Intelligence Artificielle & Apprentissage Calais ING2/ING3 Questions de révision

Augustin Cosse augustin.cosse@univ-littoral.fr

January 2022

Question 1 We consider the neural network shown in Fig. 4 which consists of alternating 2 units and 1 unit hidden layers. The weights associated to the i^{th} unit in layer k are denoted as $w_{ij}^{(k)}$ and each neuron is equipped with a sigmoid activation and a bias $w_{i0}^{(k)}$ (not represented on the Figure)

- 1. [1pts] Sketch the sigmoid activation
- 2. [2pts] Give the detailed expression of $y(\boldsymbol{x}; W)$ as a function of \boldsymbol{x} , and the $w_{ij}^{(k)}$.
- 3. [4pts] <u>Using backpropagation</u>, derive the gradient with respect to $w_{11}^{(1)}$ for a general t and x (give all the steps)

Question 2 We consider the logistic regression classifier

$$p(t(\boldsymbol{x}) = 1 | \boldsymbol{x}) = \sigma(\beta_0 + \beta_1 x_1 + \beta_2 x_2)$$

$$p(t(\boldsymbol{x}) = 0 | \boldsymbol{x}) = 1 - \sigma(\beta_0 + \beta_1 x_1 + \beta_2 x_2)$$

where $\sigma(x)$ denotes the usual sigmoid function. Given the data shown in Fig. 2,

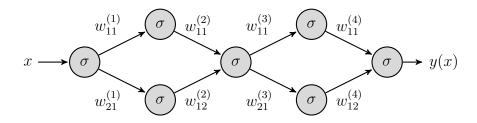


Figure 1: Neural Network for Question 1

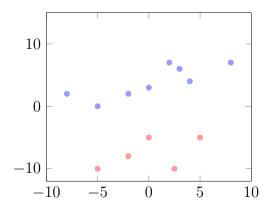


Figure 2: Training set for Question 2.

- 1. [2pts] What would be a good choice for the parameters $\beta_0, \beta_1, \beta_2$ (the choice does not need to be optimal)
- 2. [2pts] Let us assume that your solution corresponds to the minimum of a certain loss $\ell(\boldsymbol{\beta})$. How would this solution change if we now decided to minimize $\ell + \lambda R(\boldsymbol{\beta})$ where R denotes the Ridge regularizer. Motivate your answer.

Question 3 Give the pseudo-code for the one-vs-rest classifier.

Question 4 Consider a real valued feature vector $\mathbf{x} = (x_1, x_2, \dots, x_D)$ and real variable t. The t variable is generated, conditional on \mathbf{x} , from the following process

$$\varepsilon \sim N(0, \sigma^2)$$

 $t = \beta_0 + \boldsymbol{\beta}^T \boldsymbol{x} + \varepsilon$

where every ε is an independent variable which is drawn from a Gaussian distribution with mean 0 and standard deviation σ . The conditional distribution of t given \mathbf{x} reads as

$$p(t|\boldsymbol{x},\beta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(t-\beta_0-\boldsymbol{\beta}^T\boldsymbol{x})^2\right)$$

In class we have assumed that the noise variance σ^2 was known. However, we can also use the principle of Maximum Likelihood Estimation to obtain the Maximum Likelihood Estimator (MLE) for the noise variance σ_{ML}^2 . To find the expression of σ_{ML}^2 , follow the steps below.

- 1. [2pts] Start by writing the log-likelihood (taking all the pairs $\{\boldsymbol{x}_i, t^{(i)}\}_{i=1}^N$ into account)
- 2. [2pts] Compute the derivative of this function with respect to σ^2 , set it to 0 and solve the resulting equation

Question 5 [6pts] Consider real valued variables x and t. The t variable is generated, conditional on x, from the following process

$$\varepsilon \sim N(0, \sigma^2)$$
$$t = \beta x + \varepsilon$$

where every ε is an independent variable which is drawn from a Gaussian distribution with mean 0 and standard deviation σ . This is a one feature linear regression model, where β is the only weight parameter. The conditional probability distribution of t is given by

$$p(t|x,\beta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(t-\beta x)^2\right)$$

1. [2pts] Assume we have a training dataset of n pairs $(x^{(i)}, t^{(i)})$ for i = 1, ..., n and σ is known. Which of the following equations correctly represent the maximum likelihood problem for estimating β ? (Say yes or no to each possibility, keeping in mind that several of them might be right)

$$\begin{aligned} \arg\max_{\beta} \sum_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{1}{2\sigma^{2}} (t^{(i)} - \beta x^{(i)})^{2}) \\ \arg\max_{\beta} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{1}{2\sigma^{2}} (t^{(i)} - \beta x^{(i)})^{2}) \\ \arg\max_{\beta} \sum_{i=1}^{n} \exp(-\frac{1}{2\sigma^{2}} (t^{(i)} - \beta x^{(i)})^{2}) \\ \arg\max_{\beta} \prod_{i=1}^{n} \exp(-\frac{1}{2\sigma^{2}} (t^{(i)} - \beta x^{(i)})^{2}) \\ \arg\max_{\beta} \frac{1}{2} \sum_{i=1}^{n} (t^{(i)} - \beta x^{(i)})^{2} \\ \arg\min_{\beta} \frac{1}{2} \sum_{i=1}^{n} (t^{(i)} - \beta x^{(i)})^{2} \end{aligned}$$

- 2. [2pts] Derive the maximum likelihood estimator of the parameter β in terms of the training examples $t^{(i)}$ and $x^{(i)}$. (suggestion: start with the simplest form of the problem you found above and use the fact that the maximum/minimum can be found by setting the derivatives to zero)
- 3. [2pts] We now consider a prior on β . Assume that $\beta \sim N(0, \lambda^2)$ so that

$$p_{\lambda}(\beta) = \frac{1}{\sqrt{2\pi\lambda}} \exp(-\frac{1}{2\lambda^2}\beta^2)$$

We let β_{MLE} and β_{MAP} denote the Maximum Likelihood and Maximum A Posteriori estimators. Complete the table below

x_1	x_2	$y(x_1, x_2)$
1	1	0
0	0	0
1	0	1
0	1	0

Table 1: Dataset used for Question 6

	$p_{\lambda}(\beta)$: wider/narrower/same ?	$ \beta_{MLE} - \beta_{MAP} $ increase/decrease?
$As \ \lambda \to \infty$		
$As \ \lambda \to 0$		

Question 6 (8pts)

- 1. [5pts] Consider a neural network with two hidden layers: d = 2 dimensional inputs, 2 units in the first hidden layer, 2 units in the second hidden layer and a single output.
 - a) Draw a picture of the network
 - b) Write out an expression for y(x) assuming ReLU activation functions. Be as explicit as possible.
 - c) How many parameters are there?
- 2. [3pts] Consider the dataset given in table 1. Can this boolean function be represented by a single neuron with logistic activation function? If yes, give the value of the weights. If not motivate your answer with a short sentence.

Question 7 We consider a two hidden layers neural network $y(\boldsymbol{x}; W)$, $\boldsymbol{x} \in \mathbb{R}^2$ with a final sigmoid activation (output unit). The first hidden layer consists of 3 units and the second hidden layer consists of 2 units. The weights from the first and second layers (including the intercepts) are respectively stored in the matrices $W_1 \in \mathbb{R}^{3\times 3}$ and $W_2 \in \mathbb{R}^{2\times 4}$. The weights associated to the output unit are stored in the vector $w_{out} \in \mathbb{R}^3$. All the hidden units have ReLU activations

- 1. [2pts] Sketch the ReLU and sigmoid functions
- 2. [2pts] Sketch the network
- 3. [2pts] Give the detailed expression of $y(\boldsymbol{x}; W)$ as a function of \boldsymbol{x} , W_1 , W_2 and w_{out} .

Question 8 We consider the dataset shown in Fig. 3. Draw on top of this dataset the least squares classifier and the logistic regression classifier. Briefly motivate your answer.

Question 9 Describe the backpropagation steps (be as exhaustive as possible)

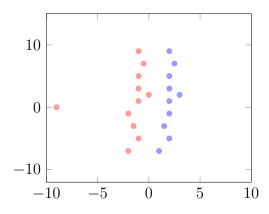


Figure 3: Training set for Question 8.

Question 10 Consider a neural network with three layers including an input layer. The first (input) layer has four inputs x_1, x_2, x_3 and x_4 . The second layer has six hidden units corresponding to all pairwise multiplications. The output node o simply adds the values in the six hidden units. Let L be the loss at the output node. Suppose that you know that $\frac{\partial L}{\partial o} = 2$ and $x_1 = 1, x_2 = 2, x_3 = 3$ and $x_4 = 4$. Compute $\frac{\partial L}{\partial x_i}$ for each i

Question 11 Derive a gradient descent algorithm that minimizes the <u>sum of squared errors</u> for a variant of a <u>perceptron</u> (i.e. one neuron) where the output y of the unit depends on its inputs x_i as follows

$$y(\boldsymbol{x}) = w_0 + w_1 x_1 + w_1 x_1^3 + w_2 x_2 + w_2 x_2^3 + \ldots + w_n + w_n x_n^3$$

Give your answer in the form $w_i \leftarrow w_i + \dots$ for $1 \le i \le n$.

Question 12 You want to perform a classification task. You are hesitant between two choices: Approach 1 and Approach 2. The only difference between these two approaches is the loss function that is minimized. Assume that $x^{(i)} \in \mathbb{R}$ and $t^{(i)} \in \{+1, -1\}$, i = 1, ..., m are the i^{th} example and output label in the dataset, respectively. $f(x^{(i)})$ denotes the output of the classifier for the i^{th} example. Recall that for a given loss ℓ , you minimize the cost

$$J = \frac{1}{m} \sum_{i=1}^{n} \ell(f(x^{(i)}), t^{(i)})$$
(1)

As we mentioned, the only difference between approach 1 and approach 2 is the choice of the loss function:

$$\ell_1(f(x^{(i)}), t^{(i)}) = \max\left\{0, 1 - t^{(i)}f(x^{(i)})\right\}$$
(2)

$$\ell_1(f(x^{(i)}), t^{(i)}) = \max\{0, 1 - t^{(i)}f(x^{(i)})\}$$

$$\ell_2(f(x^{(i)}), t^{(i)}) = \log_2(1 + \exp(-t^{(i)}f(x^{(i)})))$$
(3)

- 1. Rewrite ℓ_2 in terms of the sigmoid function.
- 2. You are given an example with $t^{(i)} = -1$. What value of $f(x^{(i)})$ will minimize ℓ_2 ?

- 3. Assume that an outlier (very far from the decision boundary but in the right class) is added to the dataset. How will that affect classifier (2)? Why?
- 4. You are given an example with $t^{(i)} = -1$. What is the greatest value of $f(x^{(i)})$ that will minimize ℓ_1 ?
- 5. You would like a classifier whose output can be interpreted as a probability. Which loss function is better and why?

Question 13 Indicate whether the following statements are true or false

Suppose we estimate the regression coefficients in a linear regression model by minimizing

$$\sum_{i=1}^{n} \left(t^{(i)} - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \le s$$

True / False	As we increase s from 0, the training RSS will increase initially, and then eventually
	start decreasing in an inverted U-shape
True / False	As we increase s from 0, the training RSS will decrease initially, and then eventually
	start increasing in an inverted U-shape
True / False	As we increase s from 0, the training RSS will steadily increase
True / False	As we increase s from 0, the training RSS will steadily decrease

Suppose we estimate the regression coefficients in a linear regression model by minimizing

$$\sum_{i=1}^{n} \left(t^{(i)} - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

for a particular value of λ

True / False	As we increase λ from 0, the variance will increase initially, and then eventually
	start decreasing in an inverted U-shape
True / False	As we increase λ from 0, the variance will decrease initially, and then eventually
	start increasing in an inverted U-shape
True / False	As we increase λ from 0, the variance will steadily increase
True / False	As we increase λ from 0, the variance will steadily decrease

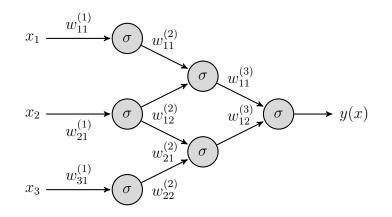


Figure 4: Neural Network used for question 14

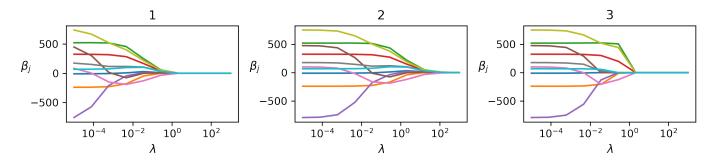


Figure 5: Evolution of the regression coefficients for an increasing value of the regularization weights λ_1, λ_2 in the case of the elastic net model. The various lines correspond to different regression coefficients β_j .

Question 14 We want to use the <u>backpropagation</u> algorithm, in order to compute the gradient of the binary cross entropy loss (for a single pair $(\boldsymbol{x}^{(i)}, t^{(i)})$) with respect to the weight $w_{11}^{(1)}$ for the network shown in Fig. 4. To do so, we will proceed as follows:

- 1. [1pts] Give the expression of the binary cross entropy loss for the pair $\{x^{(i)}, t^{(i)}\}$
- 2. [1pts] Give the expression of $\delta^{(3)} = \delta_{out} = \frac{\partial L}{\partial a_{out}}$ (derivative of the binary cross entropy loss with respect to the output pre-activation)
- 3. [2pts] Give the backpropagation equation and use this equation to derive, from δ_{out} , the values of the δ_i^2 for i = 1, 2. Then, from the δ_i^2 , obtain the value of δ_1^1 .
- 4. [1pts] Finally, give the expression of the derivative $\frac{\partial L}{\partial w_{11}^1}$ as a function of δ_1^1 and $z_1^{(0)} = x_1$. Deduce from this, and from your expression for δ_1^1 , the final answer to the question.

Question 15 We consider the following regression model, known as "elastic net regularization"

$$L\left(\beta, \left\{\boldsymbol{x}^{(i)}, t^{(i)}\right\}_{i=1}^{N}\right) = \frac{1}{N} \sum_{i=1}^{N} \left(t^{(i)} - \beta_0 - \sum_{j=1}^{D} \beta_j x_j^{(i)}\right)^2 + \lambda_2 \left(\sum_{j=1}^{D} |\beta_j|^2\right) + \lambda_1 \left(\sum_{j=1}^{D} |\beta_j|\right)$$
(4)

- 1. [1pt] Indicate the differentiable and non-differentiable parts of the loss.
- 2. [2pts] Figure 5 illustrates the evolution of the regression coefficients (each of the β_j is represented by a different curve) obtained by minimizing the loss (4) for different choices of (λ_1, λ_2) . In particular, the figure illustrates each of the following scenarios:
 - Ridge regularization $(\lambda_2 > 0, \lambda_1 = 0)$
 - LASSO regularization $(\lambda_1 > 0, \lambda_2 = 0)$
 - A trade-off between Ridge and LASSO corresponding to non zeros λ_1 and λ_2 , with $\lambda_1 = 9\lambda_2$

Indicate, on each of the subfigures, the model to which it corresponds.