CSCI-UA 9473 - Introduction to Machine Learning Midterm III

Augustin Cosse

June 2022

Total: 31 points Total time: 2h

General instructions: The exam consists of 2 questions (each question consisting itself of several subquestions). Once you are done, make sure to write your name on each page, then take a picture of all your answers and send it by email to acosse@nyu.edu. In case you have any question, you can ask those through the chat. Answer as many questions as you can starting with those you feel more confident with.

Question 1 (16pts)

1. [5pts] Indicate whether the following statements are true or false

True / False	When the feature space is larger, overfitting is more likely	
True / False	Gradient descent applied to the least squares loss for the linear regression pro-	
	can get stuck at local minimas	
True / False	Logistic regression is a generative classifier	
True / False	Logistic regression is an example of a regression model	

Suppose we have a dataset with five features explained below

x_1	GPA
x_2	IQ
x_3	Level (1 for college, 0 for High School)
x_4	Interaction between GPA and IQ
x_5	Interaction between GPA and Level

The target is "starting salary after graduation(in thousands of dollars)". Suppose that we use a least squares approach to learn the model and got $\hat{\beta}_0 = 50$, $\hat{\beta}_1 = 20$, $\hat{\beta}_2 = .07$, $\hat{\beta}_3 = 35$, $\hat{\beta}_4 = .01$ and $\hat{\beta}_5 = -10$. Indicate whether the following are true or false

True / False	For a fixed value of IQ and GPA, high school graduates	
	earn more, on average, than college graduates	
True / False	For a fixed value of IQ and GPA, college graduates earn	
	more, on average, than high school graduates	
True / False	For a fixed value of IQ and GPA, high school graduates earn	
	more, on average, than college graduates provided that the GPA is high enough	
True / False	For a fixed value of IQ and GPA, college graduates earn	
	more, on average, than high school graduates provided that	
	the GPA is high enough	

2. [5pts] Explain how the binary classifier can be extended to a multiclass classification problem. Give three possible extensions and provide the associated pseudo code

3. [6pts] Consider real valued variables x and t. The t variable is generated, conditional on x, from the following process

$$\varepsilon \sim N(0, \sigma^2)$$
$$t = \beta x + \varepsilon$$

where every ε is an independent variable which is drawn from a Gaussian distribution with mean 0 and standard deviation σ . This is a one feature linear regression model, where β is the only weight parameter. The conditional probability distribution of t is given by

$$p(t|x,\beta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(t-\beta x)^2\right)$$

(a) [2pts] Assume we have a training dataset of n pairs $(x^{(i)}, t^{(i)})$ for i = 1, ..., n and σ is known. Which of the following equations correctly represent the maximum likelihood problem for estimating β ? (Say yes or no to each possibility, keeping in mind that several of them might be right)

$$\begin{aligned} &\arg_{\beta} \sum_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{1}{2\sigma^{2}} (t^{(i)} - \beta x^{(i)})^{2}) \\ &\arg_{\beta} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{1}{2\sigma^{2}} (t^{(i)} - \beta x^{(i)})^{2}) \\ &\arg_{\beta} \sum_{i=1}^{n} \exp(-\frac{1}{2\sigma^{2}} (t^{(i)} - \beta x^{(i)})^{2}) \\ &\arg_{\beta} \prod_{i=1}^{n} \exp(-\frac{1}{2\sigma^{2}} (t^{(i)} - \beta x^{(i)})^{2}) \\ &\arg_{\beta} \frac{1}{2} \sum_{i=1}^{n} (t^{(i)} - \beta x^{(i)})^{2} \\ &\arg_{\beta} \frac{1}{2} \sum_{i=1}^{n} (t^{(i)} - \beta x^{(i)})^{2} \end{aligned}$$

- (b) [2pts] Derive the maximum likelihood estimator of the parameter β in terms of the training examples $t^{(i)}$ and $x^{(i)}$. (suggestion: start with the simplest form of the problem you found above and use the fact that the maximum/minimum can be found by setting the derivatives to zero)
- (c) [2pts] We now consider a prior on β . Assume that $\beta \sim N(0, \lambda^2)$ so that

$$p_{\lambda}(\beta) = \frac{1}{\sqrt{2\pi\lambda}} \exp(-\frac{1}{2\lambda^2}\beta^2)$$

We let β_{MLE} and β_{MAP} denote the Maximum Likelihood and Maximum A Posteriori estimators. Complete the table below

	$p_{\lambda}(\beta)$: wider/narrower/same ?	$ \beta_{MLE} - \beta_{MAP} $ increase/decrease?
As $\lambda \to \infty$		
As $\lambda \to 0$		

Question 2 (15pts)

1. [5pts] Indicate whether the following statements are true or false

True / False	A neural network with a single hidden layer (and one output unit)
	can learn the XOR dataset
True / False	A neural network with a single unit and a sigmoid activation is equivalent to
	a logistic regression classifier
True / False	Gradient descent applied to the least squares loss for the training
	of neural network can get stuck at local minimas
True / False	Increasing the number of units in the hidden layer of a one hidden layer
	neural network will increase the bias
True / False	Increasing the number of units in the hidden layer of a one hidden layer
	neural network will increase the variance

- 2. [4pts] Give the expression of the perceptron classifier and explain how this classifier can be trained through the perceptron learning rule
- 3. [6pts] We consider a two hidden layers neural network y(x; W), x ∈ R² with a final sigmoid activation (output unit). The first hidden layer consists of 3 units and the second hidden layer consists of 2 units. The weights from the first and second layers (including the intercepts) are respectively stored in the matrices W₁ ∈ R^{3×3} and W₂ ∈ R^{2×4}. The weights associated to the output unit are stored in the vector w_{out} ∈ R³. All the hidden units have ReLU activations
 - (a) [2pts] Sketch the ReLU and sigmoid functions
 - (b) [2pts] Sketch the network
 - (c) [2pts] Give the detailed expression of $y(\mathbf{x}; W)$ as a function of \mathbf{x} , W_1 , W_2 and w_{out} .