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Statistical intuition and Latent Variable models

» Many models discussed so far can in fact be considered as
particular instances of latent variable models.

» The general factorization for a latent variable model of the
form z; — x; is p(xi|z;)p(z;). Recall that here p(x;|z;)
denotes the likelihood and the prior p(z;) indicates the
distribution of the latent state

p(xilz;) p(zi) Model
prod. Gauss. | prod. Gauss. | Factor Analysis/proba. PCA
MVN cat. Mixture of Gaussians
prod. cat cat. Mixture of Multinomials
prod. Gauss. | prod. Laplace | proba. ICA/sparse coding
prod. cat. prod. Gauss. multinomial PCA
prod. cat. Dirichlet Latent Dirichlet alloc.




Statistical intuition and Latent Variable models

» The simplest latent variable models assume that the data was
generated from a distribution governed by a single latent state
z;. In a Bayesian approach, we let p(z;) to denote the prior for
this latent state.

» We further let p(x;|z; = k) to denote the (assumed)
distribution of the prototypes given the latent state z; = k.

» A popular choice for the prior is the categorical distribution.



Statistical intuition and Latent Variable models

» The categorical distribution is usually used when we represent
measurements as belonging to 1 of K possible exclusive
classes.

» Clusters are usually represented through dummy encodings.

» The general form of a dummy encoding is
x=[I(x=1),...,I(x = K)] where [(x =a) =1if x is in
the cluster C,.

» Then if we assume that the class probabilities are independent,
and label those probabilities as 6}, the categorical distribution
reads as a particular case of the multinomial

K
Cat(x|1,6) = [] ;"
j=1



Statistical intuition and Latent Variable models

> More Generally, we will use the notation 7, to denote the
class probabilities (probabilities to belong to the class Cy).

» With this notation, we thus have p(z;) = Cat() and in
particular, and p(z; = k) = g

» Given those probabilities, the probability to observe a
prototype x; from the dataset is given by

X,|0 ZWkPk X,|9

Here py(x;|0) denote the k" base distribution (i.e distribution
to observe the prototype x; knowing it belongs to the k"
cluster.). The general model above is known as a Mixture
Model.



Statistical intuition and Latent Variable models

» The two most popular models are the Mixture of Gaussians

pci8) = 3 m )

k=1

» and the mixture of Multinoullis,

D D
p(x,-,z,- = k|0) = H Ber(x,-j|ujk) = HM;(/I(J(]- — 'uljk)lfxfj
Jj=1 j=1

» The Mixture of Multinoullis is useful when using dummy
encodings, i.e. when x; = (0,1,0,...,0) and we use pj to
denote the probability that the j bit is 1 in sequences from
cluster k.



The EM algorithm

» When we want to fit a probabilistic model to the data, we
usually minimize the negative log-likelihood (we look for the

parameters that make it maximally likely to observe the given
data)

> In the case of a GMM, the log likelihood reads as

N K
log p(X’Tl',[,L, z) = Z log {ZTFkN(Xn“Jk, Zk)}

n=1 k=1

» Minimizing this expression directly is hard because the log
cannot be pushed inside the sum



The EM algorithm

» The general form of a probability distribution from the
exponential family reads as

p(X,Z‘e) = eXp(0T¢(X,0))

Z(0)

» And the parameters we want to find also appear in the
normalizing constant. l.e for a distribution from the
exponential family, the observed log-likelihood reads as

00) = Z Iogz p(xi, zi|0)

= log [Z &0 #zixi)
i Zj

» The log sum exp is convex and the normalizing constant Z(6)
is convex as well. However, the difference of two convex
function

— Nlog Z(0)




The EM algorithm

> An easier approach would be to optimize the complete data
log-likelihood

0.(0) = Z log p(x;,z;|0) =67 (Z ¢(x,-,z,-)> - NZ(0)

» In the exponential family the normalizing constant is convex
so that the whole function is concave and can be optimized
efficiently



The EM algorithm

» For the reasons listed above, we would clearly prefer to work
with the complete data log-likelihood

N
= logp(x;, zi|6)
i=1
» The problem is that we don't have access to the joint
probability p(x;, z;|0)

» To get round the difficulty, and to estimate the parameters of
the mixture together with the latent states, the EM algorithm
works on the expected complete data log-likelihood

Q0,0 1) =E{¢(0)D, 0" 1}

Here Q(0,0'71) is called the auxilliary function.



The EM algorithm

» For the reasons listed above, we would clearly prefer to work
with the complete data log-likelihood

N
= log p(xi, zi|6)
i—1

» To get round the difficulty, and to estimate the parameters of
the mixture together with the latent states, the EM algorithm
works on the expected complete data log-likelihood

Q6,6 1) =E {¢.(0)D, 6"}
Here Q(0,0'71) is called the auxilliary function.

» The E-step computes the expression of @ (or the terms
needed to express Q). The M-step optimizes Q with respect
to 6.



The Auxilliary function

» The auxilliary function reads as

Q6,67 {Zlog p(xi, zi6) }

- ZE {Iog [ﬁ(WkP(Xiwk))H(Zi_k)] }
_ ZZE{H z,_— k)} log(mkp(xi|6x))
= Z Z p(zi = kixi, 0°") log(mkp(xil01))
— Z zk: ri log i + Z zk: rix log p(xi|60)

> It is fully determined from the responsibilities ry of the cluster
k in the realization of the prototype x; as well as the
likelihoods p(x;|0) which follow from gaussianity and 6



The EM algorithm for GMMs

v

Given the likelihoods, the E-step updates the responsibilities as
_ mkp(xil6Y)
> T p(xil04 )

» The M-step then optimizes @ with respect to the class
probabilities 7, and the parameters 6

ik

» The estimates for 7y are given by
1 ri
Tk = N Z Fik = N
1

» The estimates for 6 = (u,0k) are obtained by substituting
the Normal distribution for p(x;, ) in the log likelihood and
minimizing



The EM algorithm for GMMs (E-step)

» Substituting the normal distributions for the p(x;|0x), we get

(my, Xy) er:k log p(x;|0x)

k i

=_= Zr,k [Iog Z0| + (xi = ) "E (i — pag)

> Setting the derivatives to zero, we get

i FikXi
Ky = 72' :
k
oy — 2 Tik(XT = ) (xi = )" X rwxix] ]

Tk Tk



Relation to K-means

» Remember the K means algorithm? K means can be
considered as a particular instance of the EM algorithm. If we
assume that £; = 02lp and mx = % is fixed, we only update

the centers of the the clusters

» Instead of the previous responsibilities, one can assume that
the probability of a prototype belonging to a cluster is either 1
or 0.

» We can choose the only possible cluster for a prototype to be
the one that maximizes the likelihood

z7 = argmax p(z; = k|x;,0)
k

» We then set the probability that x; belongs to this cluster to
1. We can do this because we assumed 7, = 1/K fixed and
Y, =0l



» Under the earlier hypotheses, maximizing the posterior to find
the most likely assignement reduces to the minimization

zj = arglninllx,- — ]

» And the M-step updates the centers as

TP

/\z,



K-means vs EM
> K means
» = Better running time
» = More interesting for high dimensional data
» + Interpretation is easier

» = Assumes clusters are spherical (see Mouse dataset). So
does not work well with complex shape.

» = The "Hard assignement” approach might lead to
misclassification
» EM Clustering

» = Works usually better when there is some uncertainty
regarding the assignment

» + Does not assume any predefined geometry for the clusters

» == Uses more information than K-means so more difficult to
implement in high dimension.

v

= More difficult to interpret



Statistical intuition for FA, PCA and ICA

» Now that we have introduced GMMs and the notion of latent
variable model, we are ready to discuss the statistical intuition
for Factor analysis, PCA and ICA models.

» Gaussian mixture models are very general in that every
observation is assumed to have been generated from one of k
independent clusters with their respective mean and
covariance.

» An alternative is to view the distribution of prototypes as
something smoother and to replace the hard assignement (i.e
each of the prototype belongs (exlusively) to one of the k
clusters) by the assumption that the prototypes are organized
according to a set of gaussian distributions concentrated
around a single point.



Statistical intuition for FA, PCA and ICA

» Such model then relies on a first continuous prior for the
latent variables z;,

p(zi) = N(zilpo, Zo)

An then model each of the prototypes distributions as
gaussian distributions centered around a mean defined from
this continously varying latent variable z;

p(xilzi, 0) = N(Wz; + p, W)

In this case, 8 = (W, u, W)

» Factor analysis can thus be understood as a GMM with
constraints on the mean and covariance but continuous latent
variables



Statistical intuition for FA, PCA and ICA

p(xi|zi,0) = N(Wz; + p, W)

» Here W is known as the factor loading matrix and W is the
covariance matrix.

» In practice, the covariance matrix W is usually taken to be
diagonal and we therefore turn to the z; and their connection
through the latent distribution N(z;| g, o)

» When the covariance is taken to be spherical, i.e. W = o2l
we get the probabilistic PCA model as we will see.



Low rank covariance

» The model p(x;|@) given by the combination of the prior
p(z;) and the likelihood p(x;|z;,8) is known as a linear
gaussian system.

» For a general Gaussian system

{ p(x) = N(x|pe, Z,)
plylx) = N(y|Ax + b, I,)

The distribution of y (a.k.a normalizing constant) is defined as
p(y) = N(y|Ap, + b, I, + AT AT)

» Using this to derive the distribution of prototypes in FA, we
get the distribution

p(xil0) = / N (x| Wi + p, W)N (21|10, o) dz;

= N(x/|Wpo+ p, W+ WEWT)



FA as a low rank model for the covariance

» The mean and covariance of the factor analysis model thus
read as

E{x;} = Wuy+pu, cov{x;} =WE {zzT} w' +w
=wWz,w’ +w

» An additional interpretation of the factor analysis model can
be obtained by noting that one can always write
1 = p+ Wpy and take pg = 0. We can also always take
Y = I as we can always write the model by introducing the
factor W = WZ;1/2,

cov(x;)) = WEWT +w=WWw +w (1)

» Factor analysis can thus be understood as a Gaussian model
with a low rank covariance matrix !

p(xil6) = N (xil WWT + W)



Unidentifiability
» Learning a factor analysis model is ill posed in general (i.e we
say that the parameters of the FA model are unidentifiable)

» Replacing the factor W by any other matrix of the form WR
where R is an orthogonal matrix RRT = I, we get

covix] = WRRTWT +w =wwT +v

> There exists a couple of approaches to reduce the number of

dof

>

Force W to be orthonormal (this is the approach followed by
PCA)

Force W to be lower triangular together with Wj; > 0 for all i

Sparsity prior on the W in the form of ¢; regularization (this is
known as sparse factor analysis)

Select the rotation matrix R that leads to easier
interpretations (e.g. enforce sparsity)

Use non gaussian priors on the latent variables z; (ICA)



Mixture of Factor Analyzers

» So far we assumed that the means u + Wz; all live in the
same affine subspace.

» An alternative if we want to capture the low dimensional
nature of the data locally (and keep a small number of latent
variables) is to introduce multiple subspaces, {py, Wk}kK:1

» The model, which is known as mixture of factor analyzers
(MFA) then read as

p(xilzi,qi = k,0) = N(x|p + Wiz;, W)
p(zi|0) = N(z;|0,1)
p(qi|@) = Cat(qi|0)
where we introduced the latent variables g; which indicates the

local subspace to be used and use the Categorical distribution
to encode the corresponding distributions of those variables.



Fitting Mixtures of FA and the EM algorithm

» When learning a FA model, we learn the parameters of the
posterior p(xj|z;, @) and of the prior, or latent distribution
p(z;). Once we have those parameters, we usually want to see
whether we can discover something meaningful on the data
based the latent variables z;

» One can then analyze the shape of p(z;|m;, ;) (as we deal
with Gaussian distribution it is possible to compute a closed
form expression for this distribution)

p(zi|x;,0) = N(zj|m;, X))
Y= (Xt wietw) !
m; =X, (WU (x; — p) + X5 o)



Fitting Mixtures of FA and the EM algorithm

» The simplest way to fit an FA model is to use the EM
algorithm

» Applying the exact same steps as for the GMM, we first
estimate the responsibilities of each pair (cluster,prototype),
(c, i) by using Bayes rule (E-step)

lic = p(q;i = c|x;,0) x WCN(XI'“LC? Wch-:r + W)

> In the M-Step, we then update the parameters using the
parametrization of the posteriors p(z;|x;, qi = ¢,0) (we
assume pg =0 and Xo = 1),
p(zilxi, qi = c,0) = N(z;|mjc, Zic)
Tie=(lL+Wlwlwo)™
mij. = Zic(W;rw;l(Xi - Nc))



» The M-step is then completed by estimating the parameters
W, W and 7. as

-1
Al
W, =

Z ricXib,-Z] [Z ricCic

i i

A 1 . .
v = Ndlag {Z Fic (X,' — chic> X,T}

ic

1 N
e = N El Fic
=

where we defined W’, b;c and C;c as W, = [W, ]
bic =E{Z'|x;,q; = c} = [mjc; 1],

mic =E{2()7|x;,q: = c},
_ ( E{zz"|x;,qi=c} E{z|xj,qi=c} )

E{z|x;,qi = c} 1

Z =(z,1),



Probabilistic PCA and classical PCA

» Constraint the covariance matrix of a FA model by requiring
W = 02/ and W to be orthonormal leads to the classical PCA
model when 02 — oo.

» When we only require o2 > 0, the model is known as
probabilistic PCA.

» The connections between PCA and probabilitic PCA as well as
their respective (statistical) interpretation is given by writing
down the data log likelihood log p(X|W, o2)



From Probabilistic to classical PCA
Probabilistic PCA (see Tipping, Bishop '99)

We consider a factor analysis model with W = ¢2I. The data (or
observed) log-likelihood is given by

N 1o
log p(X|W, 0?) = ) In|C| — EinTCflx,-
i=1

where C = WWT +021and § = £ S0 xix] = ()xxT
(again we assumed that the x; have been centered). The maxima
of the log-likelihood are defined as

W = V(A - o21)'/2R

Where R is an arbitrary L x L orthogonal matrix, V is the D x L
matrix whose columns are the first L eigenvectors of S and A is
the corresponding diagonal matrix of eigenvalues. Without loss of
generality we can set R = I.



Independent Component Analysis

> Just as PCA, ICA can be expressed a special instance of a
Factor Analysis model. Recall that in FA we were expression
the parameters as a linear function in the latent variables

Xt = WZt + &t
» W is thus called the mixing matrix and &; is viewed as some

Gaussian noise &; ~ N(0, W)

» In PCA we assumed that the source were independent and
distributed following a Gaussian distribution,

L
p(z¢) = HN(ij‘O’ 1)

j=1
» In ICA, we relax the Gaussian assumption and let the source
distributions be any non Gaussian distribution

L
p(zi) =[] pil2)
j=1



Independent Component Analysis as MLE

» Just as before, we can write the log-likelihood for ICA. Here
we assume that the data has been centered and whitened
(which can be done by a first application of PCA)

> The covariance reads as E {xx” } = WE {zz" } w’

» Using the whitening assumption, E {zzT} = I as well as the

fact that the data is centered, E {xxT}, we see that the
matrix W must be orthogonal

» Now using a change of variables, we can write the sample
posterior p(x|z, W) as
p(x|W, z) = p(W2z)
= pz(2)|det(W™)|
= pz(W ™ x)|det(W |



Independent Component Analysis as MLE

» From the posterior p(x|W, z), the data log-likelihood for a
set of T samples follows as

LT
1 1
7 log p(D|V) = log |det(V)| + - Z Z log pj(VjTXt)
j=1 t=1

» Using orthogonality of the rows of V, v;, and replacing the
sum over the data with a population average, we get the
reduced formulation for the negative LL

L
NLL(V) = ZE{GJ(ZJ)}

where z; = vJ-Tx and Gj(z) = —log Pj(z)-

» We then minimize the NLL under the constraints that the rows
v, are orthogonal and have unit norm (which follows from the

whitening assumption and E {VJ-Txxij} =|vj|?=E {zjz})



Fast ICA on the NLL (1)

» Whitening and centering are essentially used to reduce the
computational complexity as they reduce the number of
parameters from n® to n(n — 1)/2

» Whitening can be obtained with a first application of PCA
from where one can then apply any Fast ICA algorithm relying
on the orthogonality of the matrix W.

» There exists several algorithms to perform ICA. Here we focus
on an algorithm that can be used to minimize the NLL.

> Fast ICA on the NLL can be considered a particular instance
of a Newton method.



Fast ICA on the NLL (II)

» For the negative log-likelihood derived earlier, if we let

= £ G(z), in the constrained framework, the contributions

from each independent component to objective function,
gradient and Hessian can respectively read as

f(v) = E{G(VTX)} F A1 - vTv)
Vi(v) = {xg (v7x) } pv
H(v) = E{xx"g'(v7x)} - I
B =2\ is a Lagrange multiplier.

> If we make the approximation,
E{xx"g'(v'x)} ~E{xxT}E{g'(vx)} =E{g'(v'x)},
The Hessian is easy to invert and we get the Newton step
E [xg(vTx)] — Bv

YT TR (VX - 8




Fast ICA on the NLL (III)

» After the Newton step has been applied, we simply project the
resulting vector v onto the subspace orthogonal to the other
independent components and normalize it.

> As the objective is non convex, there are multiple local
minimas



Possible distributions

» As we have seen, Gaussian priors won't work well for ICA so
what distributions can we use instead?

» There are several possible distributions one can use besides
the Gaussian distribubtion:

» Super-Gaussian distributions (e.g Laplace distribution). Super
Gaussian distributions are distributions with a big spike at the
mean and heavy tails. Generally speaking we say that a
distribution is Super Gaussian when its kurtosis,
kurt(z) = pu*/o* — 3 is positive, kurt(z) > 0. Here
e =E{(X —E(X))*}

» Sub-Gaussian distributions. (e.g. uniform distribution).
Subgaussian distributions have negative kurtosis.

» Skewed distributions (e.g. Gamma distribution). A distribution
can be different from the Gaussian distribution by being
assymetric. We define the skewness (measure of assymetry) of
a distribution as skew(z) = u3/03.



