Partial Differential Equations - MATH-UA 9263
 Final I

Augustin Cosse

May 2022

Total: 28 points
Total time: 1h15
General instructions: The exam consists of 3 questions (each question consisting itself of 2 or 3 subquestions). Once you are done, make sure to write your name on each page, then take a picture of all your answers and send the file by email to acosse@nyu.edu. In case you have any question, you can ask those through the chat. Answer as many questions as you can starting with those you feel more confident with.

Question 1 (10pts)

1. Provide a full solution to the following Cauchy-Dirichlet problem for the heat equation [7pts]

$$
\begin{cases}u_{t}-u_{x x}=0, & t>0,0<x<L \\ u(x, 0)=2 x+1 & 0 \leq x \leq L \\ u(0, t)=1 & t>0 \\ u(L, t)=3 & t>0\end{cases}
$$

2. Using polar coordinates, provide a solution to the following system

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=x^{2}+y^{2} \\
u(x, y)=0, \quad \text { when } x^{2}+y^{2}=1
\end{array} \quad \text { when } x^{2}+y^{2}<1\right.
$$

(You want to look for solutions of the form $\left.u(x, y)=x^{2}+y^{2}\right)[3 p t s]$

Question 2 (10pts)

1. We consider the first order problem

$$
\left\{\begin{array}{l}
u_{t}+2 u u_{x}=0 \quad t \geq 0 \tag{1}\\
u(x, 0)=\phi(x)
\end{array}\right.
$$

with the initial condition

$$
\phi(x)= \begin{cases}3 & x<0 \\ 4 & x>0\end{cases}
$$

Give the solution to problem (1) including possible shocks. Provide a graphical representation of the characteristics as well as the expression of the shock curve if there is one [4pts].
2. Find the solution to the following equations [6pts]

$$
\begin{gathered}
u_{x}+u_{y}+u=1, \quad u\left(x, x+x^{2}\right)=\sin x, \quad x>0 \\
(x-y) u_{x}+(x+y) u_{y}=u, \quad u(x, 0)=x^{2}
\end{gathered}
$$

Question 3 (8pts)

1. Let $u \in C^{\infty}\left(\mathbb{R}^{3}\right)$ be a harmonic function on \mathbb{R}^{3}

$$
\Delta u(x)=0, \quad x \in \mathbb{R}^{3}
$$

Assume that $|u(x)| \leq \sqrt{|x|}$ holds for all x, where $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$. Show that $u(x)=0$ for all $x \in \mathbb{R}^{3}$ [3pts].
2. Classify the following PDE as elliptic, hyperbolic or parabolic [2pts]

$$
-\partial_{t}^{2} u(t, x)+4 \partial_{t} \partial_{x} u(t, x)-\partial_{x}^{2} u(t, x)=0, \quad(t, x) \in \mathbb{R} \times \mathbb{R}
$$

3. Provide the solution of the Cauchy problem [3pts]

$$
u_{t t}=c^{2} u_{x x}, \quad u(x, 0)=e^{x}, \quad u_{t}(x, 0)=\sin x
$$

