
Introduction to Machine Learning.
CSCI-UA 9473, Lecture 5.

Augustin Cosse

Ecole Normale Supérieure, DMA & NYU
Fondation Sciences Mathématiques de Paris.

2018

What have we seen so far?

I Bayesian framework and estimators, prior, posterior,
MLE, MAP

I Supervised Learning

I Linear regression

I Bias variance trade-off (Linear and non linear data)

I Regularization (Ridge, Lasso, Subset Selection)

I Linear classification

I Discriminative vs Generative classifiers

I Least squares

I Logistic regression

Today

I Geometry of separating hyperplanes (recap) and Rosenblatt
perceptron

I The curse of dimensionality

I A word on non parametric classifiers

I Kernel methods

I Support vector machines (SVM)

Parametric vs Non Parametric (I)

I Remember the difference between parametric and non
parametric methods ?

I Linear regression = linear combination of a fixed number of
(possibly non linear) basis functions

Y = β0 +
d∑

k=1

βkXk

Y = β0 +
d∑

k=1

βkφk(X)

I Linearity in the parameters leads to interesting properties such
as closed form solution, computational tractability,...

Parametric vs Non Parametric (II)

I Today we will discuss non parametric models

I Parametric = fixed number of parameters, Non parametric =
number of parameters/model complexity grows with the
amount of training samples

(from H.,T.,F., The Elem. of Stat. Learn.)

Separating Hyperplanes (quick recap)

I Consider the separating
hyperplane β0 + βTx

I x1 and x2 belong to the
plane if they satisfy

β0 + βTx1 = β0 + βTx2

I We thus have
βT (x1 − x2) = 0 for all
x1, x2 in the plane

I β (β∗ = β/‖β‖) is the
vector normal to the
hyperplane

H,T,F, Elem. of Stat. Learn.

I The signed distance of a
point x to the hyperplane is
defined as

(β∗)T (x − x0)

=
1

‖β‖
(βTx + β0)

I Points that are located
above thus lead to positive
values βTx + β0 > 0

I Points that are located
below lead to negative
values βTx + β0 < 0 H,T,F, Elem. of Stat. Learn.

I A separating plane thus
gives a natural way to
associate positive or
negative labels to points

I For a two class classification
problem, we can look for the
plane that gives positive
labels to one class and
negative labels to the other

I This idea leads to the
perceptron algorithm of
Rosenblatt H,T,F, Elem. of Stat. Learn.

I The perceptron thus simply
reads as

y(x) = f (β0 + βTx)

Where

f (a) =

{
+1, a ≥ 0
−1, a < 0

I During training, we
associate +1 labels to points
in cluster C1 and −1 labels
to points in cluster C2 H,T,F, Elem. of Stat. Learn.

I In the perceptron, a point in C1
(yi = +1) is thus misclassified
if βTx i + β0 < 0

I Generally we would like all
points to satisfy

yi (β
Tx i + β0) > 0

I so we minimize

−
∑
i∈M

yi (β
Tx i + β0)

(contributions should be ≥ 0)
H,T,F, Elem. of Stat. Learn.

Perceptron

(Perceptron) D(β, β0) = −
∑
i∈M

yi (β0 + βTx i)

I How do we train the perceptron?

I One way is to use stochastic gradient descent (we will come
back to that idea later)

I General idea (perceptron learning algorithm)

I Choose initial vector of prefactors β

I Then for each misclassified points xn, do[
βk+1

βk+1
0

]
←
[

βk

βk
0

]
− η∇Dn(β, β0), Dn = yn(β0 + βTxn)

Perceptron: intuition

Perceptron w/
gen. features φ(X)

D(β, β0) = −
∑
i∈M

yi (β0 + βTφi)

[
βk+1

βk+1
0

]
←
[
βk

βk0

]
− η∇Dn(β, β0), Dn = −yn(β0 + βTφ(xn))

if no intercept βk+1 ← βk + ηφnyn

I Perceptron convergence Theorem: If there exists an exact
solution (data is linearly separable), then the perceptron
algorithm is guaranteed to find an exact solution in a finite
number of steps.

Perceptron: more intuition

Bishop, Pattern Recogn. and ML.

I Let us assume no
intercept (data has been
centered)

I For each misclassified
points xn (resp. φ(Xn)),
the algorithm adds the
pattern of the
misclassified point to the
weight vector β

− (βk+1)Tφnyn

=− (βk)Tφnyn

− (φnyn)Tφnyn

<− (βk)Tφnyn

Curse of dimensionality

I Two difficulties in (generalized) linear models are related to
the dimension

1. Fitting a simple linear model is tricky in high dimension
because when d � n, the solution is usually not unique. (one
possibility is to use regularization)

2. As soon as we consider advanced features, the number of
coefficients needed grows non linearly with the dimension. Ex:
linear regression model made from degree-3 polynomial
features

y(x ,w) = w0 +
D∑
i=1

wixi +
D∑

k=1

D∑
j=1

wijxixj +
D∑

i,j,k

wi,j,kxixjxk

Curse of dimensionality

I Those difficulties are part of a general phenomenon known as
curse of dimensionality

I The expression curse of dimensionality which which was
apparently coined by Bellman (1961) was roriginally eferring
to the fact that many algorithms that work fine in low
dimension become intractable in high dimension.

I In machine Learning, it refers to much more and in particular,
it includes the idea that generalization becomes harder in
large dimension because a fixed size training set covers a
dwindling fraction of the space as d increases. (see Dave
Donoho, High-Dimensional Data Analysis: The Curses and
Blessings of Dimensionality, Pedro Domingos, A few useful things to
know in machine Learning)

Curse of dimensionality

I As an example, consider a regression model that would divide
the space into subcells.

I As the dimension grows, we would need an exponentially large
amount of training data to ensure that the cells are not empty

Bishop, Pattern Recognition and ML

Kernels

I There are two main uses of kernels in machine learning

I Either as a way to encode similarity between inputs
I So far we have assumed that the data could be represented by

means of some feature vector X = (X1,X2, . . . ,Xn)

I Computing explicit features is often difficult and we only have
access to some form of similarity/dissimilarity between the
samples (think of comparing texts for example)

I Kernel trick = turning classification/regression models based
on features to models based on similarity/kernel

I Kernels can also be used for localization, to build smooth
(generative) models for regression and classification (Kernel
smoothing)

Kernels

I We define a kernel to be a function of two arguments κ(x , x ′)
that is symmetric, κ(x , x ′) = κ(x ′, x) and non negative
κ(x , x ′) ≥ 0 (I.e the idea is to use it as a measure of
similarity)

I Two important examples are the Gaussian kernel and the class
of RBF kernels

κ(x ′, x) = exp

(
−1

2
(x − x ′)Σ(x − x ′)

)

κ(x , x ′) = exp(−‖x − x ′‖2

2σ2
)

(σ here is called the bandwidth)

Kernels

I When used to encode similarity between points, Kernel are
often represented through their corresponding Gram matrix

K =

 κ(x1, x1) . . . κ(x1, xN)
...

κ(xN , x1) . . . κ(xN , xN)


I If the only thing we can compute with the data is the

similarity matrix K , it is usually hard to extract the feature
map from K .

I However, there is an important class of kernels for which the
existence of such feature map is guaranteed

I For these kernels, the feature vector can be computed from
the Gram matrix

Mercer Kernels

I A Mercer Kernel is a Kernel for which the Gram matrix K is
positive definite for any set of inputs {x i}

I When the kernel is Mercer, there always exists a feature
mapping φ(x) such that

K ij = φ(x i)
Tφ(x j)

I In other words, the kernel corresponds to an inner product in
some finite feature space.

I Mercer Kernel are especially useful when used in Support
Vector Machines (SVM) because they guarantee that there
exists a unique optimal separating hyperplane in the feature
space.

Kernel machines

I There are two main approaches to define models based on
kernels

1. Use any generalized linear model where you replace the
features by kernels centered at centroids µ1, . . . ,µK (Kernel
machine)

f̂ (x) =
K∑

n=1

wnκ(x ,µn)

When using Radial basis functions, this model is known as
RBF network

2. Instead of building a new model from a feature vector defined
in terms of kernels, one can instead start from existing models
and replace all inner products 〈x , x ′〉 by a call to the Kernel
function κ(x , x ′). This idea is known as the Kernel trick

Kernel machines

I The main issue with kernel machines is how to choose the
centroids

I When in low dimension, one can choose the centroids to
uniformly tile the space (but this will fail in high dimension
because of the curse of dimensionality)

I Another approach could be to optimize over the centroids
(but the problem is highly multimodal ⇒ finding the optimum
is hard)

I One could also start by finding clusters in the data and then
assign a centroid to each cluster (That would require choosing
a number of clusters)

Kernel machines

I Finally a last approach, which is the simplest is to take each
sample x i as a prototype. The feature vector is then given by

φ(x) = [κ(x , x1), . . . , κ(x , xn)]

I The advantage is that the model is now fully non parametric

I But it requires many kernels

I One solution to select a subset of these kernels is to use any
of the regularization penalties that we have studied in inear
regression

I This gives models known as L1 or L2 regularized Vector
Machines

The Kernel trick (I)
I The Kernel trick starts with existing models and tries to

replace all inner products in those models with a call to the
Kernel to define to define a corresponding version of these
models that would rely only on similarity

I For this trick to work, the kernel should be a Mercer kernel

I As an example, consider Ridge regression. In this model the
objective is given by

J(w) = (y − Xβ)T (y − Xβ) + λ‖β‖

And the optimal solution can be computed exactly (cfr
assignment) as

β = (XTX + λID)−1XTy =

(
N∑
i=1

x ixT
i + λID

)−1
XTy

Here X is the N × D design matrix encoding the points

The Kernel trick (II)

β = (XTX + λID)−1XTy =

(
N∑
i=1

x ixT
i + λID

)−1
XTy

I By using an inversion trick, one can write β equivalently as

β = XT (XXT + λIN)−1y

I But now XXT is exactly the Gram matrix K , i.e we can write

β = XT (K + λIN)−1y

The Kernel trick (III)

β = XT (K + λIN)−1y

I Now let β = XTα with α = (K + λIN)−1y and substitute
this in the regression model, we get

f̂ (x) = βTx = αTXx =
N∑
i=1

αi 〈x i , x〉

=
N∑
i=1

αiκ(x , x i)

The Kernel trick (III)

f̂ (x) =
N∑
i=1

αiκ(x , x i), α = (K + λIN)−1y

I The cost of computing the dual variables α is O(N3) whereas
the cost of computing the primal variables β is O(D3). The
kernel method is thus essentially useful in high dimension

I However, prediction using the dual variables α takes O(ND)
time whether prediction using the primal variables β takes
O(D) time. Making α sparse (few non zero entries) can
speed up prediction ⇒ that is precisely the point of SVMs !

Usage

I There are two main frameworks in which you might want to
use Kernels as a way to encode similarity

1. You have some data and you’ve come up with a function
which you think might be a good way to encode similarity of
your data

2. You don’t want to explicitely deal with feature vectors

3. D > N

I Kernels are especially useful when combined with Support
Vector Machines (see later slides)

Smoothing Kernels

I A smoothing kernel is a function κ(x) of one argument which
decreases sufficiently quickly∫
κ(x) dx = 1,

∫
xκ(x) dx = 0, and

∫
x2κ(x) dx > 0

I A useful example is the Gaussian kernel

κ(x) =
1√
2π

e−x
2/2

I When the inputs are vectors, we can simply take any kernel
and use it with the norm ‖x‖, (e.g. ‖x‖2 =

∑N
n=1 X

2
n)

Smoothing Kernels: examples

Smoothing Kernels

I Smoothing kernels are essentially used in local regression
models to get an approximation for the conditional
expectation E {y |x}

I In this framework, the kernels are used to approximate p(x , y)

E {y |x} =

∫
yp(y |x) dy =

∫
p(x , y)y dy∫
p(x , y) dy

I Then use smoothing kernels to define an approximation of the

p(x , y) ≈ 1

N

N∑
i=1

κx(x − x i)κy (y − yi)

I The model is well defined as the Kernels integrate to 1
(p(x , y) corresponds to a probability)

Smoothing Kernels

p(x , y) ≈ 1

N

N∑
i=1

κx(x − x i)κy (y − yi)

I Using the kernel decomposition for the joint probability
distribution, we can write the conditional expectation (which
gives one possible regression model) as

E {y |x} =

∫
yp(y |x) dy =

∫
p(x , y)y dy∫
p(x , y) dy

=
1
N

∑N
i=1 κx(x − x i)

∫
yκx(y − yi) dy

1
N

∑N
i=1 κx(x − x i)

∫
κy (y − yi) dy

=

∑N
i=1 κx(x − x i)yi∑N
i=1 κx(x − x i)

Smoothing Kernels

E {y |x} =

∑N
i=1 κx(x − x i)yi∑N
i=1 κx(x − x i)

I The result above follows from the properties of smoothing
kernels. In particular we use the zero mean property
To get

∫
yκy (y − yi)dy = yi , let y ′ = y − yi and use∫

xκ(x) dx = 0 ⇒
∫

(y ′ + yi)κy (y) dy ′

=

∫
y ′κy (y ′) dy ′ + yi

∫
κy (y ′)dy ′

= 0 + yi = yi

Smoothing Kernels

I In other words, smoothing kernels give us a (non parametric)
regression model of the form

f̂ (x) =
N∑
i=1

wi (x)yi

where the weight functions are defined from the smoothing
kernels as

wi (x) =
κx(x − x i)∑N
j=1 κx(x − x i)

I The prediction is now given by a weighted combination of the
outputs at the training points

I This method is known as Nadaraya-Watson model (a.k.a
Kernel regression)

Kernels (summary)

I Kernels as a way to replace features with similarity

I Use Kernels machines when you don’t know which features to
use. We will see an example of this with SVMs.

I Generally speaking, Kernels are interesting when d > n

I When d � n, (multi)linear regression is more interesting

I When d � n there is no need to bring the data in higher
dimensional space as finding a separating hyperplane should
not be hard

I Smoothing Kernels

I Essentially used in kernel regression or local regression models

I Kernels are also used in unsupervised learning (will discuss
that later)

Support vector machines

I Linear models have interesting computational and anlytical
properties but their practical applicability is limited by the
curse of dimensionality

I Support vector machines are also called sparse vector
machines

I SVM start by defining basis functions that are centered on the
data and then select a subset of these during training

Support vector machines

I Consider the linear regression model

y(x) = βTφ(x) + β0

I Assume we want to do classification so the labels are
tn = {±1}

I We further assume that the dataset of linearly separable in
feature space so that there exist at least one seprating
hyperplane with βTφ(xn) + β0 > 0 for the xn with tn > 0
and βTφ(xn) + β0 < 0 otherwise

I When there are multiple choices we should choose the one
that gives the smallest generalization error. SVM tries to
achieves this through the notion of margin

Support vector machines

(Bishop, Pattern recognition and Machine Learning)

SVM as Maximum Margin Classifier

I Recall from the geometry of separating hyperplanes that the
distance of a point φ(xn) to the hyperplane βTx + β0 is
defined as |y(x)|/‖β‖

I When all the points are correctly classified, the sign of tn
equals the sign of yn = βTφ(xn) + β0 and we can thus write
the distance as

tnyn
‖β‖

=
tn(βTφ(xn) + β0)

‖β‖

I The margin is the perpendicular distance of the closest point
φ(xn) to the plane

SVM as Maximum Margin Classifier

tnyn
‖β‖

=
tn(βTφ(xn) + β0)

‖β‖

I The maximum margin solution is thus given by

argmax
β,β0

{
1

‖β‖
min
n

[
tn(βTφ(xn) + β0)

]}
I We don’t want to solve this problem because deriving a direct

solution in this framework would be difficult

SVM as Maximum Margin Classifier

argmax
β,β0

{
1

‖β‖
min
n

[
tn(βTφ(xn) + β0)

]}

I First note that for any rescaling β ← αβ, β0 ← β0α, the
objective tn(βTφ(xn) + β0)/‖β‖ is unchanged

I We can thus focus on one of these solution (fix one particular
scale for [β, β0]) as all the others give the same objective

I In particular we can choose to fix the scale by setting

tn(βTφ(xn) + β0) = 1

For the point that is the closest to the boundary.

SVM as Maximum Margin Classifier

argmax
β,β0

{
1

‖β‖
min
n

[
tn(βTφ(xn) + β0)

]}

I Now all the other points will necessarily satisfy

tn(βTφ(xn) + β0) ≥ 1

I Because we fixed the distance of the closest point to the plane
the original optimization problem reduces to

argmin
β

1

2
‖β‖2

together with the constraint tn(βTφ(xn) + β0) ≥ 1

SVM as Maximum Margin Classifier

argmin
β

1

2
‖β‖2

subject to tn(βTφ(xn) + β0) ≥ 1

I This constrained optimization problem can be recast as an
unconstrained problem by introducing multipliers λn ≥ 0

L(β, β0,λ) =
1

2
‖β‖2 −

N∑
n=1

λn

{
tn
(
βTφ(xn) + β0

)
− 1
}

(see for example Appendix E in Bishop, Pattern Recognition and
Machine Learning)

SVM as Maximum Margin Classifier

L(β, β0,λ) =
1

2
‖β‖2 −

N∑
n=1

λn

{
tn
(
βTφ(xn) + β0

)
− 1
}

I To find the minimum of this function, we set the derivatives
with respect to β and β0 to zero, getting

β =
N∑

n=1

λntnφ(xn)

0 =
N∑

n=1

tnλn

I and maximize with respect to λn (large λn penalize the
constraint a lot if it becomes negative)

SVM as Maximum Margin Classifier

I Eliminating β and β0 from L(β, β0,λ), we get

L(λ) =
N∑

n=1

λn −
1

2

N∑
n=1

N∑
m=1

λnλmtntmκ(xn, xm)

I with the constraints

N∑
n=1

λntn = 0

λn ≥ 0

I Maximizing L(λ) under the constraints above is a quadratic
programming problem for which efficient techniques exist.
Moreover when κ(xn, xm) is Mercer, there is a single solution

SVM as Sparse Kernel Machines(I)

I Given the function L(β, β0,λ), it is known
(Karush-Kuhn-Tucker conditions) that any optimal solution
must satisfy the follosing 3 conditions

λn ≥ 0

tny(xn)− 1 ≥ 0

λn {tny(xn)− 1} = 0

I The last conditions have a very important consequence on
SVM

I Either λn = 0 or tny(xn) = 1 (support vectors)

SVM as Sparse Kernel Machines (II)

I Either λn = 0 or tny(xn) = 1 (support vectors)

I In particular many λn will be zero

I Using β =
∑N

n=1 λntnφ(xn), and substituting it in
y(x) = βTφ(x) + β0, we get the prediction model

y(x) =
N∑

n=1

λntnκ(x , xn) + β0

I Which is a combination of the λn !

SVM as Sparse Kernel Machines (III)

(Karush-Kuhn-Tucker)


λn ≥ 0
tny(xn)− 1 ≥ 0
λn {tny(xn)− 1} = 0

I Using the Karush-Kuhn-Tucker conditions, the SVM
prediction model thus reduces to

y(x) =
∑
n∈S

λntnκ(x , xn) + β0

Where S are the support vectors (all remaining λn’s are 0)

SVM as Sparse Kernel Machines (IV)

I This sparsity property (i.e the need to only keep a small
number of support vectors) is a key property of SVM

I It guarantees efficiency of the prediction step !

I Once you know the support vectors, β and β0 can be
computed using β =

∑N
n=1 λntnφ(xn), as well as the fact that

at any of the support vectors we must have

tnyn = tn

(∑
m∈S

λmtmκ(xn, xm) + β0

)
= 1

I Sometimes we average the estimate for β0 over the support
vectors (here n) to get more stability

Short summary

I General geometry of separating hyperplane, distance to
hyperplane, perceptron

I Curse of dimensionality

I Kernels

I As a way to encode similarity rather than features

I As smooth interpolating functions

I SVM

I Maximum Margin

I Sparse Kernel machines ⇒ efficient prediction

