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Supervised Learning (I)

• Linear regression

• Bias variance trade-off (Linear and non linear data)

• Regularization (Ridge, Lasso, Subset Selection)

• Linear classification

• Separating hyperplane, LDA, logistic regression

• Perceptron

• Discriminative vs Generative classifiers

• Non parametric regression/classification

• Kernel methods

• Support vector machines

• Neural Networks, convolutional neural networks



Today: Unsupervised Learning

• So far : predictions based on training samples for which joint
values {(x i , yi )}Ni=1 are known.

• Problem: costly. Most datasets are not labeled.

• Today: Unsupervised learning = learning without a teacher

• In unsupervised Learning we are given samples (x1, x2, . . . , xN)
from a distribution P(X ) and the goal is to infer the
properties of the distribution without the help of the teacher.

• There are two main types of unsupervised learning
approaches: (1) clutering the prototypes and (2) trying to find
low dimensional representation of those prototypes such that
X = X (θ) and θ reveals meaningful information.







Today: Unsupervised Learning

• Finding lower dimensional representation of the data gives an
intuition on the association among the variables and whether
the variables can be considered as functions of a smaller set of
”latent” variables, i.e. X = X (θ) for some θ.

• Examples include

• Associations rules,

• Factor Analysis, including principal and independent
component Analysis,

• Manifold learning methods including Multidimensional scaling,
Locally Linear Embedding, Self organizing maps, ..

• Principal curves,...



Clustering Algorithms

• There are three main types of clustering algorithms (HTF)

• Combinatorial algorithms (Work directly on the data without
assuming an underlying probability distribution)

• Mixture Models (Assume that the prototypes are i.i.d. samples
from some probability distribution. The probability distribution
is assumed to be a mixture of simpler densities, each one of
the corresponding to the distribution of a cluster. The
distribution is fit to the data through MLE)

• The last type, called Mode seekers or Bump hunting
algorithms try to estimate the modes of the distribution (and
hence the clusters) direclty from the data (non-parametric)



Association Rules

• Let us use X = (X1, . . . ,Xd) to encode the set of items
purchased in a store with Xi = {0, 1} depending on whether
item i is purchased (1) or not (0).

• The idea underlying association rules is to try to find values of
the variables X1 to Xd that frequently appear simultaneously.

• This approach is found in product organization, cross
marketing (i.e. sales promotion) or even finance.



Association Rule Analysis

• In Association rule analysis, we want to find subsets sj of
values such that the probability for the Xj to simultaneously
take the values in sj ∈ Sj

P
(
∩pj=1(Xj ∈ sj)

)
is maximized. The intersection ∩pj=1(Xj ∈ sj) is called
conjunctive rule.

• As an example, the association rule could help us detect two
clusters

• Cluster 1 is defined from the observation that a (sufficiently
large) group of customers always purchase items 1 and 3
simultaneously ((1, 0, 1, 0))

• Cluster 2 is defined from the observation that a (sufficiently
large) group of customers always purchase items 2 and 4
simultaneously (Xi = (0, 1, 0, 1)).



Market Basket Analysis

• General approaches at finding subsets of variable values
(s1, . . . , sp) with relatively high occurence are not feasible for
large databases

• Instead, we turn to a more tractable algorithm known as
Market Basket Analysis

• Market Basket Analysis simplifies the problem by only
considering two types of subsets. Either sj consists of a single
value of Xj , sj = {vj} or it consists of the entire set of values
that Xj can assume (sj = Sj)

• The problem is then reduced to finding subsets of indices J
and associated values vj such that the probability

P

⋂
j∈J

(Xj = vj)





Market Basket Analysis

From HTF, The Elements of Statistical Learning.



Market Basket Analysis

• Market Basket Analysis also relies on the use of dummy
variables Zk ∈ {0, 1} that each represent one possible value of
the variables X`.

• The first value v1,1 that X1 can take is encoded through the
variable Z1 (Z1 = 1 if this value appears and 0 otherwise),
and so on for every value and every variable

• We thus have K =
∑p

j=1 |Sj | dummy variables and we can try
to determine subsets of indices K = {1, . . . ,K} for which the
probability

P

(⋂
k∈K

(Zk = 1)

)
= P

(∏
k∈K

Zk = 1

)

is maximized.



Market Basket Analysis

• The set K is called an item set. Together those two
assumptions define the general Market Basket Analysis
formulation.

• Note that two dummy variables Zk associated to the same
variable Xj cannot simultaneously take the value 1

• One way to estimate the probability of occurence of given item
sets is to count the number of instances in each subset K, i.e

P̂

(∏
k∈K

(Zk = 1)

)
=

1

N

N∑
i=1

∏
k∈K

zik

• Where the variable zik is 1 if the corresponding variable X i
k in

the i th example X i = (X i
1, . . . ,X

i
d) takes the value encoded by

this zik .



Market Basket Analysis

• Given a model for the probability P, the clusters are defined
by setting a threshold {K` | T (K`) > t}

• How do we solve the Market Basket Analysis problem in
practice? One possibility is the A priori algorithm

• Start with single item sets and discard the sets for which the
support is less than the threshold

• As a second step, form all subsets of size 2 that can be formed
by pairing subsets of size 1 that survived the first pass. Then
discard those size 2 subsets that are less than the threshold.

• In other words, to generate the item sets of size |K| = m, we
only need to consider those sets whose ancestors of size m − 1
are frequent item sets



From the a priori algorithm to association rules

• Once the A priori algorithm has returned high support item
sets K, Association Rule Analysis partition each set K into
disjoint subsets A and B from which it defines association
rules of the form A⇒ B where A is called antecedent and B
is called the consequent.

• Association rules are ways of studying how much the purchase
of one item influence the purchase of another item.



From the a priori algorithm to association rules

• To characterize those association rules, we introduce 3
quantities,

• The support T (A⇒ B) is the fraction of items in the union of
antecedent and the consequent (that is the number of items in
the item set K)

• The confidence or predictability C (A⇒ B) is its support
divided by its antecedent.

C (A⇒ B) =
T (A⇒ B)

T (A)

The confidence C (A⇒ B) can be considered as an estimate of
the probability P(B|A)

• The Lift of the rule A⇒ B is defined as the ratio of the
confidence over the expected confidence

L(A⇒ B) =
C (A⇒ B)

T (B)



From the a priori algorithm to association rules

• The expected confidence T (B) can be computed as
T (B) = Pr(

∏
k∈B Zk = 1) and is an estimate of the

unconditional probability P(B).

• The Lift can be considered as an estimate of the
dependence/association measure Pr(A ∩ B)/P(A)P(B)

• Once the item sets K with a sufficiently large support have
been returned by the A priori algorithm, a confidence
threshold c is set and all the association rules with confidence
above the threshold are formed, i.e.

{A⇒ B | C (A⇒ B) > c}



From the a priori algorithm to association rules

• The output of the Analysis is thus a set of association rules
satisfying the constraints

T (A⇒ B) > t and C (A⇒ B) > c

• Once the analysis is completed the results are stored in a
database which can be accessed to receive specific information
on particular items

• Most often we will be interested in retrieving all the
transactions (i.e prototypes) in which one particular item
appeared as consequent

• The analysis will then indicate the antecedents which might
reveal valuable in predicting future sales for the consequent.



K-means and K-medoid

• The most popular clustering algorithms are combinatorial
algorithms which assign every observation to a given cluster
without regard to any predefined probabilistic model.

• The number of clusters K is usually predefined

• One approach is to introduce a loss that will drive the
assignment. If we let Ck to denote the kth cluster, we get

`(C) =
1

2

K∑
k=1

∑
i∈Ck

∑
j∈Ck

d(xi , xj)



K-means

• When the dissimilarity is chosen to be the Euclidean distance,

d(xi , x
′
i ) =

p∑
j=1

(xij − xi ′j)
2 = ‖xi − xi ′‖2

• The loss then reads as

`(C) =
1

2

K∑
k=1

∑
i∈Ck

∑
j∈Ck

‖xi − xj‖2



K-means

• In particular, developing, we get

1

2

∑
k

∑
i∈Ck

∑
j∈Ck

‖xi − xj‖2

=
1

2

∑
k

∑
i∈Ck

∑
j∈Ck

〈xi , xi 〉+ 〈xj , xj〉 − 2〈xi , xj〉

=
1

2

∑
k

∑
i∈Ck

〈xi , xi 〉Nk −
1

2

∑
k

∑
i∈Ck

2〈xi ,
∑
j∈Ck

xj〉

=

 K∑
k=1

Nk

∑
i∈Ck

〈xi , xi 〉 −
K∑

k=1

Nk

∑
i∈Ck

〈xi ,
∑
j∈Ck

xj〉
1

Nk





K-means

1

2

∑
k

∑
i∈Ck

∑
j∈Ck

‖xi − xj‖2

=

 K∑
k=1

Nk

∑
i∈Ck

〈xi , xi 〉 −
K∑

k=1

Nk

∑
i∈Ck

〈xi ,
∑
j∈Ck

xj〉
1

Nk


=

K∑
k=1

Nk

∑
i∈Ck

〈xi , xi 〉 − 〈xi ,∑
j∈Ck

xj〉
1

Nk


=

K∑
k=1

Nk

∑
i∈Ck

〈xi , xi 〉 − 〈xi ,∑
j∈Ck

xj〉
1

Nk
+

1

N2
k

〈
∑
j∈Ck

xj ,
∑
j∈Ck

xj〉


−

K∑
k=1

∑
i∈Ck

 1

Nk

∑
j∈Ck

〈xj , xi 〉





K-means

1

2

∑
k

∑
i∈Ck

∑
j∈Ck

‖xi − xj‖2

=
K∑

k=1

Nk

∑
i∈Ck

〈xi , xi 〉 − 〈xi ,∑
j∈Ck

xj〉
1

Nk
+

1

N2
k

〈
∑
j∈Ck

xj ,
∑
j∈Ck

xj〉


−

K∑
k=1

Nk

∑
i∈Ck

 1

Nk

∑
j∈Ck

〈xj , xi 〉


=

K∑
k=1

Nk

∑
i∈Ck

〈xi , xi 〉 − 2〈xi ,
1

Nk

∑
j∈Ck

xj〉+ 〈 1

Nk

∑
j∈Ck

xj ,
1

Nk

∑
j∈Ck

xj〉



=
K∑

k=1

Nk

∑
i∈Ck

‖xi −
1

Nk

∑
j∈Ck

xj‖2



K-means

• In other words, when using the Euclidean distance, one can
write the clustering objective/loss as

`(C) =
K∑

k=1

Nk

∑
i∈Ck

‖xi − xk‖2

Where xk is the center of mass of the kth cluster.

• the optimal clustering in that framework is thus the clustering
that minimizes the average dissimilarity



K-means

• Given a set of centers x̄k , the optimal clustering is thus
defined by solving the minimization

C∗ = min
C

K∑
k=1

Nk

∑
i∈Ck

‖xi − xk‖2

• On the other hand, for a subset of observations xS , the center
of mass can also read as a minimization

xS = argmin
m

∑
i∈S
‖xi −m‖2

• We can thus solve the clustering problem by iterating between
the two steps. This gives the Kmeans algorithm.



K-means

• 1. Given a cluster assignement C, compute the center of mass
of each cluster

x̄S = argmin
m

∑
i∈S
‖xi −m‖2 =

1

|S |
∑
i∈S

xi

• 2. Update the assignement by setting

xi ∈ Ck if k = argmin
`
‖xi −m`‖2

• Repeat Steps 1 and 2 until the assignement does not change



source: Bishop, Pattern Recognition and Machine Learning.



K-means and K-medoid

• The use of the Euclidean distance provides an easy way to
compute the center of each cluster.

• It is however possible to get an extension to general more
general similarity by using explicit optimization.

• This gives the K-medoid algorithm which iterates over the two
steps

• For a given assignement, find the points that are minimizing
the distances to any other points in the cluster (the centroid is
thus taken as one of the prototypes)

ck ← argmin
xi∈Ck

∑
j∈Ck

d(xi , xj)

• For a given set of centroids, ck , k = 1, . . . ,K , assign each
points to its closest centroid,

x` ∈ Ci with i = argmin
1≤k≤K

d(x`, ck)



K-means and K-medoid

• Because it relies on the Euclidean distance, K means is often
much more sensitive to outliers (i.e it places the highest
influence on the largest distances)

• Conversely, the number of operations needed to derive the
centroid in K-means was only O(Nk). For K-medoid, it is now
O(N2

k ) (i.e. comparing every pair of points in the clusters).

• K-means and K-medoid both suffer from several drawbacks
among which

• Both methods assume the number of clusters to be known
beforehand (not true in practice)

• As iterative techniques, they are both sensitive to initial
conditions

• Finally, both K-means and K-medoid converge to local
minimas.



K-means and K-medoid: Initialization

• Random partitioning. The approach divides the dataset in K
distinct clusters chosen at random.

• The Forgy or Lloyd-Forgy approach (FA). The method picks
K feature vectors at random to define the centroids and
assigns remaining feature vectors to their nearest centroid.

• MacQueeen’s approach. Instead of considering a batch
algorithm where the whole dataset if used to update the
centroids, the MacQueeen approach is the extension of the
Forgy approach to a recalculation of the centroids after each
assignment.

• Kaufman’s approach. The Kauffman initialization is a
deterministic initialization which places the centroids in the
areas where there is a higher density of prototypes.



MacQueen’s approach

• Initialize the centroids, mk and set the cluster sizes to zero,
nk = 0, for all k = 1, . . . ,K .

• Repeat

• Pick an observation x i and determine the cluster following

k = argmin
x `

‖x i −mk‖2

• Update the centroid mk following

mk ← mk +
1

nk
(x i −mk)

where nk is the number of prototypes in cluster k.



Kauffman’s approach

• Set x0 to be the ”median” feature vector (i.e the one that is
the most centrally located)

• Set S = {x0} and let Sc denote the set of remaining feature
vectors.

• For all the remaining feature vectors x i ∈ Sc ,

• compute d i ≡ mink∈S d(xk , x i )

• Set Ci,j ≡ max(d i − d(x j , x i ), 0)

• Choose the next centroid xk+1 from the index j that solves
maxj

∑
i Cij (The result will be a prototype with high density

of points around him)

• If there are K points in S stop. Otherwise set S ← S ∪ xk+1

and go back to step 1.



Hierarchical clustering (I)

• As we saw, an inconvenient aspect of K-means or K-medoid is
that those methods require the user to explicitely provide a
number of clusters.

• Hierarchical clustering does not require such initialization.
Instead it only relies on a measure of dissimilarity between
groups of observations

• The algorithm then iteratively defines the clusters by either
merging (bottom up) or dividing (top down) the set of
measurements

• Agglomerative strategies start at the bottom (n clusters) and
successively merge a selected pair of clusters (n − 1 clusters)

• Divisive approaches start at the top (1 cluster) and succesively
split the previous clusters into two new clusters.

• It is then up to the user to decide which level represents the
most natural clustering.



Hierarchical clustering (II)

• Agglomerative and divisive Hierarchical Clustering approaches
can be defined to possess a monotonicity property which
means that the dissimilarity between merged clusters is
monotone increasing with the level of the merger

• Recursive splitting/agglomeration happening in hierarchical
clustering can be represented by a tree (a.k.a dendogram) in
which the nodes represent the clusters. The root node encode
the whole dataset and the leafs represent each of the
prototypes.

• Furthermore, when the clustering approach satisfies the
monotonicity property, the height in the tree represents the
dissimilarity between merged clusters.



Hierarchical clustering (III)

from H.,T.,F., The elements of Statistical Learning



Hierarchical clustering (IV)

from H.,T.,F., The elements of Statistical Learning



Agglomerative Clustering

• Agglomerative clustering starts with every prototype
representing a singleton.

• At each step, it then chooses the closest two clusters and
merge them into a single cluster.

• For any two clusters H and G , there are three common ways
to define the dissimilarity between those clusters



Agglomerative Clustering

• In Single linkage (SL), the dissimilarity between two clusters
H and G is defined from the closest pair of points

dSL(G ,H) = min
i∈G ,j∈H

d(i , j)

• In Complete Linkage (CL), the inter-cluster dissimilarity is
defined from the dissimilarity of the furthest pair,

dCL(G ,H) = max
i∈G ,j∈H

d(i , j)

• Finally, in Group Average clustering (GA), the criterion is the
average dissimilarity

dGA(G ,H) =
1

NGNH

∑
i∈G

∑
j∈H

d(i , j)



A couple of observations (I)

• Single linkage only requires the dissimilarity to be small for
one pair of prototypes from each clusters

• It therefore leads to clusters that violates the compactness
assumption (i.e clusters are compact if all the observations
within them are relatively close to each other)

• If we define the diameter of a group of observations as

DG = max
i ,j∈G

d(i , j),

single linkage can produce large diameters clusters



A couple of observations (II)

• On the opposite, complete linkage will generate compact
clusters with small diameters

• However CL can violate the closeness property. Two points
from one cluster can be closer to prototypes from another
cluster than they are to the prototypes in their own cluster.

• E.g. Assume C1 and C2 where C2 has a single prototype that
is very far from the points in C1 and all the others which are
very close (i.e closer than the closest distance between
prototypes in C1)



from HTF, The elements of Statistical Learning



How about divisive clustering?

• One possibility is to use a K-means algorithm (with K=2) to
split one cluster at each step. But this approach would
depend on the initialization of K −means and does not
satisfy the monotonicity property

• One alternative is the Macnaughton-Smith algorithm.
Starting from a single cluster C0 with |C0| = n, remove that
prototype x1 which has the largest average dissimilarity,

y∗ = argmax
y

D0(y) = argmax
y

1

n − 1

∑
x i∈C0

d(x i , y)

Then define C1 = {y∗}, C0 = C0 \ {y∗}. For the second step,
remove the prototype y ∈ C0 that maximizes the difference

DC0 − DC1 =
1

|C0| − 1

∑
x j∈C0

d(y , x j)−
1

|C1|
∑

x j∈C1

d(x j , y)



How to choose the clusters to split?

• Other alternatives include Kaufman and Rousseeuw: choose
at each step the cluster that maximizes the diameter and split
this particular cluster

• Largest average dissimilarity: split the cluster that maximizes

d̄G =
1

N2
G

∑
x i∈G

∑
x j∈G

d(x i , x j)

• In any of these approaches, recursive splitting is then applied
until each cluster is singleton or members of the cluster have
zero dissimilarity.



The EM Algorithm

• Suppose that we are given a training set
{
x (i), t(i)

}N
i=1

• Those points come without any label (we are in the
unsupervised framework)

• We want to model the data by specifying a joint distribution

p(x (i), z(i)) = p(x (i)|z(i))p(z(i))

• One approach is to take z(i) to be a multinomial. In the
multinomial, we have k possible (mutually exclusive) outcomes
with probabilities p1, p2, . . . , pk and n independent trials

• Naturally, we have
∑k

i=1 pi = 1



The EM Algorithm

• We can then associate to each cluster, a Gaussian distribution

p(x (i)) =
K∑

k=1

p(x (i)|z(i) = k)p(z(i) = k)

p(
{
x (i)
}N

i=1
) =

N∏
i=1

K∑
k=1

p(x (i)|z(i) = k)p(z(i) = k)

• Taking the log, we have

N∑
i=1

log

(
K∑

k=1

p(x (i)|z(i) = k)p(z(i) = k)

)

• If we set to 0 the derivatives of this formula with respect to
the parameters, it is not possible to find a closed form
expression for the parameters of the Gaussian



The EM Algorithm

• If we know what the z(i) were, we could have solved the
problem just as we solved it in the GDA/LDA framework

• In this case, each x (i) is defined by a single Gaussian and the
likelihood reads as

N∑
i=1

log(p(x (i)|z(i))) + log(p(z(i)))

• Taking the derivative of this with respect to the parameters of
the Gaussian and the Multinomial, we get (1 {x} = 1 if x is
true and 0 otherwise)

φj =
1

n

n∑
i=1

1
{
z(i) = j

}
, µj =

∑N
i=1 1

{
z(i) = j

}
x (i)∑N

i=1 1
{
z(i) = j

}
Σj =

∑N
i=1 1

{
z(i) = j

}
(x (i) − µj)(x (i) − µj)

T∑N
i=1 1

{
z(i) = j

}



The EM Algorithm

• This is equivalent to what we had in Gaussian Discriminant
Analysis

• When the z(i) are unknown, we can try to guess the values of
those z(i) first, then update the parameters of the Gaussians
based on those z(i) and repeat those steps until convergence

• This is exactly what the EM algorithm is doing. In EM we
iterate between those two steps.



The EM Algorithm

• (E-Step): Evaluate p(z(i) = j |x (i);φ, µ,Σ) for every pair (i , j)
as

γij = p(z(i) = j |x (i);φ, µ,Σ)

=
p(x (i)|z(i) = j ;µ,Σ)p(z(i) = j , φ)∑K

k=1 p(x (i)|z(i) = k;µ,Σ)p(z(i) = k;φ)

=
p(x (i)|z(i) = j ;µ,Σ)φj∑K

k=1 p(x (i)|z(i) = k;µ,Σ)φk

• (M-Step). Update the parameters of the Gaussians as

µj =

∑N
i=1 γijx

(i)∑N
i=1 γij

, Σj =

∑N
i=1 γij(x

(i) − µj)(x (i) − µj)
T∑N

i=1 γij

φj =
1

n

N∑
i=1

γij



The EM Algorithm

The general intuition for the EM algorithm is the following:

• As in the traditional MLE framework, we would like to
maximize the likelihood

log p(x |θ) = log(
∑
z

p(x , z |θ))

Where the z i are our latent variables.

• Because of the latent variables however, we now have a
second sum inside the logarithm which prevents the logarithm
to apply directly on the joint distribution



The EM Algorithm

• Because we do not have access to the value of the latent
variables, instead of maximizing the (exact) log likelihood, we
turn to the average of this likelihood with respect to the
values of the latent variables (Taking the sum outside the log)∑

z
log(p(x , z |θ))p(z)

• Now the best estimate we have for the probability of z is the
posterior p(z |x ;θ) and we thus consider the function∑

z
log(p(x , z |θ))p(z |x ;θ)



The EM Algorithm

The idea of the EM algorithm is then to repeat the following two
steps:

• (E-step). Estimate the p(z |x ;θ)

• (M-Step). Re-evaluate the parameters θ through the
maximization

θnew = argmax
θ

∑
z

log(p(x , z |θ))p(z |z ;θold)



K-means vs EM

• K means

• Better running time

• More interesting for high dimensional data

• Interpretation is easier

• Assumes clusters are spherical (see Mouse dataset). So
does not work well with complex shape.

• The ”Hard assignement” approach might lead to
misclassification

• EM Clustering

• Works usually better when there is some uncertainty
regarding the assignment

• Does not assume any predefined geometry for the clusters

• Uses more information than K -means so more difficult to
implement in high dimension.

• More difficult to interpret



Spectral clustering I

• Given N prototypes x i , i = 1, . . . ,N, spectral clustering starts
with the N × N matrix encoding the pairwise similarities
between points, s(x i , x j)

• Spectral clustering might be particularly interesting on non
convex data where traditional clustering methods such as
K-means might underperform

• The data is then represented by a graph G = (V, E) where E
denotes the set of edges and V denotes the set of vertices.

• Each edge wij in the graph is given the weight s(x i , x j).



Spectral clustering II

• The whole idea of spectral clustering is to partition the graph
into clusters, such that edges between clusters have low
weights and edges inside each cluster have higher weights

• Given a set of prototypes x i , let d(x i , x j) to denote the
Euclidean distance between those prototypes.

• We can define the similarity from the Radial kernel
s(x , x j) = exp(−d(x i , x j)γ) where γ > 0 is a scale parameter.

• Given the similarity matrix, one can either keep all interactions
into account, or only retain those interactions corresponding
to the K nearest neighbors



Spectral clustering III

• The matrix, Aij of edge weights, Aij = wi ,j is called the
adjacency matrix of the graph. We call degree of a vertex i ,
the sum di =

∑
j Ai ,j .

• If we define the diagonal matrix D encoding the degrees as

D =

 d1
. . .

dN


Then the (unnormalized) Laplacian of the graph is defined as
the matrix L = D − A

• One can equivalently work with the normalized graph
Laplacian L̃ = I −D−1A



Spectral clustering IV

• Spectral clustering then works by first computing the
eigendecomposition of the graph Laplacian

• It then selects the m smallest eigenvalues and their
corresponding eigenvectors

• This gives a matrix V of size N ×m on which one can apply
traditional clustering algorithms such as K-means to find a
clustering of the original set of prototypes

• Finding the smallest eigenpair implies that the representation
given by V will preserve the similarity encoded in the wij .
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