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Schedule

» Class and labs: Tuesday/Thursday 5.15pm to 6.45pm,
» Office hours : Tuesday/Thursday : 6.45pm to 7.15pm,

» Location: NYU Paris, 57 Boulevard Saint-Germain, Room
4.06

» Combination between programming sessions (python) and
lectures

» Final Exam: Midterm: 30%, Final : 30%

» Assignements throughout the term: 30%



Today's class

» General info on the class
> Brief overview of Main techniques and challenges

» Reminders on Statistics



Machine learning today (1)




Machine learning today (I1)

Basal cell carcinomas ® Epidermal benign
3 © Epidermal malignant
Melanocytic benign
* Melanocytic malignant

Squamous cell carcinomas

Seborrhoeic keratoses
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From A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M.

Blau & S. Thrun, Dermatologist-level classification of skin cancer with

deep neural networks in Nature volume 542, pages 115-118 (02 February
2017).
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Machine learning today (I11)

Google DeepMind
Challenge Match
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Machine Learning

algorithms anabll :

machines to improve
. performance when
Deep Learning being exposed to more
Multilayered (deep) and more data

Neural Networks
+ vast amount of data
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Artificial Intelligence

Machine Learning

Netflix Google Alien,

. recommendation AlphaZero,
Deep Learning AlphaGo

Google RankBrain Email spam filter

Wolfram

Gmail smart reply
Tesla autopilot ~ G0°gle pageRank Cyc
S Facebook
Facebook photo tagging NewsFeed
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General material (theory)

v

Reminders in Stats/Probability, Inference.

v

Supervised learning
» Classification

> Regression

» Unsupervised learning
» Clustering
» PCA, ICA

» Non linear dimensionality reduction

v

Directed and undirected graphical models

v

Advanced topics (Learning Theory, Adversarial Learning,...)



General material (coding)

» Programming sessions
» Scikit-learn, Pandas, MglLearn, PyTorch/TensorFlow

» Personal project
» Natural Language processing

» Audio, Video Processing
» Conversations

> Faces, Medical diagnosis
» Sentiments analysis, question answering

» Time series (financial data, stockmarket)



Available tools |

» Programming: Python, Scikit-learn

» Many available datasets and plateforms (register on Kagglel!),
also check enigma or Catalyst, quantopian,...




Available tools Il

» PyTorch, TensorFlow : Code your own chatbot

input layer
hidden layer 1 hidden layer 2



» If time, we will discuss some of the latest models used

Generative Adversarial Networks (GANs):
Engine and Applications
How generative adversarial nets are used to make our life better




Generative adversarial networks

Real data

Sample data

Latent sample

Generator

Discriminator

[o]-]

Real
Fake



Some references

» Website: http://www.augustincosse.com/ml|2018
There you can find

» classnotes (coming) + schedule + problem sets.

Additional references (theory side)
» Machine learning: A probabilitic perspective, Murphy,
» Pattern recognition and Machine learning, Bishop,

» The elements of statistical learning, Hastie, Tibshirani,
Friedman



Some references (continued)

For those interested in startups

My objective: give you the tools, then it's up to you to decide how
you want to use them

» Many references are available: e.g. Chaos Monkeys (A.G.
Martinez), Zero to One (P.Thiel), Creativity inc. (E. Catmull)

CREATIVITY, INC.

€D CATMULL
OBSCENE FORTUN T

RANDOM FAILUF

SILICON V

Anto




Machine Learning is not new..
» General principle of machine learning is very simple

Information

Learning
System

Input data output

» One of the reason for the renewed excitement is Massive
parallelism through Graphical Processing Units = Essential
for neural network training on massive databases (think of
imageNet, GoogleNet,..)

NVIDIA Corporation

+ Suivre
NASDAQ: NVDA —

280,68 usp+2,87 (1,03 %) +

300 165,91 USD 5 sept 2017



Some new architectures are coming

Accelerated Computing
5x Higher Energy Efficiency

1BM POWER CPU NVIDIA NVLink NVIDIA Volta GPU

STANFORD Al
®

sl P [ssue: costly
000000 Bl still Energy greedy



From Lex Friedman, MIT
Human

Supervised

Augmented
Supervised

Semi
Supervised

Reinforcement

Unsupervised



The big picture: Supervised vs Unsupervised

» Supervised learning tries to understand the relation between
data x and the associated labels (knowledge) y based on
samples x for which the accompanying labels are known.

Ex: Handwriting recognition. Data = images from MNIST,
labels,knowledge = actual numbers displayed
> Unsupervised learning tries to understand the data without

having access to prior knowledge

Ex: customized advertising (cluster users in groups in order to
send specific advertising to each group)



The big picture: Augmented Supervised, Semi-supervised
and Reinforcement

» Augmented supervised: Human remains at the core but you
get the machine to help you with some new classes once in a
while. Augmented class = class unknown during training, that
appears during test. Once the system can differentiate it from
the labeled ones, it will be able to process it later.

» Semi-supervised : small amount of labeled data with large
amount of unlabeled data
(labeled and unlabeled data can be used together to learn a
manifold)

» Reinforcement: The machine looks for suitable actions, in a
given situation, in order to maximize a "reward” (e.g. GANs,
Neural Network backgammon playing : board position + dice
value = move + reward)



Supervised

Unsupervised




Supervised learning

Supervised learning is usually split into two categories

> Regresssion methods

N
Ex. B= mﬁin ;(y,- —(x;,8))® (residual SS)

» Classification methods

=Yy (KNN)

keN(X,')

Ex. y;=



Regression
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Supervised learning

Many possible regression models

» Support vector machines,
» Neural networks
» Kernel methods

» Mixture models

+ Model selection ? Generalization ?



Supervised Learning:
SVMs for face recognition What are we going to learn?

Logistic regression,
neural nets

for handwritten digits
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Parametric vs non-parametric

» Fixed number of parameters = parametric
+: faster to use
—: stronger assumptions regarding data distribution.

Ex. linear regression
» Number of params grows with training data = non-parametric

+: more flexible regarding data.
—: often computationally intractable for large datasets

Ex. KNN



Parametric vs non-parametric

» From Hastie, Tishirani, Friedman

Linear Regression of 0/1 Response.
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FIGURE 2.1. 4 i ion ezample in two dis i The classes are
as a binary variable (ELUE = 0, ORANGE = 1), and then fit by linear regre:
The line is the decision boundary defined by =" § = 0.5. The orange shaded 1
denotes that part of input space classified as ORANGE, while the blue regi
classified as BLUE.

15-Nearest Neighbor Classifier

o
o

o

6
S bt
OB Fo
o&
oES
Ol
%o
e 2%
o%;g{ @
Sog
e
\e g
o o8
5

w
o
588

@
5

°F
ooy

FIGURE 2.2. The same classification ezample in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (ELUE = 0, 0RANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.
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Unsupervised learning

In unsupervised learning, we are only given inputs x; and we want
to extract pattern from the data.

Examples of unsupervised learning approaches include
» Clustering
> Self organizing maps
» Principal component analysis

» Non Linear dimensionality reduction



Manifold learning
and clustering ..., ==
to understand the /
Stock Market
structure ‘

Bank of America, [ Wells Fargo
amble

/ Unsupervised Learning:
\ / What are we going to learn?

(Y { uiever
=\ y Brain tumor segmentation
\L b .
et using K-means




Image segmentation through clustering

I reverent [ car I sky I Postroles [ Tree [l Road [ Buikding
- Pedestrian - Bollards - Shop Signs :l Misc. Vegetation - Street Signage - Wallifence



By Catalin Cimpanu

—_—
=Gl
Median Blurring Segmentation of Segmentation of Lower + Uppe]
lower boundary upper boundary combined

O-5-59

Data Extraction Data Extraction Cropped Image Gaussian Blurring

What are we going to learn?
Combined supervised
and unsupervised

Samir Bhatt, Bhaskar Trivedi, Ankur Devani, Hemang Bhimani (elnfochips)



Back to the industrial revolution (1)
Erik Brynjolfsson, ICLR 2018

FIGURE 1.2 What Bent the Curve of Human History? The Industrial Revolution.
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Back to the industrial revolution (I1)

from Erik Brynjolfsson, ICLR 2018

v

Why can history tell us?

» Steam engine was classified by Bresnahan et Trajtenberg
(1996) as belong to the so-called General Purpose
Technologies

v

Those technologies are characterized by 3 features:
» Pervasive

» Able to be improved over time

» Able to spawn complemetary innovations

v

Does that remind you of something ?



Back to the industrial revolution (I1)

from Erik Brynjolfsson, ICLR 2018

» Technology is not neutral

» You can do a small pox vaccine...



Back to the industrial revolution (I1)

from Erik Brynjolfsson, ICLR 2018

» Technology is not neutral

> You can do a small pox vaccine...But you can also create a
nuclear weapon

» In fact let's compare..



BUSINESS

Is 'Progress' Good for Humanity?

Rethinking the narrative of economic development, with sustainability in
mind

JEREMY CARADONNA SEP 9, 2014

5
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Colin Stretch, general counsel for Facebook, Sean Edgett, acting general counsel for Twitter,
Richard Salgado, director of law enforcement and information security at Google, testify before the Senate
Judiciary Committee's hearing on ‘Extremist Content and Russian Disinformation Online: Working with
Tech to Find Solutions’ on Capitol Hillin Washington DC on Oct. 31, 2017. v/ P



Back to the industrial revolution: The 6 Challenges
from Erik Brynjolfsson, ICLR 2018 keynote.
» Economics: Many people left behind

» False news, "cyberbalkanization”

» Algorithms control what we read, how it is interpreted
» More facts but more fakes

» Algorithmic bias (Machine can sometimes amplify
discriminations when used to hire people, e.g. supervised case)

» End of privacy (loT and smartphone connection)

» Winner take all markets (further concentration of economic
growth)

» Cyber risks (Al bots fighting Al bots, vulnarable voting
system)



NEW YORK POST

The challenges of driving a

%

yellow cab in the age of Uber ‘




Millions

U.S. Equine Population (Horses and Mules)
°

©

1910 1920 1930 1840 1950 1960

Year

opulation of horses in the US during
industrialization



THE WAL STREET JOURNAL, .=~

Home World US. Politics Economy Business Tech Markets Opinion Life&Arts Real Estate WSJ.Magazine Q

@ Trump’s @ Inside Jack @ Nike Ads to
Negotiating Style to Dorsey’s Role to Police Feature Anthem A\
< Mark U.S.-Canada il Bad Actors on Twitter = Protest Leader ﬁ >
Nafta Talks Kaepernick
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What Machine Learning Can and Cannot Do

Jul 27,2018 1:56 pm ET

A doctor examines a magnetic resonance image of a human brain during a Beijing
neuroimaging competition between human doctors and Al, June 30, 2018. PHOTO: MARK
SCHIEFELBEIN / ASSOCIATED PRESS



What Machine Learning can and cannot do

» We have seen many achievements (essentially in vision,
language)..

> In particular Supervised learning has been quite successful

» But there are still plenty of tasks that computers still cannot
handle (see Lex Friedman, MIT Sloan lecture)

» Awareness of self
» Emotion

» Imagination

» Morality

» Consciousness

> high level reasoning



Still many tasks that machines cannot do
from Erik Brynjolfsson, ICLR 2018 keynote.




Immediate Challenges

correct +distort

correct +distort ostrich

Neural Nets and machine
vision can be
fooled by very small distortions



Immediate Challenges

(Lex Friedman, MIT Sloan)

» Occlusions

v

Sensor spoofing (camera, Lidar)

v

adversarial noise

v

Risk quantification

v

Data is costly = ldeally, we would like to move to



Statistics and probability

» Why using stats/proba?

» Machine Learning relies on complex distributions (cancerous
cells, possible moves in Go, Existing sign roads, possible
evolutions of stocks,...)

» Only a few samples are usually available

» = We need a way to measure how well those samples are
representing the underlying (unknown) distribution



Why is that important?

Self-Driving Uber Car Kills Pedestrian

in Arizona, Where Robots Roam

A woman crossing Mill Avenue at its intersection with Curry Road in Tempe, Ariz. on Monday. A
pedestrian was struck and killed by a self-driving Uber vehicle at the intersection a night earlier.
Caitlin O'Hara for The New York Times



Reminders (1)

(Discrete sets of events)
> Sum rule p(X) = >y p(X]|Y)

» Product rule p(X,Y) = p(X|Y)p(Y)

» Bayes theorem

p(X[Y)p(Y)

p(Y|X) = o(X)

(continuous sets of events)

» density p(x),

b
plxe lab) = [ pbde, plx) = [ plx.y)dy



Reminders (11)

v

Cumulative distribution Function (CDF) F(z) = [*__ p(x) dx

v

Expectation E[x] = [ xp(x)dx, E[x] = >, x;p(x;)

v

Conditional expectation Exf(x|y) =3, f(x)p(x|y)

v

Variance Var[x] = E {(X - EX)2}

v

Covariance Cov[x,y] = E{(x — Ex)(y — Ey)}



Reminders (IlI) A few important distributions

» The gaussian distribution

Ni(xlp,0%) = —= eXP(—%(X—My)

» Uniform distribution: P(y) = |bla|’ y € [a, b]

» 2 distribution: x2 ~ SV | Z:? with Z; independent standard
normal RV.



Reminders (V) A few important distributions

» Binary variables: Bernoulli and Rademacher,

Bern(x|j1) = u*(1 — u)*, xz{ D o<us

(1/2), x=+1
Rademacher: e(x) =4 (1/2), x=-1
0, otherwise



The exponential family

» Many of the distributions we have discussed are part of a
general family called The exponential family

» The exponential family has many interesting properties

> It is the only family of distribution with finite-sized sufficient
statistics (see next slides)

» It is the only family with known conjugate priors
» It is at the core of generalized linear models

» it is at the core of variational inference

» we will come back to these notions later



The exponential family

» A pdf p(x|0) is said to be in the exponential family for
x=(x1,...,xm) and § C RY if

pLx10) = g7 exp(07 ()
— h(x) exp(67T6(x) — A(D))

» Z(0) and A(0) are defined as

2(0)= | hx)eploTo(x)] ox
A(6) = log(2(6))

» Z(0) is called the partition function, 6 are the mutual
parameters, ¢(x) € R? is the vector of sufficient statistics,
A(0) is the log partition function or cumulant function.



The exponential family

» Two examples
» Bernoulli

Ber(x|u) = p*(1 — p)' ™ = exp(xlog () + (1 — x) log(1 — 1))
= exp(¢(x)"0)

» Univariate Gaussian

» The Uniform distribution does not belong to the exponential
family



Parameter/model inference: Bayesian vs frequentist

> The linear regression model is a special instance of a more
general idea called model inference (among which one finds
the MLE)

» We will study the notion of inference in more details later in
the class. For now we only cover the main ideas.

» Inference can be used in both supervised (learn new labels
from training labels) and unsupervised (learn parameters from
distribution) frameworks

» You will often hear about frequentist vs Bayesian approaches.



Parameter/model inference: Bayesian vs frequentist

» Bayesian statistics.
» Considers the (distribution) parameters as random

> Relies heavily on the posterior distribution p(8|D)
» dominated statistical practice before 20" century
» Ex: MAP argmax P(D|0)P(0)

0

» Frequentist statistics (a.k.a classical stat.)

» Parameters 0 viewed as fixed, sample D as random
(Randomness in the data affects the posterior)

» Relies on the likelihood or some other function of the data
» dominated statistical practice during 20 century
» Ex. MLE : argmax P(D|6)

0



Bayesian statistics: Some vocabulary

» We saw Bayesian inference relies on the posterior p(6|D)

» The posterior reads from the Bayes rule as

p(D[0)p(0)
p(D)

_ p(DI9)p(0)
[ p(DI0)p(0)do

» p(6) is called the prior, p(D|#) is called the likelihood function
and Z = p(D) is the normalizing constant (independent of )

p(61D) =

» Given a set of patterns (xu,yu), classifiers are usually of two
types:
» Generative (learn model for p(x,y|0))
» Discriminative (learn model for p(y|x, ))



Bayesian statistics: Some vocabulary

> An example of discriminative classifier : Logistic regression
» Here we take u(x) = sigm(w " x) and define the classifier as a
Bernoulli distribution

p(y|x, w) = Ber(y|u(x))

» Good when the output is binary

> An example of generative classifier :
» relies on the assumption that the features (hidden variables)
are independent

D
p(x|ly = ¢,0) = [ [ p(xly = ¢, 0c)
j=1

> 0; . is the parameters of the distribution of class ¢ for j* entry
in the D-dimensional pattern vector x € {1,..., K}".

» We will study those models in further detail when discussing
classifiers.



Bayesian statistics

> In Bayesian statistics, randomness is most often used to
encode uncertainty

» The posterior p(6|D) summarizes all we know on the
parameters

» Bayesian inference is not always the right choice because of
the following

» The Mode is not a typical point in the distribution

» MAP estimator depends on re-parametrization



Bayesian statistics: Drawbacks and solutions

» A solution to the first part is to use a more robust loss
function £(6, 0)

» A solution to the second part is to replace the MAP with the
following estimator (when available)

0= alrgrojﬁaxp(D|¢9)P((9)|’(19)!_1/2 (1)

where 1(0) is the Fischer information matrix



Fischer information matrix

» For a generative model p(x|0), we let g(0, x) denote the
Fischer score

g(0,x) = Vg log(p(x|0))
» the Fischer Kernel is the defined as
k(x,x') = g(0,x)"F1g(0,x")
» The matrix F is called the Fischer matrix and defined as
F = Ex {g(6.x)g(6.%)" |

» Note that it is often computed empirically as



Occam’s razor and Model selection

» Only looking for the best model often leads to overfitting (we
will see that later in more details)

» Bayesian framework offers and alternative called Bayesian
model selection

» For a family of models, we can express the posterior

 p(Dm)p(m)
PimiD) = < = p(mID)

x p(D|m)p(m)

where p(D|m) = [ p(D|0)p(0|m)d0 is called the marginal
likelihood, integrated likelihood or evidence



Occam’s razor

> Integrating the parameters @ such as in

p(D|m) = / p(D|6)p(6]m)d6

acts as a natural regularization and prevents overfitting when
solving for max,, p(m|D). This idea is known as Bayesian
Occam'’s razor

» The evidence p(D|m) can be understood as the probability to
generate a particular dataset from a family of model (all
values of the parameters included).

> When the family of models is too simple, or too complex, this
probability will be low.



Bayesian decision theory

» How do we resolve the lack of robustness of Bayesian
estimators vis a vis the distribution (recall the bimodal
distribution)?

» Statistical decision theory can be viewed as a game against
nature.

> Nature has a parameter value in mind and gives us a sample

» We then have to guess what the value of the parameter is by
choosing an action a

» As an additional piece of information, we also get a feedback
from a loss function L(y, a) which tells us how compatible our
action is w.r.t Nature's hidden state.



Bayesian decision theory

> The goal of the game is to determine the optimal decision
procedure,

argmin E{L(y, a)}
acA

» In economics L(y,a) = U(y, a) and leads to the Maximum
utility principle which is considered as rational behavior

i(x) = aragg:l‘ax E{U(y,a)}

> In the Bayesian framework, we want to minimize the loss over
the models compatible with the observations {x,,}

5(x) = argmlnE O1xh) {L(0; )} =D L(0,a)p(6] {x4},)

0cO



Bayesian decision theory (continued)

» The MAP is equivalent to minimizing a 0/1 loss

. 0 ifd+£0
L(Q’a):]lesﬁé:{ 1 ifd=0.

we then have

EL(6,0) = p(0 # 0| {x,},) = 1 — p(0 = 0] {x,},)
= 1 p(0 = 0] {x,},)p(0Ix,.)

which is maximized for & = § with # taken as

0" ({xu},) = argmax p(O1{xu},)



What do we do with noisy data?

> Is it possible to take more robust losses?
> (5 loss, L(f,0) = |0 — 0|2 gives posterior mean

E {(9“ - 9)2\x#} — E[6?|x,,] — 20E[0]x,] + 02
> setting derivative to 0, 89E{9A]xu} =0, we get

—2E{f|x,} +20 =0

0= /9p(0|xu) do



What do we do with noisy data? (continued)

> Is it possible to take more robust losses?
» (1 loss, L(f,0) = |0 — 0| gives posterior median
» The value 0 such that

p(6 < b]x,) = p(6 > f]x,) = 1/2



What do we do with noisy data? (continued)

>

Now assume 6 defines the value of some hidden variable 3%
(e.g. the class of a point x,, defined by a gaussian mixture 8).

Finding the optimal parameters (or equivalently estimate the
hidden state) can be done by considering the error

Lg(g’ é) = E(xuvYM)NP(Xu:YH‘G) {6(0’ fé)}
= Z Zﬁ(yu, f—é(XH))p(Xu,wa)

Xp  Yu

The Bayesian approach then minimizes the posterior expected
loss

argmin/p(0|D)Lg(0,§) db
0

Note that here the model is fixed and we want to learn the
parameters (>< model selection)



How to pick up the priors?

» The controversial aspect of Bayesian statistics are the priors

» The main argument of Bayesians is that we most often know
something about the world

» When it is possible, it makes things easier to pick up a prior
from the same family as the likelihood function



Parameter/model inference: Biased vs Unbiased

» Imagine that we have access to a set of obervations x; € R”
and we can reasonably assume those samples are drawn
independently from gaussian distributions.

» Because the observations are i.i.d, we can write the expression
for the probability of oberving the x; given the common g and

o2,

N

p(x|u,0%) = [[ N (xal s, o%) (2)

n=1

> A reasonably good idea to derive estimates for 11 and o is then
to maximize this likelihood



Parameter/model inference: Biased vs Unbiased

» Since the log is a monotonically increasing function,

N
argmax  p(x|u,0%) = [ N (x|, 0%)

NvJQ n=1

is equivalent to maximizing the log likelihood function

argmax  log (p(x|p,0%)) = =575 Y (xn — 1)

ﬂvgz n=1



Parameter/model inference: Biased vs Unbiased

» Maximizing the log likelihood function with respect to p first
and then o2 gives the maximum likelihood estimators

1 N
:aML = N an
n=1
1 N
& = N Zl(xn — fime)’
n—

» Those two estimates are functions of the data set x1,...,xy



Parameter/model inference: Biased vs Unbiased

» Remember the ML estimators

L
ML = N an
n=1
L
Ao FYRY:
ML= 4 > (xn — o)
n=1
» Now take the expectation of those estimators with respect to
the known distribution,



Parameter/model inference: Biased vs Unbiased

» On average, the MLE will get you the right mean, but will
underestimate the variance

Efme = p
N—-1
- (V1)

» This problem is called bias and is related to the problem of
overfitting

» In fact it turns out that a better estimator for o2 is given by

N
1
) ~ 2
o~ = N_1 E (Xn—MML)



