Partial Differential Equations - MATH-UA 9263 Final II

Augustin Cosse

May 2022

Total: 28 points
 Total time: 1h30

General instructions: The exam consists of 3 questions (each question consisting itself of 2 or 3 subquestions). Once you are done, make sure to write your name on each page, then take a picture of all your answers and send the file by email to acosse@nyu.edu. In case you have any question, you can ask those through the chat. Answer as many questions as you can starting with those you feel more confident with.

Question 1 (10pts)

1. [6pts] We want to solve the following problem

$$
\begin{cases}\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}+c u=0 & t>0,0 \leq x \leq L \tag{1}\\ \frac{\partial u}{\partial x}(t, 0)=0 & t>0 \\ u(t, L)=0 & t>0 \\ u(0, x)=f(x) & 0 \leq x \leq L\end{cases}
$$

where $c \in \mathbb{R}$ and $L>0$ are fixed constants and $f(x)$ is piecewise C^{1} on $[0, L]$.
(a) Find $\mu \in \mathbb{R}$ such that if we apply the change of variable $v(x, t)=e^{\mu t} u(x, t)$, we can reduce (1) to the heat equation

$$
\begin{equation*}
\frac{\partial v}{\partial t}-\frac{\partial^{2} v}{\partial x^{2}}=0 \tag{2}
\end{equation*}
$$

Write down the corresponding system (including initial and boundary conditions) on v
(b) We want to find the solutions of (2) of the form $v(x, t)=T(t) X(x)$. Find the general form of $T(t)$ and $X(x)$.
(c) Show that if we look for $T(t)$ and $X(x)$ that satisfy the boundary conditions, we get an infinite number of solutions whose expressions are of the form $v_{k}(x, t)=T_{k}(t) X_{k}(x)$ where $k=0,1,2, \ldots$. Give the expression of the the functions $T_{k}(t)$ and $X_{k}(x)$.
(d) Find the solution v of the form

$$
\begin{equation*}
v(x, t)=\sum_{k=1}^{\infty} T_{k}(t) X_{k}(x) \tag{3}
\end{equation*}
$$

Then derive the solution u of (1).
(e) We now assume $f(x)=\cos \left(\frac{\pi x}{2 L}\right)$, find the expression for $u(x, t)$.
2. [4pts] Solve the following general Cauchy problem (Hint: factor the operator as we did to derive d'Alembert's formula)

$$
\left\{\begin{array}{l}
u_{x x}-3 u_{x t}-4 u_{t t}=0 \tag{4}\\
u(x, 0)=x^{2}, u_{t}(x, 0)=e^{x}
\end{array}\right.
$$

Question 2 (10pts)

1. [5pts] Solve the following initial value problem (Hint: consider $x+y$ and $x-y$)

$$
\left\{\begin{array}{l}
y \frac{\partial u}{\partial x}+x \frac{\partial u}{\partial y}=0 \\
u(x, 0)=f(x)
\end{array}\right.
$$

2. [5pts] We consider the Riemann problem

$$
u_{t}+f(u)_{x}=0 \quad \text { in }[0, \infty) \times \mathbb{R}, \quad u(0, x)=u_{0}(x)
$$

with the flux function $f(u)=u^{2}(1-u)^{2}$. Further let

$$
u_{0}(x)= \begin{cases}2 & \text { if } x<0 \\ 0 & \text { if } x>0\end{cases}
$$

Construct a weak solution which satisfies the Rankine-Hugoniot condition.

Question 3 (10pts)

1. Classify each of the following PDEs as hyperbolic, parabolic or elliptic [3pts].
(a) $u_{x x}-5 u_{x y}=0$
(b) $4 u_{x x}-12 u_{x y}+9 u_{y y}+u_{y}=0$
(c) $4 u_{x x}+6 u_{x y}+9 u_{y y}=0$
2. Consider $Q=\{(x, t) \mid 0<x<L, t>0\}$ and \bar{Q} the closure of Q. Assume that u and v are in $C(\bar{Q}) \cap C^{2}(Q)$ and respectively solve $\partial_{t} u-\partial_{x}^{2} u=f(x, t)$ and $\partial_{t} v-\partial_{x}^{2} v=g(x, t)$ on Q. Furthermore, assume that $f<g$ on Q and $u \leq v$ for $t=0$, for $x=0$ and for $x=L$. Show that $u \leq v$ on Q [Hint: use the proof of the weak maximum principle] [5pts]
3. Define the notion of harmonic function [2pts]
