
Introduction to Optimisation,

Lecture 4

Augustin Cosse

January 2022

This note was written as part of the series of lectures on Optimisation delivered at
ULCO in 2022-2023. The version is temporary. Please direct any comments or

questions to augustin.cosse@univ-littoral.fr.

Introduction

When hiring or dispatching workers or sheduling buses, working with real numbers is
not possible and the problems are ususally defined on integers. Although the solution
to 2D problems can easily be found graphically, higher dimensional problems quickly
become difficult. It is however sometimes the case that an almost optimal solution
could be obtained by rounding the components of a linear relaxation of the original
problem as we will see.

Linear optimisation problems defined on integers are known as integer programs (IPs)
and have general form

max cTx

s.t. Ax ≤ b

x ∈ Zn

The feasible set is not a convex polyhedron anymore but consists of a lattice of separate
(integer) points (see Fig. 1 below).

Solving general integer programs is computationally difficult (i.e. integer program-
ming is NP hard in the general case) and there are integer programs that are in-
tractable for no more than 10 constraints and 10 variables even for the most modern
computers. Integer programming can in fact be used to encode logical sentences as
the constraints xi ∈ Z and 0 ≤ xi ≤ 1 can be used to encode True/False decisions.

Before discussing how to solve integer programs, we list a couple of classical applica-
tions. We start with the Maximum Weight Matching problem.

1

2 4 6 8 10

5

10

15

20

x

y

1

Figure 1: Polytope and corresponding integer lattice. The integer feasible points are
highlighted in blue.

Example 1. A company undergoes a reorganization. 5 positions are available and
the company has to assign those positions to 5 employees. In order to assign those
positions, the HR manager asks the employees to fill out appropriate questionnaires.
Each questionnaire is graded on a scale from 0 to 100 and the scores are encoded as
wij. The problem can be represented as a graph shown in Fig. 2.

The manager would like to select a position for each employee so that the total satis-
faction (sum of the scores) is maximized. In the language of graph theory, the graph
shown in Fig. 2 is known as a bipartite graph with vertex set J ∪ E and edge set E.

We want to find a set of edges S ⊆ E such that each vertex is incident to exactly one
edge (such a set is known as a perfect matching). In order to formulate the problem
as an integer program, we introduce a variable xℓ for each edge e ∈ E such that xe = 1
if e ∈ S and 0 otherwise. The objective of maximizing the matching can then read as

max
∑
e∈E

wexe

and the requirement that every vertex is incident to exactly one edge is given by∑
e∈E

s.t. v∈e

xe = 1, for each v

Our final integer program for the maximum weight matching problem read as

max
∑
e∈E

wexe

s.t.
∑
e∈E

s.t. v∈e

xe = 1 for each v

xe ∈ {0, 1}

(1)

2

Job 5 Empoyee 5

Job 4 Empoyee 4

Job 3 Empoyee 3

Job 2 Employee 2

Job 1 Employee 1
w11

w12

w34

w54

Figure 2: An example of a bipartite graph for the Maximum Weight Matching Prob-
lem (1).

If we relax the integrality condition, we get the following LP

max
∑
e∈E

wexe

s.t.
∑
e∈E

s.t. v∈e

xe = 1, for each vertex v ∈ V

0 ≤ xe ≤ 1, for each edge e ∈ E

(2)

problem (2) is known as the LP relaxation of problem (1). Clearly, any solution
to (2) provides an upper bound on any optimal solution to (1). This follows from the
fact that any feasible solution to (1) is also a feasible solution to (2) and so we are
maximizing over a bigger feasible set in (2). It is sometimes the case that the solution
of the LP relaxation provides the exact solution to the original IP.

Theorem 1. Let G = (V, E) be an arbitrary bipartite graph with real edge weights we.
If the LP relaxation (2) of the IP (1) has at least one feasible solution, then it has at
least one integral solution. Moreover, this integral solution is an optimal solution for
the original integer program (1).

Proof. TBA

Example 2 (Minimum Vertex Cover). As a second example of an integer program,
we consider the problem of equipping each connection between two computers of a
network with a tracking device. Moreover, we would like to attach the tracking device
to some of the computers only in such a way that the total number of tracking devices
is minimized. Using a graph terminology, we can view the computers in the network
as vertices and the connections between those computers as edges. The problem then
reads as

min
∑
v∈V

xv

s.t. xu + xv ≥ 1, for every edge {u, v} ∈ E
xv ∈ {0, 1} ∀v ∈ V

(3)

3

Finding a minimum vertex cover is NP hard in the general case. We can however
again study the fractional relaxation

min
∑
v∈V

xv

s.t. xu + xv ≥ 1, for every edge {u, v} ∈ E

0 ≤ xv ≤ 1

(4)

The first step of the approximation algorithm to vertex cover consists in computing
an optimal solution x∗ of the LP relaxation. The components of x∗ are real numbers
in the [0, 1] interval. In the second step, we define the set

SLP = {v ∈ V | x∗
v ≥ 1/2}

This is a vertex cover since for every edge {u, v} we have x∗
u+x∗

v ≥ 1 hence for every
edge (u, v) ∈ E, x∗

u ≥ 1/2 or x∗
v ≥ 1/2. Let Sopt denote the minimum possible vertex

cover. We will show that

|Sopt| ≤ 2|SLP |

To see this, let x̃ denote a solution of the integer program corresponding to the objective
Sopt. I.e. we have x̃v = 1 for v ∈ Sopt and 0 otherwise. Since x̃ is a feasible solution
of the relaxation, we have ∑

v∈V

x∗
v ≤

∑
v∈V

x̃v

On the other hand,

|Sopt| ≤ Sround = |SLP | =
∑

v∈SLP

1 ≤ 2
∑
v∈V

x∗
v

since x∗
v ≥ 1/2 for every v ∈ SLP . As a result we can write

|SLP | =
∑

v∈SLP

1 ≤ 2
∑
v

x∗
v ≤ 2

∑
v∈V

x̃v = 2|Sopt|

From which we finally obtain the integrality gap

1

2
|SLP | ≤ |Sopt| ≤ |SLP |

Example 3 (Maximum Independent Set). Maximum Independent Set is a funda-
mental problem in computer science which has important applications including in
network analysis and coding theory. The problem is NP hard in its general form and
consequently there have been several attempts at finding approximate solutions. For a
graph G = (V, E), a set I ⊆ V of vertices is called independent (or stable) if no two
vertices of I are connected by an edge in G.

Computing an independent set with the maximum possible number of vertices for a
given graph can be expressed by an integer program

4

Figure 3: Two examples of maximal independent sets. The left one being maximum

max
∑
v∈V

xv

s.t. xu + xv ≤ 1, for each edge {u, v} ∈ E
xv ∈ {0, 1} for all v ∈ V

(5)

Any solution to this problem corresponds to an independent set (i.e. the set I ⊆ V
of all v s.t. x∗

v = 1). A maximal independent set is an independent set to which
no node can be added without violating the independent set property. A maximal
independent set is called a maximum independent set of a graph if it is not possible to
find any larger MIS in the graph. As an example, in the complete graph, the largest
independent set consists of a single vertex

The problems that we have described in the previous 3 examples are combinatorial
in the sense that they consist in finding an optimal object from a finite collection.

When it comes to solving integer programs, there are usually two classical approaches:

1. Cutting planes

2. Branch and Bound

To introduce the cutting plane approach, we first need to introduce the notion of valid
inequality

Definition 1. An inequality aTx ≤ b is a valid inequality for x ∈ X ⊆ RN if aTx ≤ b
for all x ∈ X

Example 4 (Integer rounding). Consider the integer region X = P ∩ Z4 where

P =
{
x ∈ R4

+ | 13x1 + 20x2 + 11x3 + 6x4 ≥ 72
}

Dividing the inequality by 11, we get

13

11
x1 +

20

11
x2 + x3 +

6

11
x4 ≥ 72

11

5

Since the variables are non negative, we can always round up the LHS, which further
gives

⌈13
11

⌉x1 + ⌈20
11

⌉x2 + x3 + ⌈ 6

11
⌉x4 = 2x1 + 2x2 + x3 + x4 ≥ 72

11
(6)

This inquality clearly remains valid for the set P . If we restrict x1, x2, x3, x4 to
integers, we can go one step further and also round up the RHS in (6). I.e, any
integer that has to be larger than 72

11 also has to be larger than 7.

Why do we want to generate new valid inequalities? Recall that the convex envelope
is the smallest convex feasible region that contains all of the integer solutions. If one
can generate additional linear inequalities that are valid for all integer solutions until
the feasible set reduces to the convex envelope of those integer solutions, one can
solve the resulting LP and be guaranteed to find the optimal integer solution because
all of the extreme points of the convex envelope are integer solutions. Consider the
following example whose graphical representation is given in Fig. 4.

Example 5.

max 3x1 + 4x2

s.t. 5x1 + 7x2 ≤ 21

x1, x2 ≥ 0

x1, x2 ∈ Z

(7)

Valid inequalities are also known as cuts or cutting planes. In the case of problem (7),
both of the inequalities x1 ≤ 5 and x2 ≤ 4 are valid inequalities. In fact, as we will
see, we can do better and derive the constraint

x1 + x2 ≤ 4 (8)

as well as the constraint

x2 ≤ 3− 2x1

3
(9)

Adding those inequalities, we get formulation (10) whose feasible set is represented in
Fig 4.

max 3x1 + 4x2

s.t. 5x1 + 7x2 ≤ 21

x1 + x2 ≤ 4

2x1 + 3x2 ≤ 9

x1, x2 ≥ 0,

x1, x2 ∈ Z

(10)

From what we saw, generating valid inequalities is relatively simple. What is difficult
is to generate them in an efficient manner (especially in a high dimensional setting) in
order to quickly find the convex envelope of the integer solutions. This can once again

6

−1 1 2 3 4 5 6

2

4

x

y
5x+ 7y ≤ 21
x+ y ≤ 4
2x+ 3y ≤ 9

−1 1 2 3 4 5 6

2

4

x

y

Figure 4: (Top) Representation of the constraints and integer lattice for problem (7).
The additional (valid) constraints generated in (8) and (9) are shown in red and
orange. (Bottom) Polytope corresponding to the augmented set of constraints (10)
(light blue) and difference between this polytope and the polytope associated to the
original formulation (7). The reduction is possible because the solutions are in fine
known to be integer. The restriction does not modify the set of integer solutions and
it therefore makes sense to add the supplementary linear constraints (8) and (9).

7

−1 1 2 3 4 5 6

2

4

x

y
5x+ 7y ≤ 21
3x+ 4y ≤ 12

Figure 5: Final convex envelope obtained for problem (7) after adding the valid
inequality 4y + 3x ≤ 12. One can check that every extreme point of the convex
envelope is an integer solution.

be illustrated by problem (7). Although undeniably more constrained, formulation (10)
still does not correspond to the convex envelope of the original IP (7). To finally obtain
this envelope (shown in Fig. 5), we need to add the final valid inequality 4x2+3x1 ≤ 12
(which can be derived by combining 5x1 + 7x2 ≤ 21 with x1 + x2 ≤ 4 then dividing
by 2 and rounding both sides of the resulting inequality following the Chvátal-Gomory
procedure which we introduce next)

The remaining of this lecture will precisely discuss how to generate valid inequalities
efficiently.

Proposition 1. The inequality πTx ≤ π0 is valid for P = {x | Ax ≤ b,x ≥ 0} if
and only if there exists u ≥ 0 such that π ≤ uTA and uT b ≤ π0

Now that we clarified the general notion of the valid inequality, we discuss the par-
ticular setting of integer programming. From our previous example, we can already
highlight the following

Proposition 2. Let X = {y ≥ 0 | y ≤ b} ∩Z, then the inequality y ≤ ⌊b⌋ is valid for
X

Now that we have covered a few examples of how to generate valid inequalities, let us
try to come up with a general procedure. Before formulating the general procedure,
let us briefly recap what we just learned. let us consider the feasible set

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x ≥ 0

x ∈ Z2

(11)

8

To generate valid inequalities, we saw that we could follow three main steps:

1. We can first combine the constraints according to any weight vector w with
non negative weights. For problem (11) we can for example take w =

(
2
7 ,

37
63 , 0

)
.

Combining the constraints in (11) according to this vector, we get the new valid
inequality

2x1 +
1

63
x2 ≤ 121

21

2. Since the RHS gives an upper bound on the sum 2x1 + 1
63x2 and since the

variables are non negative, we can always derive a valid constraint by rounding
the LHS. I.e.

⌊2⌋x1 + ⌊ 1

63
⌋x2 ≤ 2x1 +

1

63
x2 ≤ 121

21

3. Now because we focus on integer solutions, and because after rounding the
multiplicative coefficients on the LHS, this side is guaranteed to take an integer
value, we can also round the right-hand side (see Proposition (2) and note that
any integer smaller than 121/21 necessarily has to be smaller than 5)

2x1 ≤ ⌊121
21

⌋ = 5

Our previous observations can be summarized by the following general procedure
known as Chvátal-Gomory cut. We let X = P ∩Zn where P = {x | Ax ≤ b}, u ∈ R+.

(i) The inequality

n∑
j=1

uajxj ≤ ub

is valid for P as long as u ≥ 0 and
∑

j ajxj ≤ b

(ii) The inequality

n∑
j=1

⌊uaj⌋xj ≤ ub

is valid for P as xj ≥ 0.

(iii) Finally, the inequality

n∑
j=1

⌊uaj⌋xj ≤ ⌊ub⌋

is valid for any integer solution x

9

As indicated by the following theorem, that simple procedure is sufficient to generate
all valid inequalities for integer programs. This idea is summarized by the following
theorem

Theorem 2. Every valid inequality for X can be obtained by applying the Chvátal-
Gomory procedure a finite number of times.

In many cases, the number of valid inequalitites we would have to add is enormous.
Moreover, given a specific objective function, we are in general not interested in
finding the complete convex envelope but we are instead usually happy with a good
approximation of this envelope in the neighborhood of the solution.

General useful inequalities can be generated by alternating between (i) solving the
linear program through the simplex algorithm and (ii) refinining the feasible set
through the addition of a valid inequality that “cuts off” the solution returned by the
simplex if this solution is not an integral solution. By doing so, we are guaranteed
to gradually refine the polytope until we reach a set whose vertices are all integral
solutions.

We summarize this idea below in the general case and we then derive the explicit
procedure in the case of integer programs.

The problem of “cutting off” a solution that is not feasible for the original (i.e. inte-
gral) formulation by adding a constraint to the relaxation is known as the separation
problem.

Definition 2. The separation problem associated with a combinatorial optimization
problem (COP) max

{
cTx | x ∈ X ⊆ Rn

}
can be formulated as follows

• Given x∗ ∈ Rn, is x∗ ∈ conv(X)?

• If not, find an inequality aTx ≤ b satisfied by all points in X but violated by the
point x∗.

We can now introduce our general procedure to derive valid inequalities efficiently.
In the pseudo-code below, we assume that we don’t have access to the set X except
through an oracle to which we submit our queries.

10

Algorithm 1 : Naive Algorithm

1. We consider the set X ⊆ P (any finite subset of P). Set t = 0, P 0 = P

a) For t = 0, . . .,

(i) Solve the linear program

max
{
cTx | x ∈ P t

}
Let xt be an optimal solution. if xt ∈ X stop. xt is an optimal
solution for the COP. Else, solve the separation problem for xt

and the current family of constraints.

(ii) if an inequality is found in V (family of valid inequalities) with
aT
i x

t ≤ bi so that it cuts off xt, set P t+1 = P t ∩
{
x | aT

i x ≤ bi
}

and augment i. Otherwise stop.

b) If the algorithm iterates without finding a solution in X, then

PT = P ∩ ∪T
i=1

{
aT
i x ≤ bi

}
can be used to initialize a Branch and Bound algorithm.

Gomory’s Fractional Cutting Plane Algorithm

We now discuss the particular case of integer programs. The restriction of the above
procedure to that setting is known as Gomory’s fractional cutting plane algorithm.
In this particular setting, we focus our attention on the integer program

max
{
cTx | Ax = b, x ∈ Zn

+

}
(12)

The idea is to first solve the LP relaxation with the simplex and find an optimal basis.
Then choose one of the basic variable that is not integer and solve the separation
problem for the corresponding constraint so as to “cut off” the fractional solution
returned by the simplex.

Let B and N respectively denote the sets of basic and non basic variables. Suppose
that after solving the original LP, one can write the problem as

max a00 +
∑
j∈N

a0jxj (13)

s.t. xBk
+

∑
j∈N

akjxj = bk, k = 1, . . . ,m (14)

x ≥ 0, x ∈ Z (15)

with a0j ≤ 0 for j ∈ N (recall that the simplex terminates when all the residual
costs are negative) and bk ≥ 0 for u = 1, . . . ,m (note that if this is not the case, we
can always multiply the equation by −1).

11

If the basic optimal solution is not an integer, there must exist a row k with bk /∈ Z.

Choosing this row and applying the Chvátal-Gomory procedure, we can generate an
inequality of the form

xBk
+

∑
j∈N

⌊akj⌋xj ≤ ⌊bk⌋ (16)

Subtracting this to the original constraint,

xBk
+

∑
j∈N

akjxj = bk (17)

we get (keep in mind that given the inequality (16), when subtracting, we subtract
to the left-hand side of (17) something that is smaller than what we subtract to the
right-hand side. Consequently, we have to flip the sign of the inequality)

xBk
+

∑
j∈N

akjxj −

xBk
+

∑
j∈N

⌊akj⌋xj

 ≥ bk − ⌊bk⌋

The final constraint is then given by∑
j∈N

(akj − ⌊akj⌋)︸ ︷︷ ︸
fkj

xj ≥ bk − ⌊bk⌋︸ ︷︷ ︸
fk0

(18)

Now recall that in the solution of our original LP, all the non basic variables took
the value 0 by construction. As a result, our additional inequality (18) (whose LHS
is a combination of non basic variables and whose RHS is non zero) “cuts off” the
solution returned by the first simplex run. As a result, we can then add this inequality
to the definition of the polytope and rerun the simplex a second time on the new
formulation.

As an illustration of Gomory’s fractional cutting plane algorithm, consider the fol-
lowing example which is taken from [1]

Example 6.

max 4x1 − x2

s.t. 7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x1, x2 ≥ 0

x1, x2 ∈ Z

(19)

Adding slack variables s3, s4, s5 and solving the resulting LP relaxation we get the
tableau 1

Recall that as we maximize, the simplex stops when none of the entries in the re-
duced cost vector (last row in the simplex tableau) are positive anymore. Tableau 1

12

x1 x2 s3 s4 s5
1 0 1/7 2/7 0 20/7
0 1 0 1 0 3
0 0 -2/7 10/7 1 23/7
0 0 -4/7 -1/7 0

Table 1: Final tableau obtained after a complete run of the simplex method on
problem (19)

x1 x2 s3 s4 s5 s6
1 0 0 0 0 1 2
0 1 0 0 -1/2 1 1/2
0 0 1 0 -1 -5 1
0 0 0 1 1/2 6 5/2
0 0 0 0 -1/2 -3

Table 2: Final tableau obtained after a second run of the Simplex on problem (19)
augmented with the valid inequality (22)

corresponds to a termination step as the entries in the reduced cost vector are all
negative.

The tableau corresponds to the optimal solution x = (207 , 3, 0, 0, 23
7). one can thus

generate a first cut by focusing on x1 or x5 (the non integral basic variables). Starting
with x1 and applying the Chvátal-Gomory procedure, we get the new cut constraint

1

7
s3 +

2

7
s4 ≥ 6

7
(20)

which corresponds to taking the constraint

x1 +
1

7
s3 +

2

7
s4 =

20

7
(21)

generating the constraint

x1 + ⌊1
7
⌋s3 + ⌊2

7
⌋s4 ≤ 20

7

rounding the RHS,

x1 + ⌊1
7
⌋s3 + ⌊2

7
⌋s4 ≤ ⌊20

7
⌋

and subtracting this constraint from (21), we get the cut

1

7
s3 +

2

7
s4 ≥ 6

7
(22)

Adding (22) to formulation (19) and running the simplex a second time, we get
the final tableau 2. The optimal solution for this tableau is now given by x =

13

(2, 1/2, 1, 5/2, 0). From this, we can again choose either x2 or x4 to generate the
new cut constraint. Taking x2, we get the Chvátal-Gomory cut

x2 −
1

2
s5 + s6 = 1/2

⇒ x2 − ⌈1/2⌉s5 + s6 ≤ 1/2

⇒ x2 − s5 + s6 ≤ 1/2

⇒ x2 − s5 + s6 ≤ 0, for x, s ∈ Z+

subtracting from the original constraint, we derive the inequality

1

2
s5 ≥ 1/2 (23)

Adding this new constraint to the LP (19) and running the simplex a third time, we
end up with the final tableau 3

x1 x2 s3 s4 s5 s6 s7
1 0 0 0 0 1 0 2
0 1 0 0 0 1 -1 1
0 0 1 0 0 -5 -2 2
0 0 0 1 0 6 1 2
0 0 0 0 1 0 -1 1
0 0 0 0 0 -3 -1

Table 3: Final tableau obtained after a third run of the simplex on problem (19)
augmented with the Chvàtal-Gomory cuts (22) and (23).

Branch and Bound

The most natural way to solve a combinatorial problem is by enumeration. We start
by giving an example of a pure enumerative approach. We then introduce the “Branch
and Bound” procedure in more details.

Consider the following instance of the knapsack problem with 5 items

max 5x1 + 3x2 + 6x3 + 4x4 + x5

s.t. 2x1 + 7x2 + 3x3 + x4 + 2x5 ≤ 14

x1, x2, x3, x4, x5 ∈ {0, 1}
(24)

For a set of n variables, complete enumeration in the case of the knapsack problem
would consists in investigating each of the 2n candidate solutions. Such an enumera-
tion can be carried out by means of a tree. I.e. start with the root node and “Branch”
the possibilities for the first variable. Then “branch” possibilities for the second vari-
able x2, and so on. The first two levels of the tree are shown in Fig. 6. Continuing like
this for problem (24) will yield a tree of depth 5 in which each node will correspond to
a partial solution. Each leaf node will correspond to a particular candidate solution.

14

x1 = 0x1 = 1

x2 = 0x2 = 0 x2 = 1 x2 = 1

Figure 6: Enumeration tree for the Knapsack instance (24).

To reduce the complexity, the idea is to stop branching as early as possible. If we look
at a node close to the root and conclude that none of its descendants can be optimal,
this might be used to reduce the computation drastically. This desire to reduce the
complexity as much as possible lies at the core of the Branch and Bound procedure
which we discuss next.

The general idea of Branch and Bound is to use the LP relaxations as way to “sort”
the nodes. A subdomain on which the corresponding LP relaxation yields poor upper
(for a maximization problem) or lower (for a minimization problem) bounds should
not be investigated further.

We illustrate this procedure through the following example

Example 7.

max 4x1 − x2

s.t. 7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x ∈ Z2
+

(25)

The final simplex tableau for problem (25) is given by

max −4/7x3 −1/7x4

x1 +1/7x3 +2/7x4 = 20/7
x2 +x4 = 3

−2/7x3 +10/7x4 +x5 = 23/7

x1, x2, x3, x4, x5 ≥ 0

(26)

The corresponding objective is given by 59/7. Since no feasible solution is available
yet and since problem (26) is a maximization problem, we can set our intial lower
bound as z = −∞.

The idea of Branch and Bound is to continue to explore as long as the lower bound
is smaller than the upper bound.

15

xj

xj
vj

xj

xj ≤ ⌊vj⌋ xj ≥ ⌈vj⌉

Figure 7: Graphical representation of the “branching” step in Branch and Bound.

x1 ≤ 2

SU

x1 ≥ 3

SL

S z = −∞
z = 59/7

x2 ≤ 0

z = 15/2z = 15/2

x1 ≤ 2 x1 ≥ 3

SL

S z = −∞
z = 59/7

SU

x2 ≥ 1

Figure 8: Evolution of the Branch and Bound tree for the integer program (25) (Part
I).

A good approach for the split is to take one of the basic variables that takes a fractional
value. If we let xj and vj to denote such a fractional variable and its associated value,
and if we split the feasible set S into the two subsets

SB = S ∩ {xj ≤ ⌊vj⌋} , SU = S ∩ {xj ≥ ⌈vj⌉} (27)

we do not lose any information as all the integer solutions are maintained in the
feasible set (i.e. the white strip in Fig. 7 cannot contain any integer solution by
construction). Moreover, we are guaranteed to get rid of the fractional solution and
hence to reduced the size of the polytope. I.e.

{x ∈ SB} ∨ {x ∈ SU} ≤ max {x ∈ S}

Applying this idea to the tableau (26), we can start building our solution tree by
adding the two nodes x1 ≤ 2 and x1 ≥ 3 (see Fig. 8).

To proceed further, we arbitrarily pick SL as our next subproblem. Adding the

16

constraint x1 ≤ 2 to the original IP, we get the new problem

max 4x1 − x2

s.t. 7x1 − 2x2 + x3 = 14

x2 + x4 = 3

2x1 − 2x2 + x5 = 3

x1 + x6 = 2

x1, x2, x3, x4, x5, x6 ∈ Z+

(28)

Solving the LP relaxation for this new formulation with the simplex, we get the final
tableau

max −1/2x5 −3x6

x1 +x6 = 2
x2 −1/2x5 +x6 = 1/2

x3 −x5 −5x6 = 1
x4 +1/2x5 +6x6 = 5/2

x1, x2, x3, x4, x5, x6 ≥ 0

(29)

corresponding to the objective 15/2 (which is again an upper bound on the objective
of the original IP) and solution x1 = 2, x2 = 1/2.

Since x1 takes integer value, we cannot use it to define the next split. Instead, we
now select x2 and define the two subsets

SLL =

{
x ∈ SL | x2 ≤ ⌊1

2
⌋
}
, SLU =

{
x ∈ SL | x2 ≥ ⌈1

2
⌉
}

(30)

The corresponding tree is shown in Fig. 8 (right).

Continuing, arbitrarily choosing SU as our next node and adding the constraint x1 ≥ 3
to formulation (28), we get the following problem

max 4x1 − x2

s.t. 7x1 − 2x2 + x3 = 14

x2 + x4 = 3

2x1 − 2x2 + x5 = 3

x1 − x6 = 3

x1, x2, x3, x4, x5, x6 ≥ 0

(31)

By inspection (use x1 ≤ 3 together with x2 ≥ 3, x3 ≥ 0 and combine with the first
constraint in (31)), one can conclude that the subdomain is empty. We can thus stop
exploring the SU branch of the tree. Continuing with SLU , and adding the constraint

17

x1 ≥ 1 to problem (28), we get the program

max 4x1 − x2

s.t. 7x1 − 2x2 + x3 = 14

x2 + x4 = 3

2x1 − 2x2 + x5 = 3

x1 + x6 = 2

x2 − x7 = 1

x1, x2, x3, x4, x5, x6, x7 ≥ 0

(32)

The solution to problem (32) is given by x1 = 2, x2 = 1 with objective value 7. Since
the solution in this case is integral, the objective not only constitutes an upper bound
on the solution of the problem on the subdomain SLU , but it also constitutes a lower
bound on the objective of the original problem (25). The updated tree is shown in
Fig. 9 (left). Since the subdomain SU is empty, and since our solution for SLU is both
an upper and a lower bound, we are left with investigating the subdomain SLL (which
could still yield a better solution). For this last subdomain, we get the formulation

max 4x1 − x2 (33)

s.t. 7x1 − 2x2 + x3 = 14 (34)

2x1 − 2x2 + 5 = 3 (35)

x1 + x6 = 2 (36)

x2 = 0 (37)

x1, x2, x3, x4, x5, x6 ≥ 0 (38)

Solving the LP will yield the solution x = (3/2, 0) with optimal value z = 6. Since
the solution is fractional, this last bound only constitute an upper bound for the
subdomain. Since this upper bound is smaller than our current lower bound, we can
disregard SLL. The resulting complete tree with the final solution is shown in Fig. 9
(right).

References

[1] Laurence A Wolsey, Integer programming, 2020, John Wiley & Sons

18

x2 ≤ 0

z = 15/2z = 15/2

x1 ≤ 2 x1 ≥ 3

SL

S z = −∞
z = 59/7

SU

x2 ≥ 1

SLL SLU

z = 7

z = 7

Infeasible

x2 ≤ 0

z = 15/2z = 15/2

x1 ≤ 2 x1 ≥ 3

SL

S z = −∞
z = 59/7

SU

x2 ≥ 1

SLL SLU

z = 7

z = 7

z = 6

Infeasible

Figure 9: Evolution of the Branch and Bound tree for the integer program (25) (Part
II).

19

