̃ to be unbiased, which gives

E
{
β̃
}

= E
{
β̂
}

+ E {∆t} (161)

= E {∆Xβ + ε∆} (162)

= ∆Xβ + 0 (163)

= 0 (164)

The only source of randomness here is the noise ε and we assumed that Eε = 0. As we haven’t
made any assumption on β, the last line implies that for the linear estimator to be unbiased, we
must have

∆X = 0 (165)

Now, for the variance, first note that

Var
{
β̂
}

= E
{

(β̂ − Eβ̂)2
}

(166)

= E
{
β̂
2
}
− β2 (167)

as the estimator is unbiased. For any other unbiased estimator, β̃ of the form β̃ = E {}

Var
{
β̃
}

(168)

= E
{

(β̃ − Eβ̃)(β̃ − Eβ̃)T
}

(169)

= E
{(
β̂RSS + ∆t− β − E {∆t}

)(
β̂RSS + ∆t− β − E {∆t}

)T}
(170)

= E
{(
β̂RSS − β

)(
β̂RSS − β

)T}
(171)

+ E
{

(∆t− E {∆t})(∆t− E {∆t})T
}

(172)

− E
{

(β̂RSS − β)(∆t− E {∆t})T
}

(173)

− E
{

(∆t− E {∆t})(β̂RSS − β)T
}

(174)

As β̂RSS is unbiased, the last two (cross) terms disappear and we are left with

Var
{
β̃
}

= Var
{
β̂RSS

}
+ E

{
(∆t)(∆t)T

}
(175)

− E {(∆t)}E {(∆t)}T (176)

= Var
{
β̂RSS

}
+ ∆XββTXT∆T (177)

+ ∆εεT∆T (178)

= Var
{
β̂RSS

}
+ σ2∆∆T (179)

As soon as ∆ 6= 0, the diagonal of ∆∆T is non zero as well. This in particular means that
there is one component of β̃ for which we always have

E
{

(β̃k − βk)2
}
> E

{
(β̂k − βk)2

}
(180)

24

Both estimators have zero bias (we will overestimate and underestimate the truth equally) but
the errors we make will often be larger when we don’t use the RSS estimator.

In conclusion, you can thus see that any linear estimator will only increase the variance with
respect to β̂RSS (This is because we are in the particular framework of linearly generated data)

For this reason, the estimator β̂RSS is sometimes called the BLUE (Best Linear Unbiased
Estimator)

9.3.1 Increasing the bias to reduce generalization under the assumption of linearly
generated data

That being said, the fact that the BLUE is the best estimator among all unbiased estimators with
respect to linearly generated data, does not mean that it is not possible to do better in terms of
future predictions. And this is because a similar bias variance tradeoff as the one discussed in
section 9.2 applies.

Imagine that we take a new point x0 and we apply our estimator β̃ (now we don’t assume that
this estimator is unbiased anymore, this is just a general linear estimator) to this point to get an
estimated label y, we can then write the expected mean square prediction error as before

Eε
{(
〈β̃,x0〉 − 〈β,x0〉

)2}
(181)

= Eε
{(
〈β̃,x〉 − E

{
〈β̃,x〉

}
+ E

{
〈β̃,x〉

}
− 〈β,x〉

)2}
(182)

= Eε
{(
〈β̃,x〉 − E

{
〈β̃,x〉

})2}
(183)

+ Eε
{(

E
{
〈β̃,x〉

}
− 〈β,x〉

)2}
(184)

+ 2Eε
{(
〈β̃,x0〉 − Eε

{
β̃,x0

})(
E
{
〈β̃,x0〉

}
− 〈β,x0〉

)}
(185)

The last term vanishes as the second factor is deterministic and the first factor has mean 0.
We thus once again have

Eε
{(
〈β̃,x0〉 − 〈β,x0〉

)2}
= Eε

{(
〈β̃,x〉 − E

{
〈β̃,x〉

})2}
︸ ︷︷ ︸

variance

(186)

+ Eε
{(

E
{
〈β̃,x〉

}
− 〈β,x〉

)2}
︸ ︷︷ ︸

bias2

(187)

This shows that even in the framework of linearly generated data, despite the fact that β̂ is
the BLUE estimator, it does not mean that this estimator will be the best (on average over the
noise) at predicting a new value of t = 〈x,β〉. There might be an estimator β̃ with a non zero
bias (on linear data) that will have smaller variance.

That is to say, if I generate many values tk = 〈β, xk〉 + εk, learn my estimator β̂ from those
values, then this estimator will be unbiased but when I will want to get the prediction for a new
point x0, the average prediction might be better if I lower the variance and increase the bias a
little. Again this might sound counter intuitive with respect to table 2 but remember that we
assumed linearly distributed data here.

25

Figure 2: From non linearly separable data to linearly separable data via higher dimensional
feature space

10 Kernels

Let β0 ∈ R to denote the bias and β1 ∈ RD to denote the vector of weights. In practice, we often

have to deal with prototypes, {xµ}Nµ=1 which are not linearly separable in their original space.
One approach then consists in introducing features and to ”map” the original prototypes xµ into
a space (the feature space) in which those prototypes become linearly separable. We use φ to
denote the underlying transformation so that for a given datapoint x, φ(x) denotes the feature
vector of x.

Example 1. Consider the dataset shown in Fig. 2 (left). In the original R2 space, the data
given by pairs (x1, x2) is clearly not linearly separable. However, it is possible to introduce a
transformation φ : x 7→ φ(x) defined as φ(x) = φ(x1, x2) = (x1, x2, x

2
1 + x22).

Here, introducing an additional dimension, and setting this dimension to be equal to the radius
of the points in the original space, results in the purple points being placed above the red points,
thus leaving some space for a separating plane.

Relying on feature vectors to learn classifiers is at the core of machine learning. However, such
an approach often requires to map the data to a much higher dimensional space (i.e higher than
the number of prototypes xµ). In this case, it is more interesting to avoid computing the feature
vectors explicitely and to rely instead on a measure of similarity between the points in the feature
space. After all, the important information here is really how the points compare to each other
in the feature space. This information is encoded through kernels

Mathematically, a kernel is nothing else than a function that measure similarity between
points. This is summarized by the definition below

Definition 19 (Kernel). We define a kernel to be the real valued function of two arguments x
and x′ from a space X . Typically this function is taken to be symmetric k(x,x′) = k(x′,x) and
non negative, k(x,x′) ≥ 0. Those two properties enable us to interpret the kernel k(x,x′) as a
measure of similarity between points.

Examples of popular kernels are listed below

• The Gaussian kernel

k(x,x′) = exp(−1

2
(x− x′)Σ−1(x− x′))

• When the covariance matrix Σ is isotropic/spherical, we get the isotropic kernel

k(x,x′) = exp(−‖x− x
′‖2

2σ2
)

26

• The cosine similarity:

k(x,x′) =
xTx′

‖x‖2‖x′‖2
• The (non stationnary) polynonial kernel:

k(x,x′) = (γxTx′ + r)M

where r > 0. This kernel corresponds to a feature vector φ(x) that contains all the mono-
mials up to degree M .

The isotropic kernel is an example of Radial basis function (a function whose distance decreases
or increases monotonically with respect to a central point). Those functions are multivariate (i.e
they are defined on x ∈ RD) but they reduce to a scalar function of the Euclidean norm ‖x‖2 of
their argument x, i.e.,

F (x) = f(‖x‖2) = φ(r), x ∈ RD (188)

Examples of radial basis functions include

• The Gaussian RBF: F (‖x− x′‖) = exp(−α2‖x− x′‖2)

• The Multiquadratic RBF: F (‖x− x′‖) =
√

1 + α2‖x− x′‖2

As soon as one has access to the feature vector φ(x) (for example when this feature is finite
dimensional), one can build a valid kernel by defining k(x,x′) as the inner product of the feature
vectors of x and x′, i.e.,

k(x,x′) = φ(x)Tφ(x′) (189)

10.1 From linear regression to kernel regression

When the dataset is not linearly separable in the original space, we turn to a formulation on the
feature space and try to find the plane defined by (β0,β1) that minimizes J(β), i.e.,

min J(β) =
1

2

N∑
n=1

{
βT1 φ(x) + β0 − tn

}2

+
λ

2
‖β‖2 (190)

Here the separating plane is defined through the vector of parameters β = (β0,β1), β0 ∈ R,
β1 ∈ RD. The solution for β can be obtained by computing the derivative of J(β) with respect

to β and settting it to zero. For pairs {(xn, tn)}Nn=1, we have

∂J(β)

∂β
= 0⇒ β = − 1

λ

N∑
n=1

{
βT φ̃(xn)− tn

}
φ̃(xn) (191)

Now introducing the notation an for the quantities

an = − 1

λ

{
βT φ̃(x)− tn

}
(192)

Then the solution for β can read as

β =

N∑
n=1

anφ(xn) = ΦTa (193)

27

Where Φ is the matrix whose ith row is given by φT (xi). Now substituting this expression
into (191), we get

J(a) =
1

2
aTΦΦTΦΦTa− aΦΦT t+

1

2
tT t+

λ

2
aTΦΦTa (194)

From the discussion above, you see that the product ΦΦT is actually encoding all inner
products 〈φ(xn),φ(xm)〉 and we can thus replace the product ΦΦT with the Kernel K(x,x′).
Doing this yields an objective, or energy function that only depends on the kernel K(x,x′),

J(a) =
1

2
aTKKa− aTKt+

1

2
tT t+

λ

2
aTKa (195)

We can then solve for a or simply substitute the expression (193) we found for β in (192), to
find

a = (K + λI)−1t (196)

Once we have this expression (note that so far everything can be expressed with the Kernel),
the classifier simply reads as

y(x) = βTφ(x) = aTΦφ(x) =

N∑
n=1

anK(xn,x) (197)

11 Support Vector Machines (SVM)

Support vector machine, which are also known as sparse kernel machines, or Maximal margin
classifiers, extend the notion of separating hyperplane to find a separating plane that reduces as
much as possible the ”risk” of misclassifying new points. To achieve this, the separating plane is
defined as the plane maximizing the distance to its closest point(s).

Using the discussion from section 7.1, we can then write the derivation of such maximal margin
hyperplane as

argmax
w,b

{
1

‖w‖ min
n

[
tn(wTφ(xn) + b)

]}
(198)

That is we look for the w and b (which define the plane) such that the distance of the closest
point (minimization on xn) to the plane is maximized.

Formulation (198) is invariant under any rescaling of the pair (w,b). I.e as w and/or b both
appear at the numerator and at the denominator, replacing those quantities by (αw, αb) does
not affect the solution. In fact any such pair, for any α will be a valid solution.

In order to simplify the formulation, we can therefore fix the value of α and decide to take
this value equal to the value satisfying

tn(wTφ(xn) + b) = 1 (199)

for the closest point xn. By assumption, any other point, must satisfy tn(wTφ(xn) +b) ≥ 1, and
the problem reads as

argmin
w,b

1

2
‖w‖2

subject to tn(wTφ(xn) + b) ≥ 1

(200)

Note that we have used argmax
x
‖x‖−1 = argmin

x
‖x‖. Problem (200) is a quadratic program

that is convex, hence, has a single basin of attraction and can be solved efficiently.

28

To solve this problem, we write is as an unconstrained formulation (Lagrangian) by introducing
multipliers, λi for each constraints (see section 6.2)

L(w,b, λ) =
1

2
‖w‖2 −

N∑
n=1

λn
{
tn(wTφ(xn) + b)− 1

}
(201)

To find the solutions for w and b, we compute the derivatives of L with respect to those
variables and set the derivatives to 0. From this, we get

w =

N∑
n=1

λntnφ(xn) (202)

0 =

N∑
n=1

λntn (203)

Now recall that the general form of the classifier we are after is given by

y(x) = wTφ(x) + b (204)

If we substitute the expression for w that we derived from the zero derivatives in the expression
of the classifier, we get

y(x) =

N∑
n=1

λntn〈φ(xn),φ(x)〉+ b

=

N∑
n=1

λntnk(x,xn) + b

(205)

Now besides the maximization of the margins, the other key idea of SVM is the fact that we
don’t need to keep track of all the training samples in (205). Indeed from Theorem 10, we know
that the solution (w,b) of problem (200) has to satisfy the conditions

λn ≥ 0 (206)

tny(xn)− 1 ≥ 0 (207)

λn(tny(xn)− 1) = 0 (208)

From the last condition in particular, we can see that for every training sample, n = 1, . . . , N ,
either we have λn = 0 or we have tny(x) − 1 = 0. The second case corresponds to points that
are located the closest to the maximal margin hyperplane as the distance to each points to the
hyperplane is always lower bounded by

tny(xn)

‖w‖ ≥ 1

‖w‖ (209)

In other words, for every training point that appears in (205):

• Either that point does not contribute to the expression (205) of the classifier (as λn = 0)

• Or it is lying on the margins.

Using this idea to simplify (205), if we introduce the notation S to denote the set of “support
vectors”, that is the points that are lying on the margins, or located the closest to the plane, the
expression of the classifier reduces to

y(x) =
∑
n∈S

λntnk(x,xn) + b (210)

29

x1

x2

x3

x4

y(x,w)

Hidden
layer

Input
layer

Output
layer

Figure 3: Graphical representation of a one layer neural network. The arrows represent multi-
plication by the weights wij . The hidden units (shown in blue) represent the application of the
activation function.

Furthermore, we can use condition (208) for the support vectors, (i.e. those for which we have
tn(y(xn)− 1) = 0) to write b. indeed note that substituting (210) into condition (208) gives

tn

(∑
n∈S

λntnk(x,xn) + b

)
= 1, for every xn ∈ S (211)

To obtain a robust estimate of b, we can then just sum all those equation and divide by NS . This
gives

b =
1

NS

∑
n∈S

(
tn −

∑
n′∈S

λn′tn′k(x′,xn)

)
(212)

12 Neural Networks

The general formulation of a (two hidden layers) neural network is as follows,

yk = yk(x,w) = σ(2)

 M∑
j=1

w
(2)
kj σ

(1)

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

 (213)

When training neural networks, we usually don’t take all the training samples into account but
rather rely on a small subset of those training samples at each gradient iteration. These subsets
are known as minibatches. There are three main approaches at training a network

• Batch gradient descent. Here all the training samples are taken into account and the weight
are updated only after all the error has been evaluated at all the training samples (Batch
gradient descent is just the regular gradient descent)

• Stochastic gradient descent (SGD). Here, the algorithm computes the error for a given
training sample and update the weights immediately after (i.e the weights are updated for
each training sample)

• Finally, the tradeoff between batch gradient descent and SGD, MiniBatch gradient descent
updates the weight after evaluating the error/loss on a subset of the training samples.

Among the possible regularization approaches for neural networks, the most popular are the
following

30

• Activity regularization. For a given network, we call activations, the outputs of the acti-
vation functions, i.e σ(`)(·). Placing a regularizer on the activation will result in training
a network in which only a fraction of the neurons fire at the same time (at least for data
similar to the training data).

• Weight regularization. Here we add a penalty (e.g. `2 or `1 norm) on the weights.

• Early stopping. When training neural networks, one often observe a decrease in both the
training and validation error for the first iterations. Then, after a sufficient number of
gradient iterations, the validation error starts increasing [6]. One way to avoid overfitting
is then to get the values of the parameters at each iteration and return the values of the
parameters that give the lowest validation error (we stop the iterations when no improvement
on the validation error has been obtained for some iterations)

• Dropout, which shares some similarities with activity regularizationin fact it can be consid-
ered as some sort of subset selection alternative to the `1 or `2 penalties used in activity
regularization, can be considered as optimizing over a family of ”sparse” networks. When
training a network with dropout, we select some random subset of the neurons and only
update the weights associated to those neurons. Mathematically, when performing SGD,
we thus compute the forward pass (i.e the output of the network) by considering a sparse
version of the original network [21]. We choose a probability p. Recall that for a traditional
neural network, the activity of each unit can be defined as

z
(`+1)
i = 〈w(`+1)

i ,y〉+ b
(`+1)
i (214)

y
(`+1)
i = σ(z`+1

i) (215)

With dropout propagation through the network now reads as

r
(`)
j ∼ Bernoulli(p)1 (216)

ỹ(`) = r(`) � y(`) (217)

z
(`+1)
i = w

(`+1)
i ỹ(`) + b

(`+1)
i (218)

y
(`+1)
i = f(z

(`+1)
i) (219)

So that we select only some of the activations yj and only update the weights associated to
those activations.

• Weight Sharing. The idea of weight sharing is especially meaningful in convolutional neural
networks (CNN) where filters are applied to an image to extract information from this
image. As the name indicates, weights sharing requires all the neurons within a particular
subgroup to have identical weights. Weights sharing is implicitely present in convolutional
neural. In those network, each neuron can be thought as computing a local average across
the neighborhood of a pixel. The point of such averages is to extract features from a part of
the image. Usually, when using convolutional neural networks, we are interested in detecting
a particular object in the input images. Hence the features we are looking for should be the
same regardless of the part of the image on which the filter is applied. AS a consequence,
the weights are constants across each layers. Equality of the weights can be enforced in
a hard (exact equality such as in CNNs) or in a soft way. Soft weight sharing is done by
assuming a Gaussian distribution of the weights within a given group of neurons.

In the simplest framework, we assume that all the weights wi in the group G are all relatively
close to some mean value µ (with variance σ2) and we for example assume the distribution
of those weights to be Gaussian

p(wi) = N (wi|µ, σ2) (220)

We can make this model slightly more general by assuming that the weights have a high
probability to take a few distinct values. In this case, we assume for example that the

31

distribution of those weights is given by a mixture of Gaussian, i.e.,

p(wi) =

M∑
j=1

πjN (wi|µj , σ2
j) (221)

We then use this distribution as a regularization in the objective used to train the network.
I.e, just as we did for the MAP and MLE estimators, we want the training step to select
weights that have a high probability in the model (221). This corresponds to maximiz-
ing (221) over the weights, or (as we did for the MAP and MLE) to minimizing the negative
log likelihood

Ω(w) = − log(

M∑
j=1

N (w|µj , σ2
j)) (222)

When there are several (NG) weights in the group G, we simply sum over the contribution
of each weight,

Ω(w) = −
NG∑
i=1

log

 M∑
j=1

πjN (wi|µj , σ2
j)

 (223)

The loss function that is minimized when training the network is then given by

Ẽ(w) = E(w) + λΩ(w) (224)

12.1 Backpropagation

Consider the two hidden layers NN of (213). The extension of this simpler model to L layers can
read as

yk = yk(x,w) = σ(L)

 M∑
j=1

w
(L)
kj σ

(L−1)
(
. . . σ(1)

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
. . .

)
+ w

(L)
k0

 (225)

In order to train such a network, we minimize the loss

N∑
n=1

K∑
k=1

(yk(xn)− tnk)2 (226)

if we put ourselves in a stochastic gradient descent framework, where we only consider a single
sample at each iteration, we can drop the sum over n in (226) and consider the minimization

L =

K∑
k=1

(yk(xn)− tnk)2 (227)

In order to apply one SGD iteration on this objective, and to update the weights

w`ij ← w`ij − η
∂L

∂w`ij
(228)

we need to compute the expression of the derivatives ∂L
∂w`

ij

. To do so, we will rely extensively

on the chain rule.

32

Computing the derivative with the outer weights (the weights that are the closes to the output
of the network) is easy. But computing the derivatives with respect to the most inner weights,
i.e. w1

ij , can be quite involved.

Backpropagation is an efficient way to compute the gradient of neural networks. First note
that

∂L

∂yk
= 2(yk − tk) (229)

We then want to compute all derivatives of the form

∂L

∂w`kj
(230)

For this, we use the chain rule a first time, splitting (230) into

∂L

∂w`kj
=

∂L

∂a`k

∂a`kj
∂w`kj

(231)

that is we start from the weight we want to compute and we go up one step towards the output
of the network by considering the quantitites

a`k =

M∑
j=1

w`k,jz
`−1
j (232)

where z`−1j = σ`−1(. . .).

Note that the second factor in (231) is simply z`−1j = σ`−1(. . .) which is computed when we
pass the data through the network. To get the first factor, we apply the chain rule again, going
one more level towards the output of the network, yk. We have

∂L

∂a`k
=
∑
j

∂L

∂a`+1
j

∂a`+1
j

∂a`k
(233)

This last equation is the equation that really encodes backpropagation. To see this, first note
that from (225), we have

a`+1
j =

∑
m

w`jmzm (234)

=
∑
m

w`jmσ
`(am) (235)

and we can thus write

∂a`+1
j

∂a`k
= (σ`)′w`jm (236)

Putting this back into (233), we get

∂L

∂a`k
=
∑
j

∂L

∂a`+1
j

(σ`)′w`jm (237)

33

Now let δ`k = ∂L
∂a`k

. From (237), we can write

δ`k =
∑
j

δ`+1
j (σ`)′w`jm (238)

From (238), you see that the δ`+1 can be ”backpropagated” through the network by multipli-
cation with the weights, to obtain the δ` (we move from the output aL to the most inner part
of the network, a1, hence the term ”backpropagation”). Once we have computed all the δ`, the

derivatives are simply given by using (231) and noting that
∂a`k
∂w`

kj

= z`−1j (Eq. (232)).

The “backpropagation” algorithm can thus read as follows

• First send the training data through the network and compute all the z`j(. . .) which are the
outputs of every neuron.

• Then compute all the intermediate derivatives
[
σ`(a`−1)

]′
a the activations a`−1 given by

your training point.

• Once you have all those values, start backpropagating the δ with

δL =
∂L

∂aLk
=
∂(yk − tk)2

∂yk

∂yk
∂aLk

(239)

= 2(yk − tk)
[
σL(aLk)

]′
(240)

and then

δ`k =
∑
j

δ`+1
j (σ`)′w`jm (241)

• Finally, once you have all the δ`k, compute the derivatives as

∂L

∂w`kj
=

∂L

∂a`k
z`j (242)

13 Clustering

13.1 Hierarchical clustering

The simplest approach to clustering are the so-called hierarchical clustering algorithms which
either start from a single cluster and then divide this cluster iteratively (Divisive) or start from
the individual prototypes and then merge those prototypes with each other based on their relative
similarity. We detail those algorithms below

13.1.1 Agglomerative Clustering

In agglomerative clustering, each of the prototypes are merged following a given criterion, until
they form a simgle cluster. Depending on the deisred number of clusters, the proceudre

In each of those approaches, the combination of subclusters is motivated by the minimization
of a particular notion of dissimilarity.

• In Single Linkage (SL), we merge at each step, we consider as dissimilarity the distance
between the closest pair of points xi ∈ S1 and xj ∈ S2, and merge the two clusters that
minimize this dissimiliarity,

dSL(S1, S2) = min
xi∈S1
xj∈S2

d(xi, xj) (243)

34

• In Complete Linkage (CL), the dissimilarity of any pair of clusters S1 and S2 is defined as
the distance between the furthest pair of points

dCL(S1, S2) = max
xi∈S1
xj∈S2

d(xi, xj) (244)

• Finally, an tradeoff between the two approaches can be obtained by taking the dissimilarity
between any two sub-clusters to be the average of the inter-cluster distances. This approach
is known as Group Average (GA)

dGA(S1, S2) =
1

NS1
NS2

∑
i∈S1

∑
j∈S2

d(xi, xj) (245)

where we let NS1
and NS2

denote the number of prototypes in sub-cluster S1 and S2

The iterative merging of sub-clusters defines a dendrogram which can be cut (i.e the proce-
dure can be stopped) at any level depending on the desired number of clusters. Each of the
aforementioned approach also has an interpretation in terms of the diameter of each cluster.

13.1.2 Divisive Clustering

As the name indicates, Divisive clustering is based on recursively splitting a parent cluster C into
two child subclusters C1 and C2 following a particular criterion. At each step, one cluster is chosen
to be subdivided. This cluster is often the one with the largest diameter δ = maxi,j∈S∞ d(xi,xj)
or with the largest average dissimilarity,

d =
1

NC

∑
i,j∈C

d(xi,xj) (246)

The division of the parent cluster can be done for example by applying K-means to that
cluster with two centroids and returning the corresponding two subclusters, An alternative, due
to Macnaughton Smith et al. relies on removing from the clusters all the points that have a
sufficiently high dissimilarity with respect to all the other points in the original cluster. If we let
C0 to denote the parent cluster, the methods then defines the first subcluster C1 by removing
from C0 the point with the largest average dissimilarity

x∗ = argmax
x

1

NC0 − 1

∑
xj∈C0

d(xi, x) (247)

Here NC0
is used to denote the number of prorotypes in the parent cluster C0. The first subcluster

C1 is thus defined as the singleton C1 = {x} and the algorithm proceeds by removing the next
point with the highest average dissimilarity from C0 \ {x∗} and moving it to C1. This continues
until there is no more prototype in C2 = C0 \C1 that is more similar to the points in C1 than it is
to the points in C2. I.e, the subdivision stops whenever there is no more y for which th difference

DC2
−DC1

=
1

|C2| − 1

∑
xj∈C2

d(y, xj)−
1

|C1|
∑
xj∈C1

d(xj , y) (248)

is non negative.

13.2 K-means

K-means is one of the most popular and most straightforward clustering algorithm. In K-means
the general idea is to find within the data, K clusters that minimize the pairwise distance between
the prototypes belonging to the cluster. If we let C1, . . . , CK to denote the K clusters in which
we want to group our prototypes x1, . . . ,xN , and use C to denote the mapping which associates

35

a cluster k = 1, . . . ,K to each prototype x`, that is if the cluster of x` is Ck, we write C(x`) = k
or C(x`) = Ck. K-means minimizes the following objective

min
C

K∑
k=1

∑
(i,j)∈Ck

‖xi − xj‖2 (249)

That is, we only take into account the intra-cluster distance (the distance between points belonging
to the same cluster). The main advantage of K-means lies in the use of the Euclidean distance.
By using the properties of this distance, one can in fact show that the cost (249) can be reduced
to finding the clustering which minimizes the sum of the distances points of a same cluster and
their center of mass. To see this, first write the Euclidean distance in terms of inner products,

1

2

K∑
k=1

∑
i∈Ck

∑
j∈Ck
‖xi − xj‖2 =

1

2

K∑
k=1

∑
i∈Ck

∑
j∈Ck
〈xi, xi〉+ 〈xj , xj〉 − 2〈xi, xj〉 (250)

=
1

2

K∑
k=1

∑
i∈Ck

2〈xi, xi〉Nk −
1

2

∑
k

∑
i∈Ck

2〈xi,
∑
j∈Ck

xj〉 (251)

=

 K∑
k=1

Nk
∑
i∈Ck
〈xi, xi〉 −

K∑
k=1

Nk
∑
i∈Ck
〈xi,

∑
j∈Ck

xj〉
1

Nk

 (252)

=
K∑
k=1

Nk
∑
i∈Ck

〈xi, xi〉 − 〈xi,∑
j∈Ck

xj〉
1

Nk

 (253)

(254)

Then add and subtract the quantity Q ≡∑K
k=1

∑
i∈Ck

1
Nk

∑
j∈Ck〈xi,xj〉,

K∑
k=1

Nk
∑
i∈Ck

〈xi, xi〉 − 〈xi,∑
j∈Ck

xj〉
1

Nk

+Q−Q (255)

=

K∑
k=1

Nk
∑
i∈Ck

〈xi, xi〉 − 〈xi,∑
j∈Ck

xj〉
1

Nk
+

1

N2
k

〈
∑
j∈Ck

xj ,
∑
j∈Ck

xj〉

 (256)

−
K∑
k=1

∑
i∈Ck

 1

Nk

∑
j∈Ck
〈xj , xi〉

 (257)

=

K∑
k=1

Nk
∑
i∈Ck

〈xi, xi〉 − 2〈xi,
1

Nk

∑
j∈Ck

xj〉+ 〈 1

Nk

∑
j∈Ck

xj ,
1

Nk

∑
j∈Ck

xj〉

 (258)

=

K∑
k=1

Nk
∑
i∈Ck
‖xi −

1

Nk

∑
j∈Ck

xj‖2 (259)

Formulation (259) is interesting because it gives us a heuristic to look for the optimal assign-
ment. From (259) it indeed seems reasonable to start with a set of centroids, define the assignment
by relating each prototype to its closest centroid and then update the centroid by defining them
as the center of mass of each of the newly generated clusters. This idea is summarized below.

• Assignment. Assign each prototype to the cluster represented by the nearest centroid. I.e,
for a given set of centroids, yk, k = 1, . . . ,K, if we let C(x`) to denote the cluster of the `th

prototype x`, then C(xk) is updated as follows

C(x`)← min
k
‖ck − x`‖ (260)

36

• Update of the centroids. Once the cluster of each point has been determined, the main
advantage of K-means is that the use of the Euclidean distance enables a straightforward
update of each centroid as the center of mass of the newly formed clusters:

c` =
1

N`

∑
k∈C`

xk (261)

It is worth noting that K-means might sometimes return empty clusters (some of the centroids
might be moved towards a region of space without any prototypes). In this case, one can simply
restart the algorithm by replacing this centroid with for example the prototype x∗ from the
dataset that is located the furthest away from all the other (well defined) centroids. Proceeding
like this will eliminate the point x∗ that contributes the most to the error (259).

An alternative approach could be to restart the algorithm by keeping the non zero clusters
and resampling a centroid from the cluster that has the largest intra-cluster SSE. This will also
reduce the error (259).

The whole process can obviously be repeated when multiple empty clusters are returned.

Several initialization approaches have been proposed for K-means. The popular ones are listed
below (see [18] for more details).

• Random partitioning. The approach divides the dataset in K distinct clusters chosen at
random.

• The Forgy or Lloyd-Forgy approach [13, 5]. The method picks K feature vectors at random
to define the centroids and assigns all the remaining feature vectors to the nearest centroid.
There is not recalculation of the centroids after each assignment.

• K-means++. The first centroid is selected at random. The next centroid is selected as
the point that is the farthest from the currently selected. The selection continues until K
centroids are defined.

• MacQueeen approach [15]. Choose K instances of the database at random. Assign, fol-
lowing some order, the rest of the dataset to each of the centroids. After each assignment,
recalculate the centroids.

• Kaufman approach [9]. The Kaufman initialization is a deterministic initialization which
places the centroids in the areas where there is a higher density of prototypes xi. The
Kaufman initialization is shown in Fig. 1.

1 Set x0 to be the median feature vector (i.e the one that is the most cetrally
located);

2 Set S = {x0} and let Sc denote the set of remaining feature vectors.;
3 for all the remaining feature vectors xi ∈ Sc do

4 Compute di ≡ mink∈S d(xk,xi);

5 Set Ci,j ≡ max(di − d(xj ,xi), 0)

6 end
7 Choose the next centroid xk+1 as the one that maximizes maxi Cij ;
8 if there are K points in S then
9 Stop

10 end
11 else
12 Set S ← S ∪ xk+1 and go back to step 1.
13 end

Algorithm 1: Kaufman initialization

Convergence of K-means is studied in [14, 3]. Among the initialization procedures,

37

13.3 K-medoid

K-medoid is the restriction of K-means to centroids that are part of the original set of prototypes,
D. K-medoid is more flexible in the sense that it can be applied with any given distance, but the
price to pay is a higher computational cost. Indeed, more general distances are not guaranteed
to lead to losses, such as (259), for which the optimal centroid for a given assignment can be
obtained directly as the center of mass of each cluster. In the K-medoid framework, the update
of the centroids requires screening all the points within a given cluster and selecting the one
that minimizes its distance to all the others, thus increasing the cost from O(N) to O(N2). The
algorithm is summarized by the two steps below.

• Initialization. Choose K points at random as the initial centroids {mk}Kk=1.

• Assignment. Divide the dataset according to those centroids by assigning each point as

C(xi) = argmin
k

D(xi,mk) (262)

• Update of the centroids. Update the centroids by choosing them among the feature vectors
as

mk ← argmin
x | C(x)=k

∑
x | C(x)=k

D(x,xk) (263)

K-medoid then iterates over the two steps above until the assignement stop changing.

13.4 The EM Algorithm

Both K-means and K-medoid relies on hard assignment. I.e., a point is classified as belonging or
not to a given cluster. Such a hard approach leads to a lack of robustness in the sense that it
does not come with a clear quantification of the uncertainty associated to the classification of each
prototype. The expectation maximization (EM) approach works in a similarly way but defines the
clusters based on probability distributions. The advantage of turning to probability distributions,
is that each assignment now comes with a level of confidence encoded by the probabilities. In
the EM algorithm, the cluster of a point is defined as the probability distribution that gives the
highest probability of occurence for that point.

14 Linear latent variable models

In all the models discussed below, we are interested in finding representations of the form x(θ)

for a dataset {xk}Nk=1. That is we would like to understand whether most of the data can be
generated from a small number of meaningful parameters.

As usual in machine learning, most of the models that we consider below have a statistical
interpretation that falls within either of the Bayesian or Frequentist framework.

14.1 Factor Analysis (FA)

The simplest latent variable model assumes that the prototypes can be represented from the linear
combination of a few (common) sources of variation,

xi = Wθi, i = 1, . . . , N, xi ∈ RD (264)

W is a matrix of size D×K with K � N . Assuming a sufficiently low dimensional latent rep-
resentation however is not enough to make the decomposition uniquely identifiable. In particular,

38

for a given set of prototypes {xi}Ni=1, and any rotation matrix R2 one always has

xi = WRRTθ = Wθ (265)

which already gives two possible decompositions for xi. The Factor Analysis model also leads to
scaling ambiguities as for any α ∈ R, one can always write

xi = (αW)(α−1θi) (266)

To ensure unique recovery of the latent factors together with the factor loading matrix W , we
need to enforce additional constraints that will prevent the ambiguities discussed above to occur.
The most commonly used solutions are listed below and detailed in the subsequent subsections.

• RequiringW to be orthonormal, i.e.,W TW = I. This is the approach followed by Principal
Component Analysis (PCA) which is discussed in section 14.2.

• Require W to be lower triangular. I.e in this case, the first feature in xi only depends on
the first factor θ1, the second feature is a linear combination of the first two latent factors,
θ1, θ2 and so on. This approach usually also requires the weights from the factor loading
matrix to be positive.

• Use of non-Gaussian priors for the latent factors. This, as we will see, leads to Independent
Component Analysis (ICA).

• Consider sparsity promoting priors on the weights. An alternative to the lower triangular
factor loading matrix is to avoid pre-specifying the location of the non zero entries in W
but to encourage the entries to be zero by adding an `1 regularization term.

The idea underlying Factor Analysis can be used inside a statistical framework. If we consider
measurements that are generated from the latent model following a Gaussian distribution

xi = µ+Wzi + εi (267)

Where the εi ∈ Rd follows a multivariate Normal distribution with covariance Ψ,

p(xi) = N (xi|µ,Σ) =
1

(2π)d/2|Ψ|1/2 exp

{
−1

2
(xi − µ−Wzi)

TΨ−1(xi − µ−Wzi)

}
(268)

and follow a Frequentist approach, therefore focusing exclusively on the (log) likelihood, we have

− log(p(xi|µ,W , zi)) = − log(N (µ+Wzi,Ψ)) (269)

= − log(− 1

(2π)d/2|Ψ|1/2 exp(−(xi − µ−Wzi)
TΨ−1(xi − µ−Wzi)))

(270)

= log((2π)d/2|Ψ|1/2) + (xi − µ−Wzi)
TΨ−1(xi − µ−Wzi)) (271)

In the particular case where Ψ = σ2I (which corresponds to independent features), we get

− log(p(xi|µ,W , zi)) = d log(2π) +
d

2
log(σ) +

1

σ2
‖xi − µ−Wzi‖2 (272)

When σ → 0, minimizing (272) (i.e maximizing the log likelihood), corresponds to the Factor
Analysis minimization problem discussed above,

min
W ,zi

‖xi − µ−Wzi‖2 (273)

2A rotation matrix is an orthogonal matrix with unitary determinant, i.e. RTR = RRT = I

39

Minimizing (273) can thus be understood as neglecting the σ, or assuming no uncertainty
on the prototypes. Without additional assumption on either W or zi, solving this problem is
hopeless. As we already mentioned, one possibility to make the problem better posed is to add
assumptions on W . On top of those assumptions, one can take a Bayesian perspective on the
problem and consider a prior on zi. Multiplying our likelihood with such a prior gives us the
possibility to average out the dependence on the zi (in the sense that p(xi) =

∫
p(xi|zi)p(zi) dzi).

If we take a Gaussian prior for the zi for example, p(zi) = N (zi|µ0,Ψ0), we can average out the
dependence as

p(xi|θ) =

∫
N (xi|Wzi + µ,Ψ)N (zi|µ0,Ψ0) dzi (274)

Using (54), we can then write this probability distribution as

p(xi|θ) = N (xi|Wµ0 + µ,Ψ +WΨ0W
T) (275)

Note that is not an MAP estimation as we did not use priors on our parameters W ,µ,Ψ and
µ0,Ψ0. Moreover, as already explained, this procedure removes the dependence in the latent fac-
tors z0 but does not solve the ill posedness of the problem (i.e we still have too many parameters).
The next sections address this last difficulty.

14.2 Principal Component Analysis (PCA)

Principal Component Analysis is the restriction of FA to orthonormal factor loading matrices
W . In principal component analysis, one is interested in finding a subset of vectors {v`}L`=1 that

capture most of the information present in the dataset {xk}Nk=1. Mathematically, we therefore
want to find a model of the form {µ,W ,λ} where W has orthonormal columns, i.e. W ∗W = I,

and where any point from {xk}Nk=1 can read as

xk ≈ µ+Wλ (276)

To find such a model, a natural approach is to minimize the sum of the deviations between
the prototypes and their approximations µ + Wλ. This can be done by minimizing the `2, as
follows

min
µ,λ,V

N∑
i=1

‖xi − µ−Wzi‖2 (277)

Again, formulation (277) can be viewed as following from the maximization of the log-likelihood
provided that the prototypes xi follow a Normal distribution with mean µ+Wzi.

Solving problem (277) for zi and µ gives

µ =
1

N

N∑
i=1

xi (278)

zi = W ∗(xi − µ) (279)

Given expressions (278) and (279), the minimization problem (277) can then be written as

min
W

N∑
i=1

‖xi − x−WW ∗(xi − x)‖2 (280)

The matrix WW ∗ that appears in this expression is a projection matrix (i.e a matrix for

which P 2 = P). WW ∗ in particular maps every point from the dataset {xi}Ni=1 onto the
subspace spanned by the columns of W . Indeed, note that we have

WW ∗xi =

L∑
`=1

w`〈w`,xi〉 (281)

40

Now if we develop the norm in (280) and use
∑N
k=1 w

2
k = 〈w,w〉, we have

min
W

N∑
i=1

‖xi − x−WW ∗(xi − x)‖2 (282)

= min
W

N∑
i=1

〈xi −WW ∗xi,xi −WW ∗xi〉 (283)

= min
W

N∑
i=1

〈xi,xi〉+

N∑
i=1

〈WW ∗xi,WW ∗xi〉 − 2

N∑
i=1

〈WW ∗xi,xi〉 (284)

= min
W

N∑
i=1

‖xi‖2 +

N∑
i=1

x∗iWW ∗xi − 2

N∑
i=1

x∗iWW ∗xi (285)

Between (284) and (285), we used W ∗W = I. The first term in the last line can be treated
as a constant as it does not depend on W (i.e we can disregard it). We are thus left with

min
W
−

N∑
i=1

x∗iWW ∗xi (286)

which can be written as a maximization problem

max
W

N∑
i=1

x∗iWW ∗xi (287)

If we were looking for the first component only, the problem would reduce to

max
w1

N∑
i=1

x∗iw1w
∗
1xi (288)

= max
w1

w∗1

N∑
i=1

xix
∗
iw1 (289)

= max
w1

w∗1X
∗Xw1 (290)

In the expression above, we again used X to denote the matrix encoding the prototypes
x1, . . . ,xN ∈ RD,

X =

 xT1
...
xTN

 (291)

For any given matrix X∗X, problem (290) will return the eigenvector of X∗X corresponding
to the largest eigenvalue (why?). To find the first column of W , we can thus take the eigenvalue
decomposition ofX∗X and retain the first eigenvector. In fact this approach continues to work for
any number of components. That is to say, if we want to find the best subspace of dimension q, it
suffices to take the eigenvalue decomposition ofX∗X and to retain the first L largest eigenvectors.
This idea is summarized below

41

Theorem 11 (see for example [2]). Suppose that we are given a dataset {xi}Ni=1 and
that we want to find an orthonormal set of L basis vectors wj that best approximate the
data, or equivalently, that minimize the average reconstruction error

e(W , z) ≡ 1

N

N∑
i=1

‖xi −Wzi‖2 (292)

Then the optimal solution for W is obtained by building the empirical covariance matrix,
Σ̂ = 1

N

∑N
i=1 xix

T
i , and setting W = V L where V L contains the L eigenvectors with

largest eigenvalues of Σ̂. The columns of V L are often called principal directions.

Equivalently one could work with the singular value decomposition (SVD) of X, and retain

the first L right singular vectors obtained from the matrix Ṽ in this SVD X = ŨΣṼ
∗
. We then

have X∗ ≈ Ṽ L(ΣŨ
∗
)L where (ΣŨ

∗
)L is used to denote the first L rows of ΣŨ

∗
and encodes

the λk. In other words, to solve the PCA problem for a set of prototypes {xk}Nk=1,

(i) Center the dataset, xk ← xk
1
N

∑N
k=1 xk

(ii) Build the matrix X∗ = [x1, . . . ,xN] from the centered prototypes

(iii) Compute the SVD of X, X = ŨΣṼ
∗

(iv) Define the matrix V from the first L columns of V

(v) Define the weight vectors λk from the kth column of the matrix obtained after retaining the
first L rows of ΣU∗.

14.2.1 Probabilistic PCA

Just as for Factor Analysis, one can interpret PCA through the lens of Frequentist statistics, as
a particular MLE for which the variance of the noise would be arbitrarily small and hence, the
log(σ) negligible. When the noise εi cannot be neglected, or more generally if we want to follow
a more rigorous statistical approach, one can again consider a prior on the latent factors, zi. We
then get as in FA

p(xi|θ) = N (Wµ0 + µ,Ψ +WΨ0W
T) (293)

If we consider N observations and take Ψ0 = I and Ψ = σ2I and µ0 = 0, writing down the
log-likelihood gives (you can verify this as an exercise)

log(p(xi|θ)) = −d
2

log(|WW + σ2I|)− 1

2

N∑
i=1

xi

(
WW T + σ2I

)−1
xi (294)

You can check that the maxima of the likelihood are given by

W ∗ = V (Λ− σ2I)1/2R (295)

Where R is any orthogonal matrix (see the discussion on the uniqueness of W in section 14.1)
and V and Λ follow from the eigenvalue decomposition of the empirical covariance matrix S =
1
N

∑N
i=1 xix

T
i = 1

NX
TX. The approach in probabilistic PCA consists resolving the ambiguity

on W by setting R = I. We then get W ∗ = V (Λ − σ2I)1/2. In particular, this recovers the
traditional PCA solution when σ → 0 (note that this last approach can hence be considered as
slightly more rigorous as the case σ = 0 is well defined.)

It is however also worth noting that in this slightly more rigorous framework (statistically
speaking), we do not recover an orthogonal matrix when σ2 > 0.

42

14.3 Independent Component Analysis (ICA)

In Independent Component Analysis (ICA), one is interested in finding a description of the data by
means of independent factors. ICA has led to several interesting applications to source separation
as well as biomedical signal processing, with a particular emphasis on EEG source separation.

Consider two signals s1 and s2 of length T (we use s1,t to denote the tth sample from s1)
that are mixed together through the matrix W ∈ R2×2. The mixings are encoded in two distinct
recordings that are measured at microphones x1 and microphone x2,[

x1,t
x2,t

]
=

[
w11 w12

w21 w22

] [
s1,t
s2,t

]
+

[
ε1,t
ε2,t

]
(296)

Following this model, at any time, the first and second microphones thus record the signals

x1,t = w11s1,t +m12s2,t + ε1,t (297)

x2,t = w21s1,t + w22s2,t + ε2,t (298)

Here the weights wij can be understood as encoding the distances from the microphones to the
speakers. If the matrix W is given, it is of course easy to recover the sources by, for example `2
norm minimization. Perhaps more surprisingly, is the fact that the recovery of the sources remain
possible even when the mixing coefficients are unknown.

The original application of ICA was to the so-called coktail party problem, where one wants
to recover independent speeches from their mixtures. Among the notorious successes of ICA, one
must also mention the demixing of brain activities from EEG recordings on the scalp, as well as
feature extraction (e.g. the identification of shocks from frequent fluctuations in finance [1]).

To solve problem (296), it is possible to take a Maximum Likelihood viewpoint on the problem.
Let x = Ws = f(s). Then note that in the scalar case, if we use px to denote the probability
density function (see definition 9) and Px to denote the cumulative mass function (see definition 7),
we can always write

px(x) =
d

dx
Px(x) =

d

dx
Ps(f

−1(x)) =
ds

dx

d

ds
Ps(s) =

ds

dx
ps(s) (299)

as px(x) is a probability density (i.e it has to be non negative) we set

px(x) = ps(s)

∣∣∣∣ dsdx
∣∣∣∣ (300)

When considering multiple dimensions such as in ICA, the change of variable formula (300)
extends as

px(x) = ps(s)

∣∣∣∣det

(
∂s

∂x

)∣∣∣∣ (301)

Where ∂s
∂x is the Jacobian matrix (see (17)). With this in mind, we can write

px(Ws) = ps(s)
∣∣det(W−1)

∣∣ (302)

If we let V = W−1, in particular we get

px(x) = px(Ws) = ps(V x) |det(V)| (303)

The maximum likelihood approach looks for the parameters that are maximizing the probability
of observing the data (i.e. the prototypes xi, i = 1, . . . , N). Taking the log likelihood (note that
the probability to get x only depends on V and x from (303)) gives

log(p(x|V)) = N log |det(V)|+
D∑
s=1

N∑
t=1

ps(v
T
s xt) (304)

43

So far, we have introduced an MLE approach to Independent Component Analysis but it is
not clear why the maximum likelihood estimator should work.

In ICA we want to recover independent components s1 and s2. By the Central Limit Theorem
(Theorem 9), we know that a sum of (a sufficiently large number of) identically distributed,
independent random variables tend to have a Gaussian distribution. In particular, from this
Theorem, the random source si can be expected to “look” less Gaussian than any combination
a11s1 + a12s2.

When considering the set of weighted sum of the form vTx = vTWs, the one vector v that
should therefore correspond to a maximally non Gaussian random variable is the one that returns
only one of the (non gaussian) independent sources (as opposed to a linear combination of those
sources). But this optimal vector v leading to the maximally independent sources (or maximally
non Gaussian signal) precisely corresponds to a row (lets say the first one) of A−1. Indeed, for
this row, which we label v = (A−1)1,:, we have vTx = (A−1)1,:As = s1.

When we want to recover independent sources from linear combinations of those sources,
maximizing the “non Gaussian” nature of wTz over the vectors v thus seems to be a relatively
good idea. How can we then maximize this ”non-Gaussianity” of wTz? and how does this connect
to the MLE which is used in the FastICA algorithm of for example scikit-learn?

To understand this, consider the following measure of (non-)gaussianity known as negentropy,

negentropy(z) = H(N (µ, σ2))−H(z) (305)

In the definition above, H(X) represents the entropy of a random variable X (you can view it as
a measure of the uncertainty associated to the random variable),

H(X) = −
K∑
k=1

p(X = k) log2 p(X = k) (306)

We also used µ = E {z} as well as σ2 = var[z]. But what is probably more important in (305)
is that the negentropy can also be understood the deviation of a random variable to the closest
Gaussian distribution.

Following from the discussion above, to find the vector w such that the wT z is as far as possible
from a Gaussian distribution, one could thus maximize the negentropy, i.e., for measurements
j = 1, . . . ,K,

max
V

K∑
j=1

H(N (µj , σ
2
j))−H(zj) (307)

Often, when we want to recover independent component, a good approach is to center and
whiten the data (see [7]). Centering means that we replace the measurements x by the difference
x−Ex. Centering the measurements also corresponds to centering the sources as we have x−Ex =
Az −AEz = A(z − Ez). After estimating the centered principal components, one can simply
get the original principal components by adding back the mean A−1Ex.

Another transformation that is often applied for computational purposes, is the whitening of
the data. Whitening the data means that we apply a linear transform to the measurements vector
x to make the components of this vector uncorrelated, i.e, whitening transforms x into a vector
x̃ satisfying E {x̃x̃∗} = I.

Whitening can be done by first computing the eigenvalue decomposition of the sample covari-
ance E

{
xxT

}
= UλUT and then transforming x into x̃ as

x̃ = UΛ−1/2UTx (308)

Whitening also has a consequence on the mixing matrix A. Indeed, the whitening turns the
measurements into

x̃ = UΛUTAs (309)

44

which is therefore equivalent to changing replacing the mixing matrix A with Ã defined as Ã =
UΛ−1/2UT . From the whitening transformation (308), we get

E
{
x̃x̃T

}
= ÃE

{
ssT

}
Ã
T

= ÃÃ
T

= I (310)

The mixing matrix is now orthogonal,

Ã
T
Ã = UΛ−1/2UTAATEΛ−1/2ET (311)

= UΛ−1/2UTE
{
xxT

}
EΛ−1/2ET (312)

= I. (313)

So in particular, whitening means that we now only need to estimate n(n − 1)/2 parameters
instead of the initial n2.

Once the data has been centered and whitened, the first term in (307) is constant, and maxi-
mizing the negentropy thus reduces to the maximization

max
V

∑
j

−H(zj) =
∑
j

E log(p(xj)) (314)

which is precisely the MLE. In other words, we can hope the MLE to recover the sources because it
corresponds to maximizing non gaussianity of wTx and we know from the Central limit Theorem
that the more independent sources si we have in a linear combination wTAs, the more Gaussian
this combination will be.

So the intuition behind the MLE is that is corresponds to maximizing the deviation between
the zj and the closest Gaussian random variable.

14.3.1 Fast ICA

We now follow the notations in [16] and introduce the FastICA algorithm. LetG(zj) = − log(p(zj))
and g(zj) = d

dzj
G(zj). Maximizing the log likelihood while asking for an orthogonal matrix A

(note that when A is orthogonal, the inverse is given by AT), lead to the following minimization

min
v

E
{
G(vTx) + λ(1− vTv)

}
(315)

We simply replaced the sum in (303) by the expectation and neglect the first term which is
constant when V is orthogonal (determinant is 1).

The gradient and Hessian are given by

∇f(v) = E
{
xg(]bsvTx)

}
− 2λv (316)

∇2f(v) = E
{
xxT g′(vTx)

}
− 2λI (317)

To minimize a function f(x), recall that the Newton steps are defined by

x← x− (∇2f(x))−1∇f(x) (318)

Now if we make the simplification

E
{
xxT g′(vTx)

}
≈ E

{
xxT

}
E
{
g′(vTx)

}
= E

{
g′(vTx)

}
(319)

in the case of problem (315), the Newton iterations can be written as

v ← v − E
{
xg(vTx)− 2λv

}
E {g′(vTx)} − 2λ

(320)

45

The expectation can be computed by Monte Carlo methods. Once the iterations have con-
verged, one can define the optimal v∗ as v/‖v‖ to get the unit vector.

In the developments above we have assumed that the distribution p(zj) was known. In practice,
as long as the distribution of the sources is not Gaussian it seems [16] that it is not critical for
the shape of this distribution to be exactly known. Possible choices are the Laplace distribution
or other smoother super-Gaussian distribution although it seems that in practice, it is common
to just use G(z) =

√
z or G(z) = log cosh z

14.4 From one component to multiple components

One approach to extend the algorithm given above to multiple components vj is to run instances
of that algorithm for each vj in parallel. The issue with such an approach is that we might end
up converging to the same vector, i.e. vj = v for all j. In this case we obviously do not recover
the inverse A−1.

To prevent this, one possibility is to compute the component in series, and ensure that they
are orthogonal to each other (i.e decorrelated) through a Gram-Schmidt process. The idea of
such a procedure is as follows. Assuming that we have computed components w1 to wp−1, the pth

components is then computed through the one components algorithm above combined with the
following two decorrelation steps (which are applied after every Newton step (320))

wp ← wp −
p−1∑
j=1

wT
pwjwj (321)

wp ←
wp

‖wp‖
(322)

Finally, note that ICA does not always work for non Gaussian sources. Moreover, a main
difficulty in ICA lies in the fact that we usually do not have information on the statistical nature
of the sources. In particular, natural signals, such as images, often exhibit some correlation. An
extreme example of such correlation is shown in Fig. 4. When signals are correlated, ICA will not
be able to recover the original sources.

15 Manifold Learning

In the previous sections, we have considered some of the popular linear dimensionality reduction
models (a.k.a linear latent variable models). In both ICA and PCA, the mapping between the
latent space (i.e. the space of the latent variables) and the space in which the prototypes are
living, can be encoded by a linear map. In this chapter, we will extend the discussion to non linear
models. In particular, we will discuss methods that focus on learning the structure underlying
the data even when this structure is different from the usual hyperplane.

In some datasets, although the relation between the prototypes might be lost when mapping
those prototypes onto a linear subspace (for example through PCA or ICA), those prototypes
might still be distributed according to a relatively simple (non linear) structure embedded in Rn.
We call such structure a manifold.

Definition 20 (Manifold [20]). A manifold M is a metric space (that is a space together with
a metric d on the space) such that for x ∈ M, there exists some neighborhood U of x and some
integer n ≥ 0 such that U is homeomorphic (there exists a continuous bijective mapping between
the two objects) to Rn.

A few popular manifold benchmarks are highlighted in Fig. 6.

To better understand the interest of non linear dimensionality reduction compared to the lin-
ear latent variable models, consider Fig. 5. In this figure, we compare some of the non linear

46

Figure 4: Example of correlated images (ρ = 0.4) for which ICA is unable to recover the sources.
From top to bottom: Original (source) images, superposition obtained by mixing the images
through the miximg coefficients A11 = 1, A12 = 2, A21 = 2, A22 = 1.5 and reconstruction through
FastICA. Richard A. Jones (right) endured 17 years of wrongful incarceration before being finally
freed from prison when Ricky L. Amos (left) was finally recognized to be the unique responsible
of a robbery commited outside a Walmart in Roeland Park, Kansas. Source: CNN

47

dimensionality reduction methods that we will discuss below against Principal Component Anal-
ysis. The first row in the figure corresponds to applying non linear manifold learning methods,
as well as PCA to the original S-shaped manifold from scikit-learn. The second row, corresponds
to applying the same methods to a modified version of this manifold, i.e. if x1, x2, x2 are the
coordinate of a point on the original S manifold, we obtain the modified manifold as x1 = x1− 1,
x2 = 1.5x2 and x3 = 0.5x3. The modifier manifold is thus “shorter and fatter”. When applying a
principal component analysis to this second manifold, the PCA plane will be horizontal and the
projection onto the principal plane will superimpose several of the manifold parts. The result is
a complete destruction of the manifold structure.

Non linear dimensionality reduction methods are thus especially useful when considering
datasets that are not distributed on a plane, but exhibit some form of (lower dimensional) struc-
ture. In such situations, the non linear methods might be able to capture such structure, while
typical linear models such as PCA will not.

Among the methods presented in this chapter, Multidimensional scaling, as well as Sammon’s
mapping (section 15.1) as well as Isomap (section 15.2) can be considered as distance preservation
methods. By distance preservation, we mean that the methods reduce dimensionality of the data
by using the preservation of pairwise distances as a the main criterion. If a lower dimensional
representation can be built in a way that preserves pairwise distances. then the geometric structure
(global shape or local neighborhood) of the underlying manifold is preserved. In the non linear
case, it is usually very difficult to preserve distances (there are many different ways to define non
linear manifold).

Locally linear embedding (section 15.3) and (Kohonen) Self Organizing maps (section 15.4) on
the other hand, are considered as preserving topology of the data. By topology of a manifold,
we mean the neighborhood relationships between subregions of the manifold. The idea of topology
preserving approaches is that pairwise distances are often too constraining or gives too much
information. I.e. distances depend not only on the manifold but also on the chosen embedding of
the manifold. Additional arguments in favor of the use of topology in dimensionality reduction
can be found in [12]. Comparative information between distances are often enough to characterize
a manifold. Neighborhood relations are intrinsic to the manifold whereas distances are defined
on the whole ambient space and are not particular to the manifold itself. Topology is however
more difficult to understand than pairwise distances. How can we characterize topology of the
manifold?. One way is to associate the points to the vertices of a graph and encode proximity of
the points by means of edge weights. Kohonen self organizing maps rely on a predefined lattice
(build as a preliminary step to the method) whether Locally linear embedding and Laplacian
eigenmaps rely on an iterative update of the lattice structure (i.e the lattice is updated while the
method is running).

It is common to compare non linear latent variable models on some known manifold bench-
marks. Here we will use the S curve, the severed sphere and the Swiss roll as those models are
readily available in scikit-learn. Those three models are shown in Fig. 6 below.

Before discussing each of the dimension reduction approaches listed above, it is also worth
noting that one of these methods, multidimensional scaling (MDS) cannot handle non linear
embedding at least in its classical metric formulation. However, it is usually considered as the
antecendent of non linear distance preserving methods [12] whence our choice to discuss this
method in this chapter.

15.1 Multidimensional scaling

The Term Multidimensional scaling [10, 11] refers to a family of methods which construct a lower
dimensional representation of the dataset from information on interpoint distances. MDS has
been widely used in the humanities such as psychology, economics or sociology in which it is
particularly interesting because it can be used with a notion of similarity between points. Unlike
Self Organizing maps or principal curves and surfaces, MDS does not require interpoint distances
but can be applied from a similarity measure only. This was then used as a quantitative approach
at separating concepts.

48

For a given dataset {xi}Ni=1 ⊆ Rp, we let dij to denote the distance between any two points
xi and xj in the dataset,

dij = ‖xi − xj‖ (323)

The classical multidimensional scaling approach preserves inner products instead of distances.
I.e in classical multidimensional scaling, we start with similarities sij . If not given similarities
explicitely, we use pairwise inner products. The classical stress function is thus defined as

EC(z1, . . . ,zN) =
∑
i,j

(si,j − 〈zi − z, zj − z〉) (324)

Where the similarity is thus often given by the centered inner products sij ≡ 〈xi −x,xj −x〉. It
is naturally also possible to consider a multidimensional scaling formulation which would look for
points z1, . . . ,zN ∈ Rk that minimize the (metric) stress function

EM (z1, . . . ,zN) =
∑
i 6=j

(dij − ‖zi − zj‖)2 (325)

In this case, the minimization is known as least squares or Kruskal-Shephard scaling. Moreover,
if the distances are Euclidean, they can be converted to centered inner product as follows. Let
d2i,j = ‖xi − xj‖2, then we have

d2i,j = ‖xi − x‖2 + ‖xj − x‖2 − 2〈xi − x,xj − x〉. (326)

Now let M = 1
N 11∗ and Bij = −d

2
ij

2 . The matrix B can read as

S̃ = (I −M)B(I −M) (327)

Where (S̃)i,j = 〈xi − x,xj − x〉.
A variation of this scaling which minimizes a reweighted verison of (325) is known as Sammon

mapping.

ES(z1, . . . ,zN) =
∑
i6=j

(di,j − ‖zi − zj‖)2
dij

(328)

The classical formulation (324) is particularly attractive not only because inner products are easy
to compute but also because Classical MDS minimizes the same criterion as PCA which was
discussed earlier. Juste like PCA, classical MDS relies on a simple generative model z = Wx
where W ∈ Rd×N and is such that W TW = I. For a given dataset {xi}, let Z = [z1, . . . ,zd]
and X = [x1, . . . ,xN]. The matrix encoding the inner products (a.k.a Gram matrix) then reads
as

S = ZTZ (329)

= (WX)T (WX) (330)

= XTX (331)

Eqs. 329 to (331) show that the latent variables can be found in a very convenient way by simply
computing the eigenvalue decomposition of the matrix S encoding the inner products.

S = UΛUT (332)

= (Λ1/2U)T (Λ1/2UT) (333)

From this eigenvalue decomposition, the embedding is computed by retaining the first p eigenval-
ues (Note that as we are in a N -dimensional space, considering a dataset of size m > N , at most
N eigenvalues in Λ are non zero),

Ẑ = Ip×NΛ1/2UT (334)

In (334), the general idea is summarized by Algorithm 2 below (the algorithm appears in the
version below in [12]).

49

1 if available data consists of points xi then
2 Stack them into a matrix Y then center them, compute the pairwise inner

products S = Y TY and go to third step;

3 else if available data consists of pairwise Euclidean distances then
4 Square the distances and build the matrix B (see discussion above);

5 Perform double centering of B to get S̃ following (327).;

6 Compute the eigenvalue decomposition S̃ = UΛU∗;
7 The p-dimensional representation is obtained by computing the product

Ẑ = Ip×NΛ1/2U∗ (335)

;
Algorithm 2: Multidimensional Scaling

15.2 Isometric feature mapping (ISOMAP)

Isometric feature mappings (ISOMAP) [23] is the simplest non linear dimensionality reduction
approach that uses graph distances as an approximation to geodesic distances [12]. In fact,
the original ISOMAP follows from replacing the Euclidean distance in Classical multidimensional
scaling by a graph distance. The complete Isometric feature mapping algorithm has three steps [23]

• During the first step, the method determines which points are neighbors on the manifold
based on pairwise distances between points in the original/input space. The two most
common approaches are to consider the points lying in a given Euclidean ball around each
point xi, or to simply consider the neighborhood to be the K nearest neighbors. The method
then builds a graph G by connecting connecting neighbouring points with edges of weights
wij = d(i, j).

• The second step estimates the pairwise geodesic distances dM(i, j) of the prototypes by
computing the shortest path distances in the graph G.

• Finally, the last step applies classical Multidimensional scaling to the matrix of graph dis-
tances Di,j = (dG(i, j))

The lower dimensional representation generated through ISOMAP is shown on the sphere,
S-curves and Swiss Roll in Fig. 8

15.3 Locally linear embedding

Locally linear embedding is a topology preserving method which is originally due to Roweis and
Saul [19]. In LLE the idea is to define a lower dimensional embedding but keep the local affine
structure of the data. We say that LLE is based on conformal mappings [12]. A conformal or
biholomorphic map is mapping that preserves local angles. The first step in LLE is to determine
which angles to keep when defining the lower dimensional representation of the data. For this, LLE
first finds the K-nearest neighbors to each point xi from the original dataset (other techniques
are possible).

Locally linear embedding then relies on the assumption that the manifold underlying the
data is locally (i.e at the level of the local K-neighborhood) linear (which seems a reasonable
assumption when the dataset is large enough and not too noisy). Following this assumption, LLE
then replaces each point xi by a linear combination of its K neighbors. After computing the
neighborhoods, the second step in LLE then computes the linear combination of the K eighbors
that best approximates every given point xi from the dataset,

50

min
w
‖xi −

∑
k∈N (xi)

wi,kxk‖2. (336)

Here we let N (xi) to denote the k nearest neighbors of xi. The low dimensional representation
is then given by

min
z
‖zi −

∑
k∈N (zi)

wi,kzk‖2. (337)

The low dimensional representation thus maintains the local neighborhoods. Eq. (337) is equiva-
lent to solving the matrix equation

Tr
[
Z −WZ)T (Z −WZ)

]
= Tr

[
ZT (I −W)(I −W)Z

]
(338)

for which the solution is given explicitely by the eigenvectors of the sparse symmetric PSD matrix
M = (I −W)T (I −W). The best embedding of dimension p is then given by the lowest p
eigenvectors. In fact the first eigenvector is usually discarded by LLE because it corresponds to
the trivial 1 eigenvector encoding the free translation mode. When discarded, this eigenvector
enforces a zero mean embedding.

15.4 Self Organizing maps

The idea underlying Self Organizing map goes back to the work of von der Malsburg in 1973. The
idea which was then developed as a way to better understand the visual cortex then remained
under the radar until the 80’s, when Kohonen came with a simplification of the ideas of von der
Malsburg and provided an easy implementation. Because of their relative simplicity, SOMs are
used in a variety of areas including time series prediction and data visualization.

Self organizing maps are sometimes build upon the idea of Principal component analysis by
extending these ideas to non linear data.

In classical quantization, a smaller set of prototypes is used to approximate (i.e to fit) a larger
set of points from the original space. However, the prototypes are free to move independently
of each other. The idea of SOMs is similar except that in SOM all prototypes are connected to
each other through a lattice (i.e the prototypes are living on a 2D lattice) also called Constrained
topological map. Each time a prototype is updated and moved, its neighbors on the lattice move
accordingly. By doing this, we ensure that the points in the dataset corresponding to points that
are close on the lattice, will be close to each other as well. Self organizing maps can thus be
intuitively explained as starting from a two dimensional rectangular grid of prototypes zj ∈ RN .
The prototypes can be initialized for example as lying on the two dimensional principal component
plane of the data (the prototypes are then often chosen to be equispaced on that plane). The
SOM procedure then slowly bends the plane/lattice to match it as much as possible with the
original data.

In the case of SOM, the lattice thus plays the role of the embedding space/manifold. SOM
runs through the dataset multiple times (performing multiple epochs). Each epoch consists of the
following two steps being applied for every points xi in the considered subset S [12].

• For any given point xi from the original dataset, the first step determines the index of the
closest point on the lattice,

γ∗ = argmin
γ

d(xi, z(γ)) (339)

Here d is the Euclidean distance.

• The second step then updates the prototypes z(γ) as

z(γ)← z(γ) + αN (γ, ζ)(xi − z(γ)) (340)

51

The learning rate α obeys 0 ≤ α ≤ 1 and is often chosen to slowly decrease with the epochs
(a typical choice is to decrease α from 1 to 0 over about a thousand iterations). N (γ, ζ)
is called the neighborhood function. This function is defined by a (threshold) parameter
N = Nθ and was defined in the original von der Malsburg paper [24] to be the Bubble
function,

N (γ1,γ2; θ) =

{
0 when dG(γ1,γ2) > θ
1 when dG(γ1,γ2) ≤ θ (341)

It is also sometimes defined from the gaussian kernel, as

Nθ(γ1,γ2) = exp

(
−
d2G(γ1,γ2)

2θ2

)
(342)

The distance dG is often chosen to be any distance defined on the lower dimensional space, i.e.,
dG(γ1,γ2) = d(γ1,γ2). The threshold parameter θ is also often chosen to decrease with the epochs
from a starting value θ0 to 1 (over about a thousand iterations).

At the end of the iterations, the mapping f : x 7→ f(x) = z(γ1,x, . . . , γP,x) = z(γx) from
any point of the original dataset to the points on the lattice is obtained by simply taking the
nearest prototype on the lattice, i.e.

f(xi) = z(γ) with γ = argmin
γ

d(xi, z(γ)). (343)

The general idea is summarized in Algorithm 3 (the version appears in [12]).

1 Set k = 0 and define the original lattice by choosing an ininitial p-dimensional
subspace (for example the PCA plane) and assigning indices to the prototypes
on the lattice;

2 Set the values of α and λ for epoch k;
3 for all points xi in the dataset do
4 Compute the index γ of the closest point on the lattice as in (339); Then

update the prototypes as in (340);

5 end
6 if magnitude of the prototype update is small then
7 Stop
8 end
9 else

10 Set k ← k + 1 and repeat steps 2 and 3
11 end

Algorithm 3: Self Organizing Maps

To be complete, although we only discuss the batch version in these notes, there exist both
batch and online versions of the self organizing map algorithm.

16 Reinforcement learning

The main idea underlying Reinforcement Learning (RL) is that we want the agent to learn,
without a teacher, but by interacting with the environment. Reinforcement learning is perhaps
the approach which is the closest to how learning occurs in human beings.

Reinforcement learning relies on 5 key concepts [22]:

• The learning agent

52

• The environment

• The policy

• The reward

• The value

The agent interacts with its environment to achieve a goal. Therefore the agent must be able
to sense the state of the environment and to take actions that affect that state. Through its
repeated interactions with the environment, the agent progressively improves its performance.

The behavior of the agent is defined by the policy. The policy can be thought of as a mapping
π : E → A between the description of the environment and the set of possible actions.

Reinforcement learning also associates to every action, an immediate reward which is a direct
indication on whether an action taken by the agent was good or bad.

Although the goal of the RL agent is the maximization of the combined rewards, maximizing
the immediate reward might not always be the optimal choice as it will constraint the agent
to keep repeating the same action again and again, without any opportunity to “explore” new
possibilities. As an illustration of this, imagine that you have just moved into a new neighborhood
and you would like to find the best coffee place in that particular neighborhood. One approach
would be to investigate a couple of places (lets say two) and then settle down in the place that
offers the best coffee. You then continue going to that same place again and again. Drinking
this coffee makes you feel good and we thus assign it a positive +1 reward. But because you
never tried any other places besides the first two, you have no idea whether there exists or not a
place that offers a better coffee. In particular, by further investigating, you might discover a third
place, where the coffee is tasting even better than place two (i.e. corresponds to a higher, lets
say +2 reward). This idea is at the core of reinforcement learning. To formalize it, in addition to
the immediate reward, we consider the notion of value. The value is in some sense, a prediction
of the total reward that an agent could get in the future by choosing a particular action. To go
back to our coffee example, an action that has a low immediate rewards (such as taking the risk
of leaving the first coffee place) might have a higher value because it is possibly followed by other
actions that will have a higher reward (finding a third (much) better coffee place).

Together, the five elements above also highlight the difference between reinforcement learning
on the one hand, and supervised learning or unsupervised learning on the other. In supervised
learning, the knowledge is provided by an external supervisor sometimes called the “teacher” who
exactly knows what the correct data should be. On that aspect, reinforcement learning is closer to
practical situations, in which it is often impractical to obtain examples of desired behavior. The
RL agent takes the action which he assumes to be the most beneficial, yet it has no idea what the
optimal action is. In fact, the agent receives a feedback from the environment but this feedback
does not give him an exact ”yes or no” indication, such as the labels in supervised learning.

Reinforcement learning is also different from unsupervised learning, in the sense that it does
not try to reveal structure from unlabeled data. Finding structure in the data does not provide
well defined rewards such as those used to guide the agent in RL.

16.1 Multi-armed bandit

The k-bandit problem is one of the simplest reinforcement learning problem. In the k-Bandit
problem, the agent has to make a choice between k possible actions, each associated to particular
reward which is described by a stationary distribution depending on each particular action. The
objective of the agent is then to maximize the total reward over a given period of time. The
simplest possible decision model for the value is then to take the expected reward for each action,
i.e.

v(a) = E {R|a} (344)

53

If we could compute this expectation, we would select at each step, the action which maximizes
this value.

In practice, we can only estimate the average by keeping track of the reward we get each time
we select a particular action. I.e. at each step, the agent (provided that it chooses action a)
updates the empirical value for action a as

vest(a) = Qt(a) =
sum of rewards when a is taken prior to t

number of times a was selected prior to t
=

∑t−1
i=1 Ri1Ai=a∑t−1
i=1 1Ai=a

(345)

Here 1Ai=a is defined as

1Ai=a =

{
1 if Ai = a
0 otherwise

(346)

Given Qt, the simplest action selection procedure is to take at each step the action which has the
highest Qt(a). I.e.,

At = argmax
a

Qt(a) (347)

Such a procedure is known as greedy action selection method. Following a greedy policy is
guaranteed to accumulate rewards. However, as we saw in the coffee example, it might miss
better opportunities by sticking to a limited subset of all possible actions. An alternative consists
in following a greedy approach most of the time, yet, once in while (with probability ε), trying
out a new action selected at random. This approach is known as ε-greedy action selection

We can now introduce the Bandit algorithm

1 Initialize, for action a = 1 to k;
2 Q(a)← 0;
3 n(a)← 0;

4 Repeat;

5 A←
{

argmax
a

Qt(a) with probability 1− ε
a random action with probability ε

;

6 n(a)← n(a) + 1;

7 Q(a)← Q(a) + 1
n(a) [R(a)−Q(a)];

Algorithm 4: Bandit algorithm, see [22]

The last line in this algorithm is simply the update of the average. Assuming that the average
reward for action a is Qt(a), and that the agent selects action a, we update this average as

Qt(a) =
1

n(a)

n(a)∑
i=1

Ri(a) (348)

=
1

n(a)

Rn(a) +

n(a)−1∑
i=1

Ri(a)

 (349)

=
1

n(a)

Rn(a) + (n(a)− 1)
1

n(a)− 1

n(a)−1∑
i=1

Ri(a)

 (350)

=
1

n(a)
(Rn(a) + (n(a)− 1)Qt−1(a)) (351)

=
1

n(a)
(Rn(a) + n(a)Qt−1(a)−Qt−1(a)) (352)

= Qt−1(a) +
1

n(a)
[Rn(a)−Qt−1(a)] (353)

54

16.2 Q-learning

A major breakthrough in reinforcement learning was the development of Q-learning. Q-learning is
a particular instance of ”off policy Temporal difference learning”. In Q-learning, the agent learns
the action-value function Q, which is a mapping between (state, action) pairs and corresponding
estimated values. I.e during training, the agent learns to associated particular states of the
environment and particular actions with a corresponding value estimate. At each step, one action
is selected in an ε-greedy fashion (i.e either the agent chooses the action by relying on the Q-table,
or its takes the action to be random)

The action value table is then updated as follows,

Q[St, At]← Q[St, At] + α
[
Rt+1 + γmax

a
Q[St+1, a]−Q[St, At]

]
(354)

The table is thus updated as before, except that we now consider an additional term which
takes into account the possible future increase in the value. I.e. for a given possible action choice a,
we look up all the possible subsequent actions in the table. If the action a change the environment
to state S′t that means looking at all possible actions the agent can take on the environment in
that particular state, so all entries of the form Q[S′t, a]. Then we take our potential future gain to
be the maximal value. In Q-learning, we thus try to be one step ahead compared to the traditional
bandit algorithm which only considers the current value estimate.

In general, we will not learn the action-value table Q, but we will replace it by a neural network
which will approximate it.

References

[1] Andrew D Back and Andreas S Weigend. A first application of independent component
analysis to extracting structure from stock returns. International journal of neural systems,
8(04):473–484, 1997.

[2] Christopher M Bishop et al. Pattern recognition and machine learning (information science
and statistics). 2006.

[3] Leon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms. In
Advances in neural information processing systems, pages 585–592, 1995.

[4] George Casella and Roger L Berger. Statistical inference, volume 2. Duxbury Pacific Grove,
CA, 2002.

[5] Edward W Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of
classifications. biometrics, 21:768–769, 1965.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[7] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applica-
tions. Neural networks, 13(4-5):411–430, 2000.

[8] Željko Ivezić, Andrew J Connolly, Jacob T VanderPlas, and Alexander Gray. Statistics, data
mining, and machine learning in astronomy: a practical Python guide for the analysis of
survey data, volume 1. Princeton University Press, 2014.

[9] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster
analysis, volume 344. John Wiley & Sons, 2009.

[10] Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29(1):1–27, 1964.

[11] Joseph B Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychometrika,
29(2):115–129, 1964.

55

[12] John A Lee and Michel Verleysen. Nonlinear dimensionality reduction. Springer Science
& Business Media, 2007.

[13] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

[14] J MacQueen. On convergence of k-means and partitions with minimum average variance. In
Annals of Mathematical Statistics, volume 36, page 1084. inst mathematical statistics IMS
business office-suite 7, 3401 Investment blvd, Hayward, CA 94545, 1965.

[15] James MacQueen et al. Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[16] Kevin P. Murphy. Machine learning, a probabilistic perspective, 2012.

[17] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

[18] José M Pena, Jose Antonio Lozano, and Pedro Larranaga. An empirical comparison of four
initialization methods for the k-means algorithm. Pattern recognition letters, 20(10):1027–
1040, 1999.

[19] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500):2323–2326, 2000.

[20] Michael D Spivak. A comprehensive introduction to differential geometry. Publish or perish,
1970.

[21] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[22] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume
135. MIT press Cambridge, 1998.

[23] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework
for nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

[24] Chr Von der Malsburg. Self-organization of orientation sensitive cells in the striate cortex.
Kybernetik, 14(2):85–100, 1973.

56

Figure 5: Various two dimensional representations of the S-shaped manifold from scikit-learn.
The first row corresponds to two dimensional representations of the original manifold. In the
second row, this maniold was modified following [8] to further highlight the weakness of PCA.

57

Figure 6: Usual benchmarks used for the comparison of non linear latent variable models. From
the top to bottom: Swiss roll, S-manifold and sphere.

Figure 7: Two dimensional representation obtained by Multidimensional scaling on the Swiss
Roll, the S-curve and the Sphere manifolds.

58

Figure 8: Two dimensional representation obtained by ISOMAP on the Swiss Roll, the S-curve
and the Sphere manifolds.

Figure 9: Two dimensional representation obtained by locally linear embedding on the Swiss Roll,
the S-curve and the Sphere manifolds.

59

	Notations
	Linear algebra
	Differential Calculus
	Statistics and probability
	Probabilistic classifiers
	Optimization
	Halfspaces and hyperplanes
	Regression and regularization
	Bias Variance tradeoff
	Kernels
	Support Vector Machines (SVM)
	Neural Networks
	Clustering
	Linear latent variable models
	Manifold Learning
	Reinforcement learning

