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Statistical intuition and Latent Variable models

I Many models discussed so far can in fact be considered as
particular instances of latent variable models.

I The general factorization for a latent variable model of the
form z i → x i is p(x i |z i )p(z i ). Recall that here p(x i |z i )
denotes the likelihood and the prior p(z i ) indicates the
distribution of the latent state

p(x i |z i ) p(z i ) Model

prod. Gauss. prod. Gauss. Factor Analysis/proba. PCA

MVN cat. Mixture of Gaussians

prod. cat cat. Mixture of Multinomials

prod. Gauss. prod. Laplace proba. ICA/sparse coding

prod. cat. prod. Gauss. multinomial PCA

prod. cat. Dirichlet Latent Dirichlet alloc.



Statistical intuition and Latent Variable models

I The simplest latent variable models assume that the data was
generated from a distribution governed by a single latent state
zi . In a Bayesian approach, we let p(zi ) to denote the prior for
this latent state.

I We further let p(x i |zi = k) to denote the (assumed)
distribution of the prototypes given the latent state zi = k .

I A popular choice for the prior is the categorical distribution.



Statistical intuition and Latent Variable models
I The categorical distribution is usually used when we represent

measurements as belonging to 1 of K possible exclusive
classes.

I Clusters are usually represented through dummy encodings.

I The general form of a dummy encoding is
x = [I(x = 1), . . . , I(x = K )] where I(x = α) = 1 if x is in
the cluster Cα.

I Then if we assume that the class probabilities are independent,
and label those probabilities as θj , the categorical distribution
reads as a particular case of the multinomial

Cat(x |1, θ) =
K∏
j=1

θ
I(xj=1)
j



Statistical intuition and Latent Variable models

I More Generally, we will use the notation πk to denote the
class probabilities (probabilities to belong to the class Ck).

I With this notation, we thus have p(zi ) = Cat(π) and in
particular, and p(zi = k) = πk

I Given those probabilities, the probability to observe a
prototype x i from the dataset is given by

p(x i |θ) =
K∑

k=1

πkpk(x i |θ)

Here pk(x i |θ) denote the kth base distribution (i.e distribution
to observe the prototype x i knowing it belongs to the kth

cluster.). The general model above is known as a Mixture
Model.



Statistical intuition and Latent Variable models

I The two most popular models are the Mixture of Gaussians

p(x i |θ) =
K∑

k=1

πkN (x i |µk ,Σk)

I and the mixture of Multinoullis,

p(x i , zi = k |θ) =
D∏
j=1

Ber(xij |µjk) =
D∏
j=1

µ
xij
jk (1− µjk)1−xij

I The Mixture of Multinoullis is useful when using dummy
encodings, i.e. when x i = (0, 1, 0, . . . , 0) and we use µjk to
denote the probability that the j th bit is 1 in sequences from
cluster k .



The EM algorithm

I When we want to fit a probabilistic model to the data, we
usually minimize the negative log-likelihood (we look for the
parameters that make it maximally likely to observe the given
data)

I In the case of a GMM, the log likelihood reads as

log p(x |π,µ,Σ) =
N∑

n=1

log

{
K∑

k=1

πkN (xn|µk ,Σk)

}

I Minimizing this expression directly is hard because the log
cannot be pushed inside the sum



The EM algorithm

I The general form of a probability distribution from the
exponential family reads as

p(x , z |θ) =
1

Z (θ)
exp(θTφ(x ,θ))

I And the parameters we want to find also appear in the
normalizing constant. I.e for a distribution from the
exponential family, the observed log-likelihood reads as

`(θ) =
∑
i

log
∑
z i

p(x i , z i |θ)

=
∑
i

log

[∑
z i

eθ
Tφ(z i ,x i )

]
− N logZ (θ)

I The log sum exp is convex and the normalizing constant Z (θ)
is convex as well. However, the difference of two convex
function



The EM algorithm

I An easier approach would be to optimize the complete data
log-likelihood

`c(θ) =
∑
i

log p(x i , z i |θ) = θT

(∑
i

φ(x i , z i )

)
− NZ (θ)

I In the exponential family the normalizing constant is convex
so that the whole function is concave and can be optimized
efficiently



The EM algorithm

I For the reasons listed above, we would clearly prefer to work
with the complete data log-likelihood

`c(θ) =
N∑
i=1

log p(x i , z i |θ)

I The problem is that we don’t have access to the joint
probability p(x i , z i |θ)

I To get round the difficulty, and to estimate the parameters of
the mixture together with the latent states, the EM algorithm
works on the expected complete data log-likelihood

Q(θ,θt−1) = E
{
`c(θ)|D,θt−1

}
Here Q(θ,θt−1) is called the auxilliary function.



The EM algorithm

I For the reasons listed above, we would clearly prefer to work
with the complete data log-likelihood

`c(θ) =
N∑
i=1

log p(x i , z i |θ)

I To get round the difficulty, and to estimate the parameters of
the mixture together with the latent states, the EM algorithm
works on the expected complete data log-likelihood

Q(θ,θt−1) = E
{
`c(θ)|D,θt−1

}
Here Q(θ,θt−1) is called the auxilliary function.

I The E -step computes the expression of Q (or the terms
needed to express Q). The M-step optimizes Q with respect
to θ.



The Auxilliary function

I The auxilliary function reads as

Q(θ,θt−1) = E

{∑
i

log p(x i , zi |θ)

}

=
∑
i

E

{
log

[
K∏

k=1

(πkp(x i |θk))I(zi=k)

]}
=
∑
i

∑
k

E {I(zi = k)} log(πkp(x i |θk))

=
∑
i

∑
k

p(zi = k |x i ,θ
t−1) log(πkp(x i |θk))

=
∑
i

∑
k

rik log πk +
∑
i

∑
k

rik log p(x i |θk)

I It is fully determined from the responsibilities rik of the cluster
k in the realization of the prototype x i as well as the
likelihoods p(x i |θk) which follow from gaussianity and θ



The EM algorithm for GMMs

I Given the likelihoods, the E-step updates the responsibilities as

rik =
πkp(x i |θt−1)∑
k ′ πk ′p(x i |θt−1k ′ )

I The M-step then optimizes Q with respect to the class
probabilities πk and the parameters θk

I The estimates for πk are given by

πk =
1

N

∑
i

rik =
rk
N

I The estimates for θ = (µk , σk) are obtained by substituting
the Normal distribution for p(x i , θk) in the log likelihood and
minimizing



The EM algorithm for GMMs (E-step)

I Substituting the normal distributions for the p(x i |θk), we get

`(mk ,Σk) =
∑
k

∑
i

rik log p(x i |θk)

= −1

2

∑
i

rik

[
log |Σk |+ (x i − µk)TΣ−1k (x i − µk)

]
I Setting the derivatives to zero, we get

µk =

∑
i rikx i

rk

σk =

∑
i rik(x i − µk)(x i − µk)T

rk
=

∑
i rikx ixT

i

rk
− µkµ

T
k



Relation to K-means

I Remember the K means algorithm? K means can be
considered as a particular instance of the EM algorithm. If we
assume that Σk = σ2ID and πK = 1

K is fixed, we only update
the centers of the the clusters

I Instead of the previous responsibilities, one can assume that
the probability of a prototype belonging to a cluster is either 1
or 0.

I We can choose the only possible cluster for a prototype to be
the one that maximizes the likelihood

z∗i = argmax
k

p(zi = k |x i ,θ)

I We then set the probability that x i belongs to this cluster to
1. We can do this because we assumed πk = 1/K fixed and
Σk = σ2I



I Under the earlier hypotheses, maximizing the posterior to find
the most likely assignement reduces to the minimization

z∗i = argmin
k
‖x i − µk‖

I And the M-step updates the centers as

µk =
1

Nk

∑
i |zi=k

x i



K-means vs EM
I K means

I Better running time

I More interesting for high dimensional data

I Interpretation is easier

I Assumes clusters are spherical (see Mouse dataset). So
does not work well with complex shape.

I The ”Hard assignement” approach might lead to
misclassification

I EM Clustering

I Works usually better when there is some uncertainty
regarding the assignment

I Does not assume any predefined geometry for the clusters

I Uses more information than K -means so more difficult to
implement in high dimension.

I More difficult to interpret



Statistical intuition for FA, PCA and ICA

I Now that we have introduced GMMs and the notion of latent
variable model, we are ready to discuss the statistical intuition
for Factor analysis, PCA and ICA models.

I Gaussian mixture models are very general in that every
observation is assumed to have been generated from one of k
independent clusters with their respective mean and
covariance.

I An alternative is to view the distribution of prototypes as
something smoother and to replace the hard assignement (i.e
each of the prototype belongs (exlusively) to one of the k
clusters) by the assumption that the prototypes are organized
according to a set of gaussian distributions concentrated
around a single point.



Statistical intuition for FA, PCA and ICA

I Such model then relies on a first continuous prior for the
latent variables zi ,

p(z i ) = N (z i |µ0,Σ0)

An then model each of the prototypes distributions as
gaussian distributions centered around a mean defined from
this continously varying latent variable z i

p(x i |z i ,θ) = N (Wz i + µ,Ψ)

In this case, θ = (W ,µ,Ψ)

I Factor analysis can thus be understood as a GMM with
constraints on the mean and covariance but continuous latent
variables



Statistical intuition for FA, PCA and ICA

p(x i |z i ,θ) = N (Wz i + µ,Ψ)

I Here W is known as the factor loading matrix and Ψ is the
covariance matrix.

I In practice, the covariance matrix Ψ is usually taken to be
diagonal and we therefore turn to the z i and their connection
through the latent distribution N (z i |µ0,Σ0)

I When the covariance is taken to be spherical, i.e. Ψ = σ2I ,
we get the probabilistic PCA model as we will see.



Low rank covariance

I The model p(x i |θ) given by the combination of the prior
p(z i ) and the likelihood p(x i |z i ,θ) is known as a linear
gaussian system.

I For a general Gaussian system{
p(x) = N (x |µx ,Σx)
p(y |x) = N (y |Ax + b,Σy )

The distribution of y (a.k.a normalizing constant) is defined as

p(y) = N (y |Aµx + b,Σy + AΣxAT )

I Using this to derive the distribution of prototypes in FA, we
get the distribution

p(x i |θ) =

∫
N (x i |Wz i + µ,Ψ)N (z i |µ0,Σ0) dz i

= N (x i |Wµ0 + µ,Ψ + W Σ0W T )



FA as a low rank model for the covariance

I The mean and covariance of the factor analysis model thus
read as

E {x i} = Wµ0 + µ, cov {x i} = WE
{
zzT

}
W T + Ψ

= W Σ0W T + Ψ

I An additional interpretation of the factor analysis model can
be obtained by noting that one can always write
µ′ = µ+ Wµ0 and take µ′0 = 0. We can also always take
Σ0 = I as we can always write the model by introducing the

factor W̃ = W Σ
−1/2
0 ,

cov(x i ) = W Σ0W T + Ψ = W̃ W̃
T

+ Ψ (1)

I Factor analysis can thus be understood as a Gaussian model
with a low rank covariance matrix !

p(x i |θ) = N (x i |µ,WW T + Ψ)



Unidentifiability
I Learning a factor analysis model is ill posed in general (i.e we

say that the parameters of the FA model are unidentifiable)

I Replacing the factor W by any other matrix of the form WR
where R is an orthogonal matrix RRT = I , we get

cov[x ] = WRRTW T + Ψ = WW T + Ψ

I There exists a couple of approaches to reduce the number of
dof

I Force W to be orthonormal (this is the approach followed by
PCA)

I Force W to be lower triangular together with Wii > 0 for all i

I Sparsity prior on the W in the form of `1 regularization (this is
known as sparse factor analysis)

I Select the rotation matrix R that leads to easier
interpretations (e.g. enforce sparsity)

I Use non gaussian priors on the latent variables z i (ICA)



Mixture of Factor Analyzers

I So far we assumed that the means µ+ Wz i all live in the
same affine subspace.

I An alternative if we want to capture the low dimensional
nature of the data locally (and keep a small number of latent
variables) is to introduce multiple subspaces, {µk ,W k}Kk=1

I The model, which is known as mixture of factor analyzers
(MFA) then read as

p(x i |z i , qi = k ,θ) = N (x i |µk + W kz i ,Ψ)

p(z i |θ) = N (z i |0, I )

p(qi |θ) = Cat(qi |θ)

where we introduced the latent variables qi which indicates the
local subspace to be used and use the Categorical distribution
to encode the corresponding distributions of those variables.



Fitting Mixtures of FA and the EM algorithm

I When learning a FA model, we learn the parameters of the
posterior p(x i |z i ,θ) and of the prior, or latent distribution
p(z i ). Once we have those parameters, we usually want to see
whether we can discover something meaningful on the data
based the latent variables z i

I One can then analyze the shape of p(z i |mi ,Σi ) (as we deal
with Gaussian distribution it is possible to compute a closed
form expression for this distribution)

p(z i |x i ,θ) = N (z i |mi ,Σi )

Σi = (Σ−10 + W TΨ−1W )−1

mi = Σi (W TΨ−1(x i − µ) + Σ−10 µ0)



Fitting Mixtures of FA and the EM algorithm

I The simplest way to fit an FA model is to use the EM
algorithm

I Applying the exact same steps as for the GMM, we first
estimate the responsibilities of each pair (cluster,prototype),
(c , i) by using Bayes rule (E-step)

ri ,c = p(qi = c |x i ,θ) ∝ πcN (x i |µc ,W cW T
c + Ψ)

I In the M-Step, we then update the parameters using the
parametrization of the posteriors p(z i |x i , qi = c,θ) (we
assume µ0 = 0 and Σ0 = I ),

p(z i |x i , qi = c ,θ) = N (z i |mic ,Σic)

Σic = (I L + W T
c Ψ−1c W c)−1

mic = Σic(W T
c Ψ−1c (x i − µc))



I The M-step is then completed by estimating the parameters
Ŵ , Ψ̂ and π̂c as

Ŵ
′
c =

[∑
i

ricx ibT
ic

][∑
i

ricC ic

]−1

Ψ̂ =
1

N
diag

{∑
ic

ric

(
x i − Ŵ

′
cbic

)
xT
i

}

π̂c =
1

N

N∑
i=1

ric

where we defined W ′
c , bic and C ic as W ′

c = [W c ,µc ]

bic = E
{
z ′|x i , qi = c

}
= [mic ; 1], z ′ = (z , 1),

mic = E
{
z ′(z ′)T |x i , qi = c

}
,

=

(
E
{
zzT |x i , qi = c

}
E {z |x i , qi = c}

E {z |x i , qi = c} 1

)



Probabilistic PCA and classical PCA

I Constraint the covariance matrix of a FA model by requiring
Ψ = σ2I and W to be orthonormal leads to the classical PCA
model when σ2 →∞.

I When we only require σ2 > 0, the model is known as
probabilistic PCA.

I The connections between PCA and probabilitic PCA as well as
their respective (statistical) interpretation is given by writing
down the data log likelihood log p(X |W , σ2)



From Probabilistic to classical PCA

Probabilistic PCA (see Tipping, Bishop ’99)

We consider a factor analysis model with Ψ = σ2I . The data (or
observed) log-likelihood is given by

log p(X |W , σ2) = −N

2
ln |C | − 1

2

N∑
i=1

xT
i C−1x i

where C = WW T + σ2I and S = 1
N

∑N
i=1 x ixT

i = ( 1
N )XXT

(again we assumed that the x i have been centered). The maxima
of the log-likelihood are defined as

Ŵ = V (Λ− σ2I )1/2R

Where R is an arbitrary L× L orthogonal matrix, V is the D × L
matrix whose columns are the first L eigenvectors of S and Λ is
the corresponding diagonal matrix of eigenvalues. Without loss of
generality we can set R = I .



Independent Component Analysis
I Just as PCA, ICA can be expressed a special instance of a

Factor Analysis model. Recall that in FA we were expression
the parameters as a linear function in the latent variables

x t = Wz t + εt

I W is thus called the mixing matrix and εt is viewed as some
Gaussian noise εt ∼ N (0,Ψ)

I In PCA we assumed that the source were independent and
distributed following a Gaussian distribution,

p(z t) =
L∏

j=1

N (ztj |0, 1)

I In ICA, we relax the Gaussian assumption and let the source
distributions be any non Gaussian distribution

p(z i ) =
L∏

j=1

pj(z tj )



Independent Component Analysis as MLE

I Just as before, we can write the log-likelihood for ICA. Here
we assume that the data has been centered and whitened
(which can be done by a first application of PCA)

I The covariance reads as E
{
xxT

}
= WE

{
zzT

}
W T

I Using the whitening assumption, E
{
zzT

}
= I as well as the

fact that the data is centered, E
{
xxT

}
, we see that the

matrix W must be orthogonal

I Now using a change of variables, we can write the sample
posterior p(x |z ,W ) as

p(x |W , z) = px(Wz)

= pz(z)|det(W−1)|
= pz(W−1x)|det(W−1|



Independent Component Analysis as MLE
I From the posterior p(x |W , z), the data log-likelihood for a

set of T samples follows as

1

T
log p(D|V ) = log |det(V )|+ 1

T

L∑
j=1

T∑
t=1

log pj(vT
j x t)

I Using orthogonality of the rows of V , v j , and replacing the
sum over the data with a population average, we get the
reduced formulation for the negative LL

NLL(V ) =
L∑

j=1

E {Gj(zj)}

where zj = vT
j x and Gj(z) = − log pj(z).

I We then minimize the NLL under the constraints that the rows
v j are orthogonal and have unit norm (which follows from the

whitening assumption and E
{
vT
j xxTv j

}
= ‖v j‖2 = E

{
z2j

}
)



Fast ICA on the NLL (I)

I Whitening and centering are essentially used to reduce the
computational complexity as they reduce the number of
parameters from n2 to n(n − 1)/2

I Whitening can be obtained with a first application of PCA
from where one can then apply any Fast ICA algorithm relying
on the orthogonality of the matrix W .

I There exists several algorithms to perform ICA. Here we focus
on an algorithm that can be used to minimize the NLL.

I Fast ICA on the NLL can be considered a particular instance
of a Newton method.



Fast ICA on the NLL (II)
I For the negative log-likelihood derived earlier, if we let

g = d
dzG (z), in the constrained framework, the contributions

from each independent component to objective function,
gradient and Hessian can respectively read as

f (v) = E
{
G (vTx)

}
+ λ(1− vTv)

∇f (v) = E
{
xg(vTx)

}
− βv

H(v) = E
{
xxTg ′(vTx)

}
− βI

β = 2λ is a Lagrange multiplier.

I If we make the approximation,
E
{
xxTg ′(vTx)

}
≈ E

{
xxT

}
E
{
g ′(vTx)

}
= E

{
g ′(vTx)

}
,

The Hessian is easy to invert and we get the Newton step

v ← v −
E
[
xg(vTx)

]
− βv

E [g ′(vTx)]− β



Fast ICA on the NLL (III)

I After the Newton step has been applied, we simply project the
resulting vector v onto the subspace orthogonal to the other
independent components and normalize it.

I As the objective is non convex, there are multiple local
minimas



Possible distributions

I As we have seen, Gaussian priors won’t work well for ICA so
what distributions can we use instead?

I There are several possible distributions one can use besides
the Gaussian distribubtion:

I Super-Gaussian distributions (e.g Laplace distribution). Super
Gaussian distributions are distributions with a big spike at the
mean and heavy tails. Generally speaking we say that a
distribution is Super Gaussian when its kurtosis,
kurt(z) = µ4/σ4 − 3 is positive, kurt(z) > 0. Here
µk = E

{
(X − E(X ))k

}
I Sub-Gaussian distributions. (e.g. uniform distribution).

Subgaussian distributions have negative kurtosis.

I Skewed distributions (e.g. Gamma distribution). A distribution
can be different from the Gaussian distribution by being
assymetric. We define the skewness (measure of assymetry) of
a distribution as skew(z) = µ3/σ3.


