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Question 1 We consider the neural network shown in Fig. 4 which consists of alternating 2
units and 1 unit hidden layers. The weights associated to the ith unit in layer k are denoted as
w

(k)
ij and each neuron is equipped with a sigmoid activation and a bias w

(k)
i0 (not represented on

the Figure)

1. [1pts] Sketch the sigmoid activation

2. [2pts] Give the detailed expression of y(x;W ) as a function of x, and the w
(k)
ij .

3. [4pts] Using backpropagation, derive the gradient with respect to w
(1)
11 for a general t and

x (give all the steps)

Question 2 We consider the logistic regression classifier

p(t(x) = 1|x) = σ(β0 + β1x1 + β2x2)

p(t(x) = 0|x) = 1− σ(β0 + β1x1 + β2x2)

where σ(x) denotes the usual sigmoid function. Given the data shown in Fig. 2,
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Figure 1: Neural Network for Question 1

1



−10 −5 0 5 10

−10

0

10

Figure 2: Training set for Question 2.

1. [2pts] What would be a good choice for the parameters β0, β1, β2 (the choice does not need
to be optimal)

2. [2pts] Let us assume that your solution corresponds to the minimum of a certain loss
`(β). How would this solution change if we now decided to minimize `+ λR(β) where R
denotes the Ridge regularizer. Motivate your answer.

Question 3 Give the pseudo-code for the one-vs-rest classifier.

Question 4 Consider a real valued feature vector x = (x1, x2, . . . , xD) and real variable t. The
t variable is generated, conditional on x, from the following process

ε ∼ N(0, σ2)

t = β0 + βTx+ ε

where every ε is an independent variable which is drawn from a Gaussian distribution with
mean 0 and standard deviation σ. The conditional distribution of t given x reads as

p(t|x, β) =
1√
2πσ

exp

(
− 1

2σ2
(t− β0 − βTx)2

)
In class we have assumed that the noise variance σ2 was known. However, we can also use
the principle of Maximum Likelihood Estimation to obtain the Maximum Likelihood Estimator
(MLE) for the noise variance σ2

ML. To find the expression of σ2
ML, follow the steps below.

1. [2pts] Start by writing the log-likelihood (taking all the pairs
{
xi, t

(i)
}N
i=1

into account)

2. [2pts] Compute the derivative of this function with respect to σ2, set it to 0 and solve the
resulting equation
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Question 5 [6pts] Consider real valued variables x and t. The t variable is generated, condi-
tional on x, from the following process

ε ∼ N(0, σ2)

t = βx+ ε

where every ε is an independent variable which is drawn from a Gaussian distribution with
mean 0 and standard deviation σ. This is a one feature linear regression model, where β is the
only weight parameter. The conditional probability distribution of t is given by

p(t|x, β) =
1√
2πσ

exp

(
− 1

2σ2
(t− βx)2

)

1. [2pts] Assume we have a training dataset of n pairs (x(i), t(i)) for i = 1, . . . , n and σ
is known. Which of the following equations correctly represent the maximum likelihood
problem for estimating β? (Say yes or no to each possibility, keeping in mind that several
of them might be right)

argmax
β

n∑
i=1

1√
2πσ

exp(− 1

2σ2
(t(i) − βx(i))2)

argmax
β

n∏
i=1

1√
2πσ

exp(− 1

2σ2
(t(i) − βx(i))2)

argmax
β

n∑
i=1

exp(− 1

2σ2
(t(i) − βx(i))2)

argmax
β

n∏
i=1

exp(− 1

2σ2
(t(i) − βx(i))2)

argmax
β

1

2

n∑
i=1

(t(i) − βx(i))2

argmin
β

1

2

n∑
i=1

(t(i) − βx(i))2

2. [2pts] Derive the maximum likelihood estimator of the parameter β in terms of the training
examples t(i) and x(i). (suggestion: start with the simplest form of the problem you found
above and use the fact that the maximum/minimum can be found by setting the derivatives
to zero)

3. [2pts] We now consider a prior on β. Assume that β ∼ N(0, λ2) so that

pλ(β) =
1√
2πλ

exp(− 1

2λ2
β2)

We let βMLE and βMAP denote the Maximum Likelihood and Maximum A Posteriori
estimators. Complete the table below
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x1 x2 y(x1, x2)
1 1 0
0 0 0
1 0 1
0 1 0

Table 1: Dataset used for Question 6

pλ(β): wider/narrower/same ? |βMLE − βMAP | increase/decrease?
As λ→∞
As λ→ 0

Question 6 (8pts)

1. [5pts] Consider a neural network with two hidden layers: d = 2 dimensional inputs, 2
units in the first hidden layer, 2 units in the second hidden layer and a single output.

a) Draw a picture of the network

b) Write out an expression for y(x) assuming ReLU activation functions. Be as explicit
as possible.

c) How many parameters are there?

2. [3pts] Consider the dataset given in table 1. Can this boolean function be represented by
a single neuron with logistic activation function? If yes, give the value of the weights. If
not motivate your answer with a short sentence.

Question 7 We consider a two hidden layers neural network y(x;W ), x ∈ R2 with a final
sigmoid activation (output unit). The first hidden layer consists of 3 units and the second
hidden layer consists of 2 units. The weights from the first and second layers (including the
intercepts) are respectively stored in the matrices W1 ∈ R3×3 and W2 ∈ R2×4. The weights
associated to the output unit are stored in the vector wout ∈ R3. All the hidden units have ReLU
activations

1. [2pts] Sketch the ReLU and sigmoid functions

2. [2pts] Sketch the network

3. [2pts] Give the detailed expression of y(x;W ) as a function of x, W1, W2 and wout.

Question 8 We consider the dataset shown in Fig. 3. Draw on top of this dataset the least
squares classifier and the logistic regression classifier. Briefly motivate your answer.

Question 9 Describe the backpropagation steps (be as exhaustive as possible)
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Figure 3: Training set for Question 8.

Question 10 Consider a neural network with three layers including an input layer. The first
(input) layer has four inputs x1, x2, x3 and x4. The second layer has six hidden units corre-
sponding to all pairwise multiplications. The output node o simply adds the values in the six
hidden units. Let L be the loss at the output node. Suppose that you know that ∂L

∂o
= 2 and

x1 = 1, x2 = 2, x3 = 3 and x4 = 4. Compute ∂L
∂xi

for each i

Question 11 Derive a gradient descent algorithm that minimizes the sum of squared errors
for a variant of a perceptron (i.e. one neuron) where the output y of the unit depends on its
inputs xi as follows

y(x) = w0 + w1x1 + w1x
3
1 + w2x2 + w2x

3
2 + . . .+ wn + wnx

3
n

Give your answer in the form wi ← wi + . . . for 1 ≤ i ≤ n.

Question 12 You want to perform a classification task. You are hesitant between two choices:
Approach 1 and Approach 2. The only difference between these two approaches is the loss
function that is minimized. Assume that x(i) ∈ R and t(i) ∈ {+1,−1}, i = 1, . . . ,m are the ith

example and output label in the dataset, respectively. f(x(i)) denotes the output of the classifier
for the ith example. Recall that for a given loss `, you minimize the cost

J =
1

m

n∑
i=1

`(f(x(i)), t(i)) (1)

As we mentioned, the only difference between approach 1 and approach 2 is the choice of the
loss function:

`1(f(x(i)), t(i)) = max
{

0, 1− t(i)f(x(i))
}

(2)

`2(f(x(i)), t(i)) = log2(1 + exp(−t(i)f(x(i)))) (3)

1. Rewrite `2 in terms of the sigmoid function.

2. You are given an example with t(i) = −1. What value of f(x(i)) will minimize `2?
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3. Assume that an outlier (very far from the decision boundary but in the right class) is
added to the dataset. How will that affect classifier (2)? Why?

4. You are given an example with t(i) = −1. What is the greatest value of f(x(i)) that will
minimize `1?

5. You would like a classifier whose output can be interpreted as a probability. Which loss
function is better and why?

Question 13 Indicate whether the following statements are true or false

Suppose we estimate the regression coefficients in a linear regression model by minimizing

n∑
i=1

(
t(i) − β0 −

p∑
j=1

βjxij

)2

subject to

p∑
j=1

|βj| ≤ s

True / False As we increase s from 0, the training RSS will increase initially, and then eventually

start decreasing in an inverted U-shape

True / False As we increase s from 0, the training RSS will decrease initially, and then eventually

start increasing in an inverted U-shape

True / False As we increase s from 0, the training RSS will steadily increase

True / False As we increase s from 0, the training RSS will steadily decrease

Suppose we estimate the regression coefficients in a linear regression model by minimizing

n∑
i=1

(
t(i) − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j

for a particular value of λ

True / False As we increase λ from 0, the variance will increase initially, and then eventually

start decreasing in an inverted U-shape

True / False As we increase λ from 0, the variance will decrease initially, and then eventually

start increasing in an inverted U-shape

True / False As we increase λ from 0, the variance will steadily increase

True / False As we increase λ from 0, the variance will steadily decrease
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Figure 4: Neural Network used for question 14

Figure 5: Evolution of the regression coefficients for an increasing value of the regularization
weights λ1, λ2 in the case of the elastic net model. The various lines correspond to different
regression coefficients βj.

Question 14 We want to use the backpropagation algorithm, in order to compute the gradient

of the binary cross entropy loss (for a single pair (x(i), t(i))) with respect to the weight w
(1)
11 for

the network shown in Fig. 4. To do so, we will proceed as follows:

1. [1pts] Give the expression of the binary cross entropy loss for the pair
{
x(i), t(i)

}
2. [1pts] Give the expression of δ(3) = δout = ∂L

∂aout
(derivative of the binary cross entropy loss

with respect to the output pre-activation)

3. [2pts] Give the backpropagation equation and use this equation to derive, from δout, the
values of the δ2i for i = 1, 2. Then, from the δ2i , obtain the value of δ11.

4. [1pts] Finally, give the expression of the derivative ∂L
∂w1

11
as a function of δ11 and z

(0)
1 = x1.

Deduce from this, and from your expression for δ11, the final answer to the question.
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Question 15 We consider the following regression model, known as “elastic net regularization”

L
(
β,
{
x(i), t(i)

}N
i=1

)
=

1

N

N∑
i=1

(
t(i) − β0 −

D∑
j=1

βjx
(i)
j

)2

+ λ2

(
D∑
j=1

|βj|2
)

+ λ1

(
D∑
j=1

|βj|

)
(4)

1. [1pt] Indicate the differentiable and non-differentiable parts of the loss.

2. [2pts] Figure 5 illustrates the evolution of the regression coefficients (each of the βj is
represented by a different curve) obtained by minimizing the loss (4) for different choices
of (λ1, λ2). In particular, the figure illustrates each of the following scenarios:

• Ridge regularization (λ2 > 0, λ1 = 0)

• LASSO regularization (λ1 > 0, λ2 = 0)

• A trade-off between Ridge and LASSO corresponding to non zeros λ1 and λ2, with
λ1 = 9λ2

Indicate, on each of the subfigures, the model to which it corresponds.
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