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1 Expected loss

Suppose our data set is given by D = {(x, t)} where t are the labels associated
to each point x. We will assume that the data is distributed according to an
ideal function y(x) plus some perturbation ε with zero mean and variance σ2.

t = y(x) + ε (1)

t is thus the observed label. In order to study how well a given regression model
h(x) is fitting the data, one can look at the expected loss

E[L] =

∫ ∫
(h(x)− t)2 p(x, t) dx dt (2)

Note that given the objective (2), the optimal model one can choose for h(x) is
to solve the minimization problem

min
h(x)

∫ ∫
(h(x)− t)2 dxdt (3)

To do this, we set the first order derivatives to 0, and get

δE[L]

δh(x)
= 2

∫
(h(x)− t)p(x, t) dx dt = 0 (4)

from this we get ∫
h(x)p(x) dx =

∫ ∫
tp(t,x) dx dt (5)

The t disappeared in the left handside because h(x) does not depend on t so we
can simply integrate p(x, t) over all values of t which gives

∫
p(x, t) dt = p(x).
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This last equation tells us that in general we should at every value x choose
the model/prediction h(x) corresponding to

h(x) =

∫
t p(x, t) dt

p(x)
=

∫
tp(t|x) dt = Et {t|x} . (6)

The last line follows from p(x, t) = p(t|x)p(x). This is however not always
possible. On the other hand, we always have

(h(x)− t)2 = (h(x)− E {t|x}+ E {t|x} − t)2 (7)

= (h(x)− E {t|x})2 + (E {t|x} − t)2 + 2 (h(x)− E {t|x}) (E {t|x} − t) (8)

If you substitute this last expression into the expected Loss (2) you can see that
the cross terms will disappear as it leads to the following four terms
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∫
h(x)E {t|x} p(x, t) dx dt = 2

∫
h(x)E {t|x} p(x) dx (9)

− 2

∫
h(x)tp(x, t) dt dx = −2

∫
E {t|x}h(x)p(x) dx (10)

− 2

∫
E {t|x}2 p(x, t) dx dt = −2

∫
E {t|x}2 p(x) dx (11)

2

∫
E {t|x} tp(x, t) dx dt = 2

∫
E {t|x}2 p(x) dx (12)

So that the average loss reduces to

E[L] =

∫
(t− h(x))2 dx dt =

∫
(h(x)− E {t|x})2 p(x) dx (13)

+

∫
(E {t|x} − t)2 p(x, t) dx dt (14)

=

∫
(h(x)− E {t|x})2 p(x) dx (15)

+

∫
σ2
x p(x) dx (16)

Where I used∫
(E {t|x} − t)2p(x, t) dx dt =

∫
(E {t|x} − t)2p(t|x)p(x) dx dt (17)

=

∫
Var[t|x]p(x) dx (18)

Once again, the t is integrated over in the first integral (13) because none of the
functions h(x) and E {t|x} depend on t anymore.

The final expression for the average loss is then

E[L] =

∫
(h(x)− E {t|x})2 p(x) dx+

∫
σ2
x p(x) dx (19)
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The last term is the average noise variance over all x.

You see that there is a first term (MSE) that depends on the model (i.e how
well the regression model captures the average data distribution E {t|x} = y(x))
and a second term that depends only on the data. Now we will show that the
first term can decomposed into a variance and a bias contributions.

2 Bias variance trade-off

In the derivations above, we haven’t make any assumption on the regression
model learned h(x). In general, when we learn a regression model, we learn it
from a subset of the data. We will denote this subset Di so that Di ⊂ D and I
will now denote our regression model as h(x|Di) to emphasize the dependence
of the model on the particular choice of Di. That being said, if we use t(x) to
denote E {t|x}, we have the decomposition

(
h(x;Di)− t(x)

)2
(20)

=
(
h(x;Di)− EDi

{h(x;Di)}+ EDi
{h(x;Di)} − t(x)

)2
(21)

=
(
h(x;Di)− EDi {h(x;Di)}

)2
+
(
EDi {h(x;Di)} − t(x)

)2
(22)

+ 2
(
h(x;Di)− EDi {h(x;Di)}

)(
EDi {h(x;Di)} − t(x)

)
(23)

If we take the expectation over all possible datasets Di used to learn the
model, we will get a measure on how well the family of models h(x,Di) performs
on average for the different datasets. Below I use EDi to denote the average
when sampling random datasets Di from the full set of samples D.

EDi

{
h(x;Di)− t(x)

}2
(24)

= EDi

(
h(x;Di)− EDi

{h(x;Di)}
)2

+ EDi

(
EDi
{h(x;Di)} − t(x)

)2
(25)

+ 2EDi

{(
h(x;Di)− EDi

{h(x;Di)}
)(

EDi
{h(x;Di)} − t(x)

)}
(26)

=
(
EDi
{y(x;Di)} − t(x)

)2
︸ ︷︷ ︸

bias2

+EDi

(h(x;Di)− EDi
{h(x;Di)}

)2


︸ ︷︷ ︸
variance

(27)

The cross term (26) is zero because the second factor does not depend on
Di (it can be taken out of the average, t(x) is the unknown regression function
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simpler models complex models
squared bias large small

variance small large

Table 1: The bias variance trade-off and the model complexity. As the model
complexity increases, the variance tends to increase and the squared bias tends
to decrease. An additional illustration of this phenomenon can be found in Fig.
3.5 in [1] which is available (pdf) online.

and remains the same independently of the data we use to learn the regression
model, t(x) = y(x)) and the first term has mean zero.

Complex models will usually have a large contribution to the variance term
because within the class of complex models, the models will usually vary a
lot when you change the training data. I.e if you have a very complex model
with many parameters that perfectly fits the data in Di, then when you will
take another dataset Dj , the model that you build for Dj will be completely
different from the model you built with Di (think of a high degree polynomial).
You will thus have large differences between models h(x;Di) and h(x;Dj) and
hence large deviations from the mean h(x;Di) − EDi

{h(x;Di)}. So complex
models will have larger variance.

The bias, on the other hand is a measure of how well the model ”captures”
the average behavior of the data E {t|x}. In general (except if the data is
assumed to be very simple or linear which is the framework of the Gauss Markov
Theorem that I discuss below), the simpler models will not be able to capture
such behavior. As an example, imagine we have data of the form

t` = y(x`) + ε` = sin(x`) + ε` (28)

Then without using non linear terms (and defining our new variables as x′ =
φ(x) where φ(x) encodes the non linearity), it is impossible to design a model
of the form h(x) = β0 + β1x such that

h(x`) = sin(x`) (29)

This should illustrate the fact that simpler models have a large bias (At least
when we don’t make assumptions on the data distribution)

This relation is summarized in table 1.

3 The particular case of linearly generated data
and the Gauss Markov Theorem

So far we haven’t made any assumption on the data. When we don’t make
assumptions on the data, the relation of table 1 holds in general.
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However, when we know that the data has a particular distribution, we
can better describe the quality of approximation of given models. This is the
framework of the Gauss Markov Theorem (GMT).

When the data is distributed according to a linear model, so that

t` = y(x`) + ε = 〈β,x`〉+ ε`, (30)

with Eε = E[ε1, . . . , εL] = 0 and E
{
εεT

}
= σ2I. Then the linear model has no

bias (note that this might seem counterintuitive compared to table 1 but this is
because here we assumed that the data is linear).

Moreover, the Gauss Markov theorem states that among all possible linear
estimators of the β, the estimator β̂RSS which is computed by minimizing the
residual sum of squares,

β̂RSS = argmin
β

L∑
`=1

(t` − 〈β,x`〉)2 , (31)

is the best estimator.

In the Gauss Markov framework, when we say data, we mean the t`. What
we now call data are the noisy measurements t` = 〈β,x`〉. Because we’ve put
ourselves in a framework where we now know how the relation between t` and
x`, t`(x) = β0 + 〈β1,x`〉+ε, we can focus on denoising the t`. In this particular
framework, a linear estimator for the coefficients β is an estimator of the form

β̃ = Mt (32)

where t = [t1, t2, . . . , tN ] encode the labels. The estimator provided by the linear
regression (i.e. RSS) approach (31) is a particular such estimator as it can read
as (see my slides)

β̂RSS = (XTX)−1XT t (33)

= (XTX)−1XT (Xβ + ε) (34)

where t = Xβ + ε, ε = (ε1, . . . , εL) and X is the matrix

X =


1 xT1
1 xT2
...

...
1 xTL

 (35)

To prove the GMT, we consider any other linear estimator β̃ of the coefficients
β = (β0,β1), β̃ = β̂RSS + ∆t where ∆ is a perturbation.
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We first require the linear estimator β̃ to be unbiased, which gives

E
{
β̃
}

= E
{
β̂
}

+ E {∆t} (36)

= E {∆Xβ + ∆ε} (37)

= ∆Xβ + 0 (38)

= 0 (39)

The only source of randomness here is the noise ε and we assumed that Eε = 0.
As we haven’t made any assumption on β, the last line implies that for the
linear estimator to be unbiased, we must have

∆X = 0 (40)

Now, for the variance, first note that

Var
{
β̂RSS

}
= E

{
(β̂RSS − Eβ̂RSS)(β̂RSS − Eβ̂RSS)T

}
(41)

= E
{
β̂RSSβ̂

T
}
− ββT (42)

as the estimator is unbiased. For any other unbiased estimator β̃ of the form
β̃ = β̃ = β̂RSS + ∆t with zero bias, we have (the expectation is over the noise
ε)

Var
{
β̃
}

(43)

= E
{

(β̃ − Eβ̃)(β̃ − Eβ̃)T
}

(44)

= E
{(
β̂RSS + ∆t− β − E {∆t}

)(
β̂RSS + ∆t− β − E {∆t}

)T}
(45)

= E
{(
β̂RSS − β

)(
β̂RSS − β

)T}
(46)

+ E
{

(∆t− E {∆t})(∆t− E {∆t})T
}

(47)

− E
{

(β̂RSS − β)(∆t− E {∆t})T
}

(48)

− E
{

(∆t− E {∆t})(β̂RSS − β)T
}

(49)

The last two (cross) terms disappear simplify as

− E
{

(β̂RSS − β)(∆t− E {∆t})T
}
− E

{
(∆t− E {∆t})(β̂RSS − β)T

}
(50)

= −E
{

(β̂RSS − β)(∆t)T
}
− E

{
(∆t)(β̂RSS − β)T

}
(51)

= E
{
β̂RSS(∆t)T

}
− E

{
(∆t)β̂

T

RSS

}
(52)

= −E
{
β̂RSS(∆ε)T

}
− E

{
(∆ε)β̂

T

RSS

}
(53)
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The second line (51) comes from E {∆t} = ∆Xβ = 0, (52) comes from the
fact that β does not depend on the noise ε and E {∆t} = 0, the third line (53)
follows from developing ∆t = ∆Xβ + ∆ε and using ∆X = 0. For the last
line, developing the expression of β̂RSS , we get

− E
{
β̂RSS(∆ε)T

}
− E

{
(∆ε)β̂

T

RSS

}
(54)

= −E(XX)−1XT (Xβ + ε)εT∆T (55)

− E∆ε(Xβ + ε)TX(XX)−T (56)

Then use Eε = 0 as well as EεεT = σ2I and finally ∆X = XT∆T = 0. All of
this gives

Var
{
β̃
}

= Var
{
β̂RSS

}
+ E

{
(∆t)(∆t)T

}
(57)

− E {(∆t)}E {(∆t)}T (58)

= Var
{
β̂RSS

}
+ ∆XββTXT∆T (59)

+ ∆εεT∆T (60)

= Var
{
β̂RSS

}
+ σ2∆∆T (61)

As soon as ∆ 6= 0, the diagonal of ∆∆T is non zero as well. This in particular
means that there is one component of β̃ for which we always have

Eε
{

(β̃k − βk)2
}
> Eε

{
(β̂k − βk)2

}
(62)

Both estimators have zero bias (we will overestimate and underestimate the
truth equally) but the errors we make will often be larger when we don’t use
the RSS estimator.

In conclusion, you can thus see that any linear estimator with no bias will
always increase the variance with respect to β̂RSS (This is because we are in the
particular framework of linearly generated data)

For this reason, the estimator β̂RSS is sometimes called the BLUE (Best
Linear Unbiased Estimator)

3.1 Increasing the bias to reduce generalization under the
assumption of linearly generated data

That being said, the fact that the BLUE is the best estimator among all unbiased
estimators with respect to linearly generated data, does not mean that it is not
possible to do better in terms of future predictions. And this is because a similar
bias variance trade-off as the one discussed in section 2 applies.
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Imagine that we take a new point x0 and we apply our estimator β̃ (now we
don’t assume that this estimator is unbiased anymore, this is just a general linear

estimator) to this point to get an estimated label 〈β̃,x0〉 (which is a prediction
for 〈β,x0〉). We can then write the expected mean square prediction error as
before

Eε
{(
〈β̃,x0〉 − 〈β,x0〉

)2}
(63)

= Eε
{(
〈β̃,x0〉 − E

{
〈β̃,x0〉

}
+ E

{
〈β̃,x0〉

}
− 〈β,x0〉

)2}
(64)

= Eε
{(
〈β̃,x0〉 − E

{
〈β̃,x0〉

})2}
(65)

+ Eε
{(

E
{
〈β̃,x0〉

}
− 〈β,x0〉

)2}
(66)

+ 2Eε
{(
〈β̃,x0〉 − Eε

{
β̃,x0

})(
E
{
〈β̃,x0〉

}
− 〈β,x0〉

)}
(67)

The last term vanishes as the second factor is deterministic (i.e does not
depend on ε) and the first factor has mean 0. We thus once again have

Eε
{(
〈β̃,x0〉 − 〈β,x0〉

)2}
= Eε

{(
〈β̃,x0〉 − E

{
〈β̃,x0〉

})2}
︸ ︷︷ ︸

variance

(68)

+ Eε
{(

E
{
〈β̃,x0〉

}
− 〈β,x0〉

)2}
︸ ︷︷ ︸

bias2

(69)

This shows that even in the framework of linearly generated data, despite
the fact that β̂ is the BLUE estimator, it does not mean that this estimator will
be the best at predicting a new value of t = 〈x,β〉 (on average over the noise).
There might be an estimator β̃ with a non zero bias (on linear data) that will
have smaller variance.

If I generate many values tk = 〈β,xk〉 + εk, learn my estimator β̂ from
those values, then this estimator will be unbiased but when I will want to
get the prediction for a new point x0, the average prediction might be better
if I lower the variance and increase the bias a little. Again this might sound
counter intuitive with respect to table 1 but remember that we assumed linearly
distributed data here.
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3.2 To go further: Ridge regression∗

Another way to understand this bias-variance trade-off in the case of linear data,
is to look at the variance of the RSS estimator β̂RSS = (XTX)−1XT (Xβ+ ε)
estimator. This variance (42) has the form

E
{
β̂RSSβ̂

T

RSS

}
− E

{
β̂RSS

}
(E
{
β̂RSS

}
)T (70)

= E
{

(XXT )−1XT (Xβ + ε)(Xβ + ε)TX(XTX)−T
}
− ββT (71)

When variables (entries in x = [x1, . . . , xL]) are correlated, the matrixXTX
will be badly scaled, i.e. (XTX)−1 will be very large, and the prediction error
for this estimator will thus be big. A biased alternative (see my slides for Lecture
3) is to add a regularization (for example ridge regression). In this case, the
variance becomes

E
{

(β̃RR − Eβ̃RR)(β̃RR − Eβ̃RR)T
}

(72)

= E
{

(XXT + λI)−1XT (Xβ + ε)(Xβ + ε)TX(XXT + λI)−T
}

(73)

− Eβ̃RR(Eβ̃RR)T (74)

which will be smaller than inverting a badly conditioned matrix because of the
identity which is well conditioned.
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