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Schedule

I Class and labs: Tuesday/Thursday 5.15pm to 6.45pm,

I Office hours : Tuesday/Thursday : 6.45pm to 7.15pm,

I Location: NYU Paris, 57 Boulevard Saint-Germain, Room
4.06

I Combination between programming sessions (python) and
lectures

I Final Exam: Midterm: 30%, Final : 30%

I Assignements throughout the term: 30%



Today’s class

I General info on the class

I Brief overview of Main techniques and challenges

I Reminders on Statistics



Machine learning today (I)



Machine learning today (II)

From A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M.

Blau & S. Thrun, Dermatologist-level classification of skin cancer with

deep neural networks in Nature volume 542, pages 115–118 (02 February

2017).



Machine learning today (III)







General material (theory)

I Reminders in Stats/Probability, Inference.

I Supervised learning

I Classification

I Regression

I Unsupervised learning

I Clustering

I PCA, ICA

I Non linear dimensionality reduction

I Directed and undirected graphical models

I Advanced topics (Learning Theory, Adversarial Learning,...)



General material (coding)

I Programming sessions
I Scikit-learn, Pandas, MgLearn, PyTorch/TensorFlow

I Personal project
I Natural Language processing

I Audio, Video Processing
I Conversations

I Faces, Medical diagnosis

I Sentiments analysis, question answering

I Time series (financial data, stockmarket)



Available tools I

I Programming: Python, Scikit-learn

I Many available datasets and plateforms (register on Kaggle!),
also check enigma or Catalyst, quantopian,...



Available tools II

I PyTorch, TensorFlow : Code your own chatbot



I If time, we will discuss some of the latest models used



Generative adversarial networks



Some references

I Website: http://www.augustincosse.com/ml2018

There you can find

I classnotes (coming) + schedule + problem sets.

Additional references (theory side)

I Machine learning: A probabilitic perspective, Murphy,

I Pattern recognition and Machine learning, Bishop,

I The elements of statistical learning, Hastie, Tibshirani,
Friedman



Some references (continued)

For those interested in startups

My objective: give you the tools, then it’s up to you to decide how
you want to use them

I Many references are available: e.g. Chaos Monkeys (A.G.
Martinez), Zero to One (P.Thiel), Creativity inc. (E. Catmull)



Machine Learning is not new..

I General principle of machine learning is very simple

I One of the reason for the renewed excitement is Massive
parallelism through Graphical Processing Units ⇒ Essential
for neural network training on massive databases (think of
imageNet, GoogleNet,..)



Some new architectures are coming

Issue: costly 
still Energy greedy



Human

Machine

Supervised

Augmented 
Supervised

Semi 
Supervised

Reinforcement

Unsupervised

From Lex Friedman, MIT



The big picture: Supervised vs Unsupervised

I Supervised learning tries to understand the relation between
data x and the associated labels (knowledge) y based on
samples x for which the accompanying labels are known.

Ex: Handwriting recognition. Data = images from MNIST,
labels,knowledge = actual numbers displayed

I Unsupervised learning tries to understand the data without
having access to prior knowledge

Ex: customized advertising (cluster users in groups in order to
send specific advertising to each group)



The big picture: Augmented Supervised, Semi-supervised
and Reinforcement

I Augmented supervised: Human remains at the core but you
get the machine to help you with some new classes once in a
while. Augmented class = class unknown during training, that
appears during test. Once the system can differentiate it from
the labeled ones, it will be able to process it later.

I Semi-supervised : small amount of labeled data with large
amount of unlabeled data
(labeled and unlabeled data can be used together to learn a
manifold)

I Reinforcement: The machine looks for suitable actions, in a
given situation, in order to maximize a ”reward” (e.g. GANs,
Neural Network backgammon playing : board position + dice
value ⇒ move + reward)
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Supervised learning

Supervised learning is usually split into two categories

I Regresssion methods

Ex . β̂ = min
β

N∑
i=1

(yi − 〈xi , β〉)2 (residual SS)

I Classification methods

Ex . ŷi =
1

K

∑
k∈N (xi )

y(xk) (KNN)
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Supervised learning

Many possible regression models

I Support vector machines,

I Neural networks

I Kernel methods

I Mixture models

+ Model selection ? Generalization ?



SVMs for face recognition

Logistic regression,
neural nets

for handwritten digits 
recognition

Neural nets pong training

Supervised Learning:
What are we going to learn?



Parametric vs non-parametric

I Fixed number of parameters = parametric
+: faster to use
−: stronger assumptions regarding data distribution.

Ex. linear regression

I Number of params grows with training data = non-parametric
+: more flexible regarding data.
−: often computationally intractable for large datasets

Ex. KNN



Parametric vs non-parametric

I From Hastie, Tishirani, Friedman



Unsupervised learning

In unsupervised learning, we are only given inputs xi and we want
to extract pattern from the data.

Examples of unsupervised learning approaches include

I Clustering

I Self organizing maps

I Principal component analysis

I Non Linear dimensionality reduction



Manifold learning
and clustering 

to understand the 
Stock Market 

structure

Brain tumor segmentation 
using K-means

Unsupervised Learning:
What are we going to learn?



Image segmentation through clustering



What are we going to learn?
Combined supervised 

and unsupervised

Samir Bhatt, Bhaskar Trivedi, Ankur Devani, Hemang Bhimani (eInfochips)



Back to the industrial revolution (I)

Erik Brynjolfsson, ICLR 2018



Back to the industrial revolution (II)

from Erik Brynjolfsson, ICLR 2018

I Why can history tell us?

I Steam engine was classified by Bresnahan et Trajtenberg
(1996) as belong to the so-called General Purpose
Technologies

I Those technologies are characterized by 3 features:
I Pervasive

I Able to be improved over time

I Able to spawn complemetary innovations

I Does that remind you of something ?



Back to the industrial revolution (II)

from Erik Brynjolfsson, ICLR 2018

I Technology is not neutral

I You can do a small pox vaccine...



Back to the industrial revolution (II)

from Erik Brynjolfsson, ICLR 2018

I Technology is not neutral

I You can do a small pox vaccine...But you can also create a
nuclear weapon

I In fact let’s compare..





Back to the industrial revolution: The 6 Challenges

from Erik Brynjolfsson, ICLR 2018 keynote.

I Economics: Many people left behind

I False news, ”cyberbalkanization”
I Algorithms control what we read, how it is interpreted
I More facts but more fakes

I Algorithmic bias (Machine can sometimes amplify
discriminations when used to hire people, e.g. supervised case)

I End of privacy (IoT and smartphone connection)

I Winner take all markets (further concentration of economic
growth)

I Cyber risks (AI bots fighting AI bots, vulnarable voting
system)









What Machine Learning can and cannot do

I We have seen many achievements (essentially in vision,
language)..

I In particular Supervised learning has been quite successful

I But there are still plenty of tasks that computers still cannot
handle (see Lex Friedman, MIT Sloan lecture)

I Awareness of self

I Emotion

I Imagination

I Morality

I Consciousness

I high level reasoning



Still many tasks that machines cannot do
from Erik Brynjolfsson, ICLR 2018 keynote.



Immediate Challenges

Neural Nets and machine 
vision can be  
fooled by very small distortions



Immediate Challenges

(Lex Friedman, MIT Sloan)

I Occlusions

I Sensor spoofing (camera, Lidar)

I adversarial noise

I Risk quantification

I Data is costly ⇒ Ideally, we would like to move to



Statistics and probability

I Why using stats/proba?

I Machine Learning relies on complex distributions (cancerous
cells, possible moves in Go, Existing sign roads, possible
evolutions of stocks,...)

I Only a few samples are usually available

I ⇒ We need a way to measure how well those samples are
representing the underlying (unknown) distribution



Why is that important?



Reminders (I)

(Discrete sets of events)

I Sum rule p(X ) =
∑

Y p(X |Y )

I Product rule p(X ,Y ) = p(X |Y )p(Y )

I Bayes theorem

p(Y |X ) =
p(X |Y )p(Y )

p(X )

(continuous sets of events)

I density p(x),

p(x ∈ [a, b]) =

∫ b

a
p(x)dx , p(x) =

∫
p(x , y)dy



Reminders (II)

I Cumulative distribution Function (CDF) F (z) =
∫ z
−∞ p(x) dx

I Expectation E[x ] =
∫
xp(x)dx , E[x ] =

∑
i xip(xi )

I Conditional expectation Ex f (x |y) =
∑

x f (x)p(x |y)

I Variance Var[x ] ≡ E
{

(x − Ex)2
}

I Covariance Cov[x , y ] ≡ E {(x − Ex)(y − Ey)}



Reminders (III) A few important distributions

I The gaussian distribution

N (x |µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x − µ)2

)

I Uniform distribution: P(y) = 1
|b−a| , y ∈ [a, b]

I χ2 distribution: χ2 ∼
∑N

i=1 Zi
2 with Zi independent standard

normal RV.



Reminders (IV) A few important distributions

I Binary variables: Bernoulli and Rademacher,

Bern(x |µ) = µx(1− µ)1−x , x =

{
1
0
, 0 ≤ µ ≤ 1

Rademacher: ε(x) =


(1/2), x = +1
(1/2), x = −1
0, otherwise



The exponential family

I Many of the distributions we have discussed are part of a
general family called The exponential family

I The exponential family has many interesting properties
I It is the only family of distribution with finite-sized sufficient

statistics (see next slides)

I It is the only family with known conjugate priors

I It is at the core of generalized linear models

I it is at the core of variational inference

I we will come back to these notions later



The exponential family

I A pdf p(x |θ) is said to be in the exponential family for
x = (x1, . . . , xm) and θ ⊆ Rd if

p(x |θ) =
1

Z (θ)
h(x) exp(θTφ(x)

= h(x) exp(θTφ(x)− A(θ))

I Z (θ) and A(θ) are defined as

Z (θ) =

∫
Xm

h(x) exp[θTφ(x)] dx

A(θ) = log(Z (θ))

I Z (θ) is called the partition function, θ are the mutual
parameters, φ(x) ∈ Rd is the vector of sufficient statistics,
A(θ) is the log partition function or cumulant function.



The exponential family

I Two examples
I Bernoulli

Ber(x |µ) = µx(1− µ)1−x = exp(x log(µ) + (1− x) log(1− µ))

= exp(φ(x)T θ)

I Univariate Gaussian

I The Uniform distribution does not belong to the exponential
family



Parameter/model inference: Bayesian vs frequentist

I The linear regression model is a special instance of a more
general idea called model inference (among which one finds
the MLE)

I We will study the notion of inference in more details later in
the class. For now we only cover the main ideas.

I Inference can be used in both supervised (learn new labels
from training labels) and unsupervised (learn parameters from
distribution) frameworks

I You will often hear about frequentist vs Bayesian approaches.



Parameter/model inference: Bayesian vs frequentist

I Bayesian statistics.
I Considers the (distribution) parameters as random

I Relies heavily on the posterior distribution p(θ|D)

I dominated statistical practice before 20th century

I Ex: MAP argmax
θ

P(D|θ)P(θ)

I Frequentist statistics (a.k.a classical stat.)
I Parameters θ viewed as fixed, sample D as random

(Randomness in the data affects the posterior)

I Relies on the likelihood or some other function of the data

I dominated statistical practice during 20th century

I Ex. MLE : argmax
θ

P(D|θ)



Bayesian statistics: Some vocabulary

I We saw Bayesian inference relies on the posterior p(θ|D)

I The posterior reads from the Bayes rule as

p(θ|D) =
p(D|θ)p(θ)

p(D)

=
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

I p(θ) is called the prior, p(D|θ) is called the likelihood function
and Z = p(D) is the normalizing constant (independent of θ)

I Given a set of patterns (xµ, yµ), classifiers are usually of two
types:

I Generative (learn model for p(x , y |θ))
I Discriminative (learn model for p(y |x , θ))



Bayesian statistics: Some vocabulary
I An example of discriminative classifier : Logistic regression

I Here we take µ(x) = sigm(wTx) and define the classifier as a
Bernoulli distribution

p(y |x ,w) = Ber(y |µ(x))

I Good when the output is binary

I An example of generative classifier :
I relies on the assumption that the features (hidden variables)

are independent

p(x |y = c ,θ) =
D∏
j=1

p(xj |y = c , θjc)

I θj,c is the parameters of the distribution of class c for j th entry

in the D-dimensional pattern vector x ∈ {1, . . . ,K}D .

I We will study those models in further detail when discussing
classifiers.



Bayesian statistics

I In Bayesian statistics, randomness is most often used to
encode uncertainty

I The posterior p(θ|D) summarizes all we know on the
parameters

I Bayesian inference is not always the right choice because of
the following

I The Mode is not a typical point in the distribution

I MAP estimator depends on re-parametrization



Bayesian statistics: Drawbacks and solutions

I A solution to the first part is to use a more robust loss
function `(θ̂, θ)

I A solution to the second part is to replace the MAP with the
following estimator (when available)

θ̂ = argmax
θ

p(D|θ)p(θ)|I (θ)|−1/2 (1)

where I (θ) is the Fischer information matrix



Fischer information matrix

I For a generative model p(x |θ), we let g(θ, x) denote the
Fischer score

g(θ, x) = ∇θ log(p(x |θ))

I the Fischer Kernel is the defined as

k(x , x ′) = g(θ, x)TF−1g(θ, x ′)

I The matrix F is called the Fischer matrix and defined as

F = Ex

{
g(θ, x)g(θ, x)T

}
I Note that it is often computed empirically as

F ≈ 1

N

N∑
n=1

g(θ, x)g(θ, x)T



Occam’s razor and Model selection

I Only looking for the best model often leads to overfitting (we
will see that later in more details)

I Bayesian framework offers and alternative called Bayesian
model selection

I For a family of models, we can express the posterior

p(m|D) =
p(D|m)p(m)∑
m∈M p(m|D)

∝ p(D|m)p(m)

where p(D|m) =
∫
p(D|θ)p(θ|m)dθ is called the marginal

likelihood, integrated likelihood or evidence



Occam’s razor

I Integrating the parameters θ such as in

p(D|m) =

∫
p(D|θ)p(θ|m)dθ

acts as a natural regularization and prevents overfitting when
solving for maxm p(m|D). This idea is known as Bayesian
Occam’s razor

I The evidence p(D|m) can be understood as the probability to
generate a particular dataset from a family of model (all
values of the parameters included).

I When the family of models is too simple, or too complex, this
probability will be low.



Bayesian decision theory

I How do we resolve the lack of robustness of Bayesian
estimators vis a vis the distribution (recall the bimodal
distribution)?

I Statistical decision theory can be viewed as a game against
nature.

I Nature has a parameter value in mind and gives us a sample

I We then have to guess what the value of the parameter is by
choosing an action a

I As an additional piece of information, we also get a feedback
from a loss function L(y , a) which tells us how compatible our
action is w.r.t Nature’s hidden state.



Bayesian decision theory

I The goal of the game is to determine the optimal decision
procedure,

argmin
a∈A

E {L(y , a)}

I In economics L(y , a) = U(y , a) and leads to the Maximum
utility principle which is considered as rational behavior

δ(x) = argmax
a∈A

E {U(y , a)}

I In the Bayesian framework, we want to minimize the loss over
the models compatible with the observations {xµ}

δ(x) = argmin
a∈A

Ep(θ|{xµ}) {L(θ, a)} =
∑
θ∈Θ

L(θ, a)p(θ| {xµ}µ)



Bayesian decision theory (continued)

I The MAP is equivalent to minimizing a 0/1 loss

L(θ̂, θ) = 1θ 6=θ̂ =

{
0 if θ̂ 6= θ

1 if θ̂ = θ.

we then have

EL(θ̂, θ) = p(θ 6= θ̂| {xµ}µ) = 1− p(θ̂ = θ| {xµ}µ)

= 1− p(θ̂ = θ| {xµ}µ)p(θ|xµ)

which is maximized for θ̂ = θ with θ taken as

θ∗({xµ}µ) = argmax
θ̂

p(θ| {xµ}µ)



What do we do with noisy data?

I Is it possible to take more robust losses?

I `2 loss, L(θ̂, θ) = |θ̂ − θ|2 gives posterior mean

E
{

(θ̂ − θ)2|xµ
}

= E[θ2|xµ]− 2θ̂E[θ|xµ] + θ̂2

I setting derivative to 0, ∂θ̂E{θ̂|xµ} = 0, we get

−2E {θ|xµ}+ 2θ̂ = 0

θ̂ =

∫
θp(θ|xµ) dθ



What do we do with noisy data? (continued)

I Is it possible to take more robust losses?

I `1 loss, L(θ̂, θ) = |θ̂ − θ| gives posterior median

I The value θ̂ such that

p(θ < θ̂|xµ) = p(θ ≥ θ̂|xµ) = 1/2



What do we do with noisy data? (continued)

I Now assume θ̂ defines the value of some hidden variable y
(e.g. the class of a point xµ defined by a gaussian mixture θ̂).

I Finding the optimal parameters (or equivalently estimate the
hidden state) can be done by considering the error

Lg (θ, θ̂) = E(xµ,yµ)∼p(xµ,yµ|θ)

{
`(θ, fθ̂)

}
=
∑
xµ

∑
yµ

`(yµ, fθ̂(xµ))p(xµ, yµ|θ)

I The Bayesian approach then minimizes the posterior expected
loss

argmin
θ̂

∫
p(θ|D)Lg (θ, θ̂) dθ

I Note that here the model is fixed and we want to learn the
parameters (>< model selection)



How to pick up the priors?

I The controversial aspect of Bayesian statistics are the priors

I The main argument of Bayesians is that we most often know
something about the world

I When it is possible, it makes things easier to pick up a prior
from the same family as the likelihood function



Parameter/model inference: Biased vs Unbiased

I Imagine that we have access to a set of obervations xi ∈ Rn

and we can reasonably assume those samples are drawn
independently from gaussian distributions.

I Because the observations are i.i.d, we can write the expression
for the probability of oberving the xi given the common µ and
σ2,

p(x |µ, σ2) =
N∏

n=1

N (xn|µ, σ2) (2)

I A reasonably good idea to derive estimates for µ and σ is then
to maximize this likelihood



Parameter/model inference: Biased vs Unbiased

I Since the log is a monotonically increasing function,

argmax
µ,σ2

p(x |µ, σ2) =
N∏

n=1

N (xn|µ, σ2)

is equivalent to maximizing the log likelihood function

argmax
µ,σ2

log
(
p(x |µ, σ2)

)
= − 1

2σ2

N∑
n=1

(xn − µ)2

− N

2
log(σ2)− N

2
log(2π).



Parameter/model inference: Biased vs Unbiased

I Maximizing the log likelihood function with respect to µ first
and then σ2 gives the maximum likelihood estimators

µ̂ML =
1

N

N∑
n=1

xn

σ̂2
ML =

1

N

N∑
n=1

(xn − µ̂ML)2

I Those two estimates are functions of the data set x1, . . . , xN



Parameter/model inference: Biased vs Unbiased

I Remember the ML estimators

µ̂ML =
1

N

N∑
n=1

xn

σ̂ML =
1

N

N∑
n=1

(xn − µ̂ML)2

I Now take the expectation of those estimators with respect to
the known distribution,

Eµ̂ML = µ

Eσ̂2
ML =

(
N − 1

N

)
σ2



Parameter/model inference: Biased vs Unbiased

I On average, the MLE will get you the right mean, but will
underestimate the variance

Eµ̂ML = µ

Eσ̂2
ML =

(
N − 1

N

)
σ2

I This problem is called bias and is related to the problem of
overfitting

I In fact it turns out that a better estimator for σ2 is given by

σ̂2 =
1

N − 1

N∑
n=1

(xn − µ̂ML)2


