
Numerical Analysis

Lecture 5

Augustin Cosse

January 2022

This note was written as part of the series of lectures on Numerical Analysis
delivered at ULCO in 2022-2023. The version is temporary. Please direct any

comments or questions to acosse@univ-littoral.fr.

Introduction

Numerical integration formulas or quadrature formulas are methods for the approx-
imate evaluation of definite integrals. Such formulas are needed when the primitive
cannot be expressed in terms of elementary functions of for which the integrand is
available only at discrete points. Examples include∫ π

0

cos(x2) dx

as well as ∫ 2000

1

exp(sin(cos(sinh(cosh(tan(log(x))))))) dx

The calculation of surface areas can be traced back to the Greeks, Babylonians and
Egyptians but it is again Newton who had the idea of interpolating functions and
then integrating the interpolating polynomial, leading to what is known today as the
Newton-Cotes quadrature. Gauss noticed that non-equidistant points lead to more
accurate approximations.

Quadrature

The most common approach at approximating the definite integral

I[a,b] =

∫ b

a

f(x) dx
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is to rely on a weighted sum Sn+1 of the form

Sn+1(f) =

n∑
k=0

wkf(xk)

and based on the (n+1) distinct quadrature points x0, x1, . . . , xn ∈ [a, b] and weights
w0, . . . , wn ∈ R. For simplicity, we will choose evenly spaced points so that xi+1−xi =
h for all i and some h > 0. Since polynomials are easy to integrate, it seems like a good
idea to first approximate f with an interpolating polynomial p and then integrate this
polynomial. I.e.

∫ b

a

f(x) dx ≈
∫ b

a

Φnf dx =

∫ b

a

pn dx =

n∑
k=0

wkf(xk)

where Φn : C[a, b] → Pn denotes the (polynomial) interpolation operator with inter-
polation points x0, x1, . . . , xn.

Note that this is equivalent to the finite difference approximation where we used
f ′(x) ≈ p′(x).

Recall that the order n Lagrange interpolation polynomial for f at the points x0, x1, . . . , xn

is defined as

pn(x) =

n∑
k=0

ℓk(x)f(xk) = Φnf

where the polynomials ℓk(x) are defined as

ℓk(x) =

n∏
i=0
i ̸=k

x− xi

xk − xi

Substituting this approximation for f in the integral, we get∫ b

a

f(x) dx ≈
∫ b

a

n∑
k=0

ℓk(x)f(xk) dx

=

n∑
k=0

f(xk)

∫ b

a

ℓk(x) dx

=

n∑
k=0

f(xk)wk

The values wk, k = 0, 1, . . . , n are referred to as the quadrature weights.
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Definition 1. The quadrature rule obtained from the Lagrange polynomials
of degree n is known as Newton-Cotes formula of order n (defined on n + 1
points).

Newton-Cotes formulas are called “closed” if the end points a and b are used
as first and last quadrature points. In this case, the rule is thus defined based
on a step h = b−a

n and interpolation points xk = a+ kh, k = 0, . . . , n.

Conversely, Newton-Cotes formulas are called “open” if they do not include
the endpoints a and b but place the first and last points so that they are at a
distance h from the endpoints a and b. In this case, we thus define h = b−a

n+2
and define the interpolation points as xk = a+ (k + 1)h, for k = 0, 1, . . . , n.

We will discuss four particular instances of Newton-Cotes quadratures.

• The closed Newton-Cotes quadrature defined on n + 1 = 1 point (order 0) is
known as the left endpoint rule and given by the approximation∫ b

a

f(x) dx ≈ (b− a)f(a)

• Similarly, the (order 0) open rule defined on n+1 point is known as the midpoint

rule. The approximation in this case is given by
∫ b

a
f(x) dx ≈ (b− a)f

(
a+b
2

)
• The Newton-Cotes formula of order n = 1 is known as the trapezoidal rule. In
this case, we have x0 = a, x1 = b, the Lagrange polynomial of order 1 is given
by

p1(x) = ℓ0(x)f(x0) + ℓ1(x)f(x1)

=
x− b

a− b
f(a) +

x− a

b− a
f(b)

=
1

b− a
[−(x− b)f(a) + (x− a)f(b)]

Substituting this interpolating polynomial for f in the integral, we get∫ b

a

f(x) dx ≈ 1

b− a

[
f(b)

(x− a)2

2
− (x− b)2

2
f(a)

]b
a

≈ (b− a)f(b)

2
+

(b− a)f(a)

2

=
(b− a)

2
(f(b) + f(a))

=
h

2
[f(x0) + f(x1)]

• The Newton-Cotes quadrature formula of order n = 2 was already known to
Kepler in 1612 and Cavalieri in 1639 and is called Simpson’s rule as it was

3



rediscovered by Simpson in 1743. The quadrature points are now defined as
x0 = a, x1 = a+b

2 , x2 = b. And the quadrature weights are computed as

w0 =

∫ b

a

ℓ0(x) dx =

∫ b

a

(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
dx

=
1

(x0 − x1)(x0 − x2)

∣∣∣∣x3

3
− (x1 + x2)

x2

2
+ x1x2x

∣∣∣∣b
a

=
1

(x0 − x1)(x0 − x2)

(
b3

3
−
(
a+ 3b

2

)
b2

2
+ b

(
ab+ b2

2

))
− 1

(x0 − x1)(x0 − x2)

(
b3

12
− a3

3
−
(
a+ 3b

2

)
a2

2
+ a

(
ab+ b2

2

))
=

2

(a− b)2

(
b3

12
− a3

12
+

ab2

4
− 2ab2

4
+

a2b

4

)
=

1

6(a− b)2
(b− a)3

=
b− a

6

Similarly we can obtain w1 = 4
6 (b − a) as well as w2 = w0 by symmetry.

Combining those weights, we get∫ b

a

f(x) dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]

One way to compare quadrature rules is to determine the highest degree polynomial
that the rule integrates exactly (we call this the degree of precision of the rule). The
degree of precision of the rule is obiously always at least equal to the order of the
rule. However, it can sometimes be larger as shown by the following examples. Let us
consider the midpoint rule first. As we will see, this rule integrates a linear function
exactly but cannot integrate a quadratic polynomial∫ b

a

(p0 + p1x) dx =

∣∣∣∣p0x+ p1
x2

2

∣∣∣∣b
a

= p0(b− a) +
p1
2
(b2 − a2)

∫ b

a

(
p0 + p1x+ p2x

2
)
dx =

∣∣∣∣p0 + p1
x2

2
+ p2

x3

3

∣∣∣∣b
a

= p0 (b− a) + p1

(
b2 − a2

2

)
+ p2

(
b3 − a3

3

)
Applying the midpoint rule to the degree-1 polynomial, we get∫ b

a

(p0 + p1x) dx ≈ (b− a)f

(
a+ b

2

)
= (b− a)

(
p0 + p1

(
a+ b

2

))
= (b− a)p0 + p1

(
b2 − a2

2

)
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Similarly, for the degree-2 polynomial∫ b

a

(
p0 + p1x+ p2x

2
)
dx = p0 (b− a) + p1

(
b2 − a2

2

)
+ p2

(
b3 − a3

3

)
̸= (b− a)

(
p0 + p1

(
a+ b

2

)
+ p2

(
a+ b

2

)2
)

Let us now consider the trapezoidal rule. As this rule has 2 quadrature points whereas
the Midpoint rule only has one, we might think that the degree of precision of this
rule would be higher. Applying the rule to the degree-1 and degree-2 polynomials
however shows a different reality.

For degree-1 polynomials, we indeed have∫ b

a

(p0 + p1x) dx = (b− a)

[
(p0 + p1a) + (p0 + p1b)

2

]
= (b− a)p0 +

b2 − a2

2
p1

For degree-2 polynomials, the rule again gives

(b− a)

[
p0 + p1a+ p2a

2 + p0 + p1b+ p2b
2

2

]
= (b− a)p0 +

p1
2
(b2 − a2) +

(b− a)(a2 + b2)p2
2

While the integral gives∫ b

a

(
p0 + p1x+ p2x

2
)
dx = p0 (b− a) + p1

(
b2 − a2

2

)
+ p2

(
b3 − a3

3

)
In a similar manner, we can show that Simpson’s rule integrate polynomials of degree
at most 3 exactly.

For the Newton-Cotes quadratures, our observations can in fact be summarized more
generally as follows:

• For any even n, the Newton-Cotes quadrature of order n (i.e. defined on n+1)
points has degree of precision n

• For every odd n, the Newton-Cotes quadrature of order n (defined on n + 1)
points has degree of precision n+ 1

Error estimates

In the previous section, we have discussed the precision of the Newton-Cotes quadra-
tures based on the highest degree of the polynomial for which the quadrature was
equal to the integral.
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In this section, we will derive estimates on the error made by the quadrature for gen-
eral functions. One of the simplest approach at deriving error bounds on quadratures
is to rely on the interpolation error.

As an example, let us consider the trapezoidal rule. In this case and for the interval
[a, b], integrating the interpolating polynomial gives us the estimate∫ b

a

f(x) dx ≈ f(a) + f(b)

2
h

From our bound on the interpolation error, recall that we have

f(x) = f(a)
x− b

a− b
+ f(b)

x− a

b− a
+

(x− a)(x− b)

2
f ′′(ξ), where ξ ∈ [a, b]

Substituting this in the integral, we get∫ b

a

(x− a)(x− b)

2
f ′′(ξ) dx = f ′′(ξ)

∣∣∣∣x3

6
− (a+ b)

x2

4
+ ab

x

2

∣∣∣∣b
a

= f ′′(ξ)

(
ab2

4
− a2b

4
− b3

12
+

a3

12

)
= −f ′′(ξ)

12
(b− a)

3

From which we can thus write∣∣∣∣∣
∫ b

a

f(x) dx− f(a) + f(b)

2
h

∣∣∣∣∣ ≤ sup
ξ∈[a,b]

f ′′(ξ)

12
h3, h ∈ [a, b]

A similar idea can be used for Simpson’s rule. Using the expression of the interpolation
error, we get∫ b

a

f(x) dx =

∫ b

a

[
(x− b)(x−

(
a+b
2

)
)

(a− b)
(
a−

(
a+b
2

))f(a) + . . .+ f(b)
(x− a)(x−

(
a+b
2

)
)

(b− a)(b−
(
a+b
2

)
)

]
dx

=
b− a

6

[
f(a) + 4f

(
a+ b

2
+ f(b)

)]
+

∫ b

a

f (3)(ξ)

6
π3(x) dx

=
b− a

6

[
f(a) + 4f

(
a+ b

2
+ f(b)

)]
+

∫ b

a

f (3)(ξ)

6
(x− a)

(
x−

(
a+ b

2

))
(x− b) dx

=
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
+

f (3)(ξ)

6
h4C

where C is an absolute constant. In this case, it is however possible to do better as
we will see. Recall that we have shown that any Newton-Cotes quadrature of order n
could perfectly integrate any polynomial of order n for any even n and any polynomial
of order n+ 1 for odd n.
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In the case of odd quadrature rules, we will see that it is possible to improve the
bound by relying on the fact that a tighter interpolation error can be obtained for
even functions.

Let us go back to the derivation of the interpolation error for Lagrange polynomials.
We consider the case n+1 = 3 (equivalent to Simpson’s rule) although the reasoning
holds for any even n. Now assuming that f(x) is an even function with respect to the

center of the interval [a, b] (i.e. f
((

a+b
2

)
+ t
)
= f

((
a+b
2

)
− t
)
for t ∈

[
− (b−a)

2 , b−a
2

]
)

Let us define π̃4(x) as

π̃4(x) =

(
x− a+ b

2

)2

(x− a) (x− b)

and consider the function φ(y) defined as

φ(y) = f(y)− p2(y)−
f(x)− p2(x)

π̃4(x)
π̃4(y), x ̸= a, b,

(
a+ b

2

)

Obviously we have φ(x) = 0, for all x. The function φ(y) vanishes at a, b,
(
a+b
2

)
as

well as x ̸= a+b
2 . In accordance with Rolle’s theorem, the derivative must therefore

vanish on at least 3 points interlacing the roots of φ(y) but since φ(y) is even with
respect to

(
a+b
2

)
, φ′(y) must also vanish at

(
a+b
2

)
. As a result φ′(y) vanishes on at

least 4 points including
(
a+b
2

)
. Applying Rolle’s theorem to φ′(y), we conclude that

φ′′(y) must vanish on at least 3 points and continuing like this up to φ(4)(y), we get
that there must exist a ξ ∈ (a, b) such that φ(4)(ξ) = 0. This in particular implies

f (4)(ξ)π̃4(x)

4!
= (f(x)− p2(x))

Now note that for any given function f , decomposing f into its even and odd parts
with respect to a+b

2 , i.e.

feven

(
a+ b

2
+ t

)
= feven

(
a+ b

2
− t

)
, t ∈

[
−a+ b

2
,
a+ b

2

]
(1)

fodd

(
a+ b

2
+ t

)
= −fodd

(
a+ b

2
− t

)
, t ∈

[
−a+ b

2
,
a+ b

2

]
(2)

we can write

ISimpson[f ] =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
=

b− a

6

[
feven(a) + fodd(a) + 4feven

(
a+ b

2

)
+ 4fodd

(
a+ b

2

)
+ feven (b) + fodd(b)

]
=

b− a

6

[
feven(a) + feven(b) + 4feven

(
a+ b

2

)]
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Moreover, in the case of odd n+ 1, the integral reduces to∫ b

a

f(x) dx =

∫ b

a

feven(x) dx+

∫ b

a

fodd(x) dx

=

∫ b

a

feven(x) dx

so in particular, the error ε

ε =

∫ b

a

f(x) dx− b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
in the case of odd n+ 1 quadratures can be defined from the even part of f solely

ε =

∫ b

a

feven(x) dx− b− a

6

[
feven(a) + feven(b) + 4feven

(
a+ b

2

)]
yet from our previous discussion, we can express this last quantity as

feven(x)− peven(x) =
f
(4)
even(ξ)π̃4(x)

4!

To conclude with use the fact that for any function f , we can express feven as

feven(x) =
f( a+b

2 +t)+f( a+b
2 −t)

2 . In particular, we can thus write∣∣∣∣∣f (4)
even(ξ)π̃4(x)

4!

∣∣∣∣∣ ≤ 1

2

∣∣∣∣f (4)(ξ) + f (4)(−ξ)

4!
π̃4(x)

∣∣∣∣
from this we can finally conclude∫ b

a

f(x) dx =
b− a

6

[
f(a) + 4f

(
a+ b

2
+ f(b)

)
+ f(b)

]
+

∫ b

a

f (4)(ξ) + f (4)(−ξ)

2 · 4!
π̃4(x) dx

=
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− f (4)(ξ) + f (4)(−ξ)

2 · 4!
(b− a)5

120

The (b− a)5 coming from the fact that π̃4(x) is a degree 4 polynomial.

Composite rules

In order to improve the accuracy of our estimates, instead of increasing the order
of quadrature, it is often more convenient to consider composite formulas which are
obtained by subdividing the original interval of integration [a, b] and by applying a
simpler quadrature formula to each of the subintervals. I.e. for a step size h =
(b− a)/n, we consider the subdivision∫ b

a

f(x) dx =

n−1∑
k=0

∫ xk+1

xk

f(x) dx (3)
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where xk = a+ kh = a+ k
n (b− a), k = 0, 1, . . . , n. From this we derive the (refined)

approximation ∫ b

a

f(x) dx =

n−1∑
k=0

(xk+1 − xk)
[f(xk+1) + f(xk)]

2

Two of the most popular composite formulas are the composite formulas derived from
the Trapezoidal rule and Simpson’s rule. Those two rules are recalled below.

Definition 2 (Composite Trapezoidal rule).∫ b

a

f(x) dx ≈
[
1

2
f(x0) + f(x1) + . . .+ f(xn−1) +

1

2
f(xn)

]
(4)

The error for the Trapezoidal rule can be made arbitrarily small provided that the
function is sufficiently regular, as indicated by the following theorem

Theorem 1. Let f : [a, b] 7→ R, twice continuously differentiable. Let Ih(f)

denote the approximation of the integral
∫ b

a
f(x) dx obtained from the com-

posite Trapezium rule (4). The error made by this approximation obeys∫ b

a

f(x) dx− Ih(f) = − (b− a)3

12n2
max
ξ∈[a,b]

|f ′′(ξ)|

Proof. The result follows from the application of the error estimate for the simple
Trapezium rule on each of the subintervals. I.e. recall that for an interval [a, b], we
have ∫ b

a

f(x) dx− (b− a)

2
[f(a) + f(b)] = −h3

12
f ′′(ξ)

Applying this to the subdivision (3) we get∣∣∣∣∣
∫ b

a

f(x) dx− Ih(f)

∣∣∣∣∣ ≤
n−1∑
k=0

∣∣∣∣∫ xk+1

xk

f(x) dx− (xk+1 − xk)
[f(xk+1) + f(xk)]

2

∣∣∣∣
≤

n−1∑
k=0

(b− a)3

12n3
max

ξk∈[xk,xk+1]
|f ′′(ξk)|

≤ (b− a)3

12n2
max
ξ∈[a,b]

|f ′′(ξ)|
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A similar result can be derived for the composite Simpson’s rule which is defined
below.

Definition 3 (Composite Simpson’s rule).∫ b

a

f(x) dx ≈ h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3)+

+2f(x2n−2) + 4f(x2n−1) + f(x2n)]

(5)

=

n−1∑
i=0

h

3
[f(x2i) + 4f(x2i+1) + f(x2i+2)] (6)

The corresponding error estimate is summarized by Theorem 2 below.

Theorem 2. Let f : [a, b] 7→ R, four times continuously differentiable. Let

Ih(f) denote the approximation of the integral
∫ b

a
f(x) dx obtained from the

composite Simpson’s rule (6). The error made by this approximation obeys∣∣∣∣∣
∫ b

a

f(x) dx− Ih(f)

∣∣∣∣∣ ≤ (b− a)5

2880n4
max
ξ∈[a,b]

∣∣∣f (4)(ξ)
∣∣∣

Gauss quadrature

So far, we have considered quadrature formulas that were designed on n + 1 points
to perfectly integrate polynomials of degree at most n.

Unlike the polynomial interpolation problem, in which our only freedom was in the n+
1 coefficients, a quadrature however relies on the n+1 quadrature weights wk and the
n+1 quadrature points xk which we have so far consideresd as fixed and equispaced.
In other words, provided that we can choose the quadrature points xk, nothing should
prevent us from requiring exact interpolation for polynomials of degrees larger than
n. In particular, using n + 1 quadrature weights and n + 1 quadrature points, we
should in theory be able to integrate polynomials of degree 2n+1 (defined on 2n+2
parameters) exactly. This is the idea behind Gauss quadrature formula. We will in
fact generalize our original quadrature setting by considering general integrals of the
form ∫ b

a

w(x)f(x) dx

For which we will study approximations derived from interpolation polynomials. I.e.
as in the w(x) = 1 setting, we look for a decomposition of the form∫ b

a

f(x) dx ≈
∫ b

a

w(x)(Φnf)(x) dx
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The meaning of the w(x) will become clear later. For now, we summarize the above
discussion through the following definition

Definition 4. A quadrature formula∫ b

a

w(x)f(x) dx ≈
n∑

k=0

akf(xk)

with n+1 distinct quadrature points is called a Gaussian quadrature formula
if it integrates all polynomials p ∈ P2n+1 exactly. I.e.

n∑
k=0

akp(xk) =

∫ b

a

w(x)p(x) dx (7)

for all polynomials p ∈ P2n+1.

Typical examples of Gaussian quadratures are given by

w(x) = 1, w(x) =
√
1− x2, w(x) =

1√
1− x2

(8)

The key idea behind Gaussian quadrature formulas is that each choice for w(x) comes
with an associated family of orthogonal polynomials.

Lemma 3. Given a weight function w(x), there exists a unique sequence
(qn)n of polynomials of the form q0 = 1, qn = xn+ rn−1(x), n = 1, . . . with
rn−1 ∈ Pn−1 satisfying∫ b

a

w(x)qn(x)qm(x) dx = 0, n ̸= m

and Pn = span {q0, . . . , qn}, n = 0, 1, . . .. Moreover, the unique Gaussian
quadrature formula defined on n+1 points has quadrature points given by the
zeros of qn+1.

Deriving the quadrature weights and points can be done directly through (7), substi-
tuting polynomials of degree less than or equal to 2n+1 and requiring an exact match
between the integral and its approximation. However when the family of underlying
orthogonal polynomials is known (which is the case for the weights functions given
in (8) as we will see), and when the zeros of those polynomials are known, deriving
the quadrature points and weights becomes a lot easier.

Consider the approximation of the integral
∫ 1

0
f(x) dx on 2 points x0, x1. Deriving

the Gauss quadrature requires the approximation a0f(x0) + a1f(x1) to be exact for
every polynomial up to degree 2n+1 = 3 (i.e on 2n+2 = 4 parameters). Concretely,
considering separately the polynomials p(x) = 1, p(x) = x and p(x) = x2, we get the
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equations

1 =

∫ 1

0

1 dx = a0 + a1 (9)

1

2
=

∫ 1

0

x dx = a0x0 + a1x1 (10)

1

3
=

∫ 1

0

x2 dx = a0x
2
0 + a1x

2
1 (11)

1

4
=

∫ 1

0

x3 dx = a0x
3
0 + a1x

3
1 (12)

Because of the non-linear nature of the equations, the system (9) to (12) is not easy
to solve. There are more efficient approaches however.

Instead of solving (9) to (12) explicitly, we can rely on the following property of the
Gaussian quadrature which states that the quadrature points xk correspond to the
roots of the polynomial of degree (n+ 1) orthogonal to every polynomial of Pn.

Lemma 4. Let x0, . . . , xn be the n + 1 quadrature points of a Gaussian
quadrature formula. We then have∫ b

a

w(x)qn+1(x)q(x) dx = 0 (13)

for qn+1(x) = (x− x0) . . . (x− xn) and all q ∈ Pn

Applying the result of this lemma to our example, building a polynomial q2(x) =
(x − x0)(x − x1) = x2 + px + q, and requiring the orthogonality of this polynomial
with respect to the polynomials p(x) = 1 and p(x) = x, we have∫ 1

0

x2 + px+ q dx = 0

∫ 1

0

(x2 + px+ q)x dx = 0

⇐⇒

1

3
+

p

2
+ q = 0

1

4
+

p

3
+

q

2
= 0

From those equations, we get

p = −1

q = 1/6

Which together give (x0 + x1) = 1 and x0x1 = 1/6 and hence xi =
1±

√
2/6

2 . Since x0

and x1 are undifferentiated, by symmetry we can choose any of the solutions

x0 =
1

2
+

√
1

12
, x1 =

1

2
−
√

1

12

x0 =
1

2
−
√

1

12
, x1 =

1

2
+

√
1

12

12



Substituting those solutions in (9)-(10), we finally get the equations

a0 + a1 = 1

a0x0 + a1x1 =
a0 + a1

2
+ a0

1√
12

− a1
1√
12

= 1/2

We now introduce the orthogonal polynomials associated to the weight functions (8).

Example 1 (Gauss-Chebyshev). We start by considering the weight function
w(x) = 1√

1−x2
on [−1, 1]. In this case the quadrature points are given by the

zeros of the Chebyshev polynomials

Tn(x) = cos(n arccosx)

which are defined as xk = cos
(
2k+1
2n π

)
, k = 0, . . . , n. Given those points, the

quadrature weights can be derived by using the fact that the quadrature must
be exact for degree n polynomials (which includes Chebyshev polynomials of
degree at most n). In the case of the Chebyshev polynomials, requiring exact
integration gives the constraint

n∑
k=0

akTm(xk) =

∫ 1

−1

Tm(x)√
1− x2

dx, m = 0, . . . , n

The integral on the right can be solved by noting that the Chebyshev polyno-
mial is multiplied by the derivative of the arccos. From this, we then derive
ak = π/(n+ 1), k = 0, . . . , n, and the Gauss-Chebyshev quadrature on n+ 1
points can be defined as∫ 1

−1

f(x)√
1− x2

dx ≈ π

n+ 1

n∑
k=0

f

(
cos

(
2k + 1

2(n+ 1)
π

))
(14)

Note that we did not put any contraint on the function f appearing in (14). As a
result, nothing prevents us from deriving an approximation for the integral of any
function g by simply setting f(x) = g(x)

√
1− x2.

13



Example 2 (Gauss-Legendre). If we consider the weight function w(x) = 1,
the family of orthogonal polynomials is now given by the family of Legendre
polynomials,

Ln(x) ≡
1

2nn!

dn

dxn
(x2 − 1)n

Clearly we have Ln ∈ Pn. The n zeros of those polynomials define the Gauss-
Legendre quadrature. Unlike the Gauss-Chebyshev setting discussed in Ex-
ample 1, it is difficult to write down the zeros of the Legendre polynomials
explicitly. For this reason, in these notes, we restrict to the cases n = 1, 2.
In this setting, the Legendre polynomials are given by

q0(x) = 1, q1(x) = x, q2(x) = x2 − 1

3

In the case n = 1, we have x = 0 and w1 can be estimated by exact integration

of the degree 0 polynomial p(x) = 1, i.e. w1 =
∫ 1

−1
1 dx = 2. For the

degree-2 rule, using the Legendre polynomial of degree 2, we find the zeros
x1 = − 1√

3
, x2 = 1√

3
. Again, relying on the fact that the rule must be exact

for polynomials of degree at most 2n+ 1, we have

w1 + w2 =

∫ 1

−1

dx = 2 (15)

w1x1 + w2x2 =

∫ 1

−1

x dx = 0 (16)

which gives w1 = w2 = 1. The final Gauss-Legendre quadrature of order 2
can finally read as ∫ 1

−1

f(x) dx ≈ f

(
−1√
3

)
+ f

(
1√
3

)
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