CSCI-UA 9473 - Introduction to Machine Learning Midterm II

Augustin Cosse

June 2022

Total: 35 points Total time: 2h00

General instructions: The exam consists of 3 questions (each question consisting itself of several subquestions). Once you are done, make sure to write your name on each page, then take a picture of all your answers and send it by email to acosse@nyu.edu. In case you have any question, you can ask those through the chat. Answer as many questions as you can starting with those you feel more confident with.

Question 1 (16pts)

1.	Indicate	whether	the	following	statements	are	true	or	false	(5pts	3,
----	----------	---------	-----	-----------	------------	-----	------	----	-------	-------	----

True / False	When maximizing a likelihood function through gradient descent,				
	the k^{th} iterate is given by adding the gradient of the function				
	(scaled by the learning rate) to the $(k-1)^{th}$ iterate.				
True / False	The linear model selected by LASSO will, in general, contain more vanishing				
	coefficients than the model learned by RIDGE				
True / False	When learning a linear regression model, adding features will increase the bias				
True / False	Assuming that x is used to denote the feature vectors and that t is used				
	to denote the targets, discriminative classifiers learn a model for $p(\boldsymbol{x} t)$				
	while generative classifiers learn a model for $p(t \boldsymbol{x})$				
True / False	Linear Discriminant Analysis relies on the assumption that the examples				
	within a class are distributed according to a Multivariate Gaussian distribution				
True / False	The naive Bayes classifier assumes conditional independence of the features				
	with respect to the class				
True / False	The naive Bayes classifier is an instance of a generative classifier				
True / False	Applying the one-vs-one approach to a multiclass classification problem				
·	with K classes in a D dimensional space, requires learning $K(K-1)/D$ classifiers.				
	can be done by minimizing the binary cross entropy loss				

2. [5pts] We consider a d = 2 dimensional dataset with 2 pairs $\{\boldsymbol{x}_i, t_i\}_{i=1}^2$, i.e. $\boldsymbol{x}_i = (x_{i1}, x_{i2}) \in \mathbb{R}^2$. We assume that $x_{i1} = x_{i2}$ for i = 1, 2 as well as $t_1 + t_2 = 0$ and $\sum_{i=1}^2 x_{i1} = \sum_{i=1}^2 x_{i2} = 0$ so that the bias $\beta_0 = 0$. Answer the following questions

- a) Write the ridge regression optimization problem in this setting [1pt]
- b) Argue that in this setting, the ridge coefficient estimates satisfy $\hat{\beta}_1 = \hat{\beta}_2$ [1pt]
- c) Write down the LASSO optimisation problem in this setting [1pt]
- d) Argue that in this setting, the coefficients $\hat{\beta}_1$ and $\hat{\beta}_2$ are not unique In other words, there are many possible solutions to the optimisation problem in 2c. Describe those solutions. [2pts]

- 3. [3pts] We consider the dataset shown in Fig. 1. Draw on top of this dataset the least squares classifier and the logistic regression classifier. Briefly motivate your answer.
- 4. [3pts] We collect data for a group of students in a machine learning class with variables $x_1 =$ "number of hours studied", $x_2 =$ "undergrad GPA" and t = "receives an A". We fit a logistic regression model to the data and produce estimated coefficients $\hat{\beta}_0 = -6$, $\hat{\beta}_1 = 0.05$, $\hat{\beta}_2 = 1$.
 - (a) Estimate the probability that a student who studies for 40h and has an undergrad GPA of 3.5 gets an 'A' in the class.
 - (b) How many hours would the student in part (a) need to study to have a 50% chance of getting an 'A' in the class?

Question 2 (13pts)

1. Indicate whether the following statements are true or false [5pts]

True / False	The training of a neural network does not depend on the initialization
True / False	If all the activations in a neural network are set to the identity, the model
	collapses to a linear model in the inputs
True / False	Neural networks with step activations can efficiently be trained through backpropagation
True / False	The sigmoid function is often used as the output activation when neural networks are used
	for regression problems
True / False	When training a neural network, a training epoch refers to one sweep through the entire dataset
True / False	Reducing the number of units in a neural network will increase the bias
True / False	Neural networks are parametric models

- 2. [5pts] Consider a neural network with two hidden layers: d = 2 dimensional inputs, 2 units in the first hidden layer, 2 units in the second hidden layer and a single output.
 - a) Draw a picture of the network
 - b) Write out an expression for y(x) assuming ReLU activation functions. Be as explicit as possible.
 - c) How many parameters are there?
- 3. [3pts] Consider the dataset given in table 1. Can this boolean function be represented by a single neuron with logistic activation function? If yes, give the value of the weights. If not motivate your answer with a short sentence.

Question 3 (6pts) We consider a set of training pairs $\{t^{(i)}, \boldsymbol{x}^{(i)}\}$ that satisfy the relation $t^{(i)} = \beta_0 + \sum_{j=1}^d x_j^{(i)} \beta_j + \varepsilon^{(i)}$ where $\varepsilon^{(i)}$ are independent and identically distributed from a $N(0, \sigma^2)$ distribution.

- 1. [2pts] Write the likelihood for the data.
- 2. [2pts] We first assume the following prior for β : β_1, \ldots, β_d are independent and identically distributed according to a Laplace distribution with mean 0 and common scale parameter b. I.e. $p(\beta) = \frac{1}{2b} \exp(-\|\beta\|_1/b)$. Write out the posterior $p(\beta|t)$ for β in this setting.
- 3. [2pts] Now assume the following prior for $\beta: \beta_1, \ldots, \beta_d$ are independent and identically distributed according to a normal distribution with mean zero and variance c. Write out the posterior $p(\beta|t)$ in this setting.

x_1	x_2	$y(x_1, x_2)$
1	1	0
0	0	0
1	0	1
0	1	0

Table 1: Dataset used for Question 2

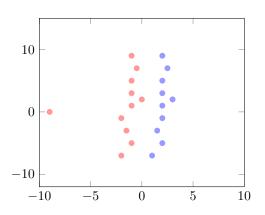


Figure 1: Training set for Question 1.