
Introduction to Machine Learning

Augustin Cosse.

Summer 2021

May 24, 2021

Schedule

• Class and labs: Monday/Tuesday, 3pm-6.30pm + Thursday
3-5pm (CEST).

• Recitation (Mandatory): Probably Tuesday 4pm - 6.30pm.

• Office hour : Thursday 5 - 6pm (CEST), to be confirmed.

• Location: Zoom !

• Combination between programming sessions (python) and
lectures

• Final Exam: Midterm: 30%, Final : 30%

• Assignements throughout the semester: 30%

• Independent project: 10%

Course organization

• Notes + Sample exam questions can be found on the course
webpage

• Sample exam questions = help you with the study but not
comprehensive

• If a section of the notes is not covered in class, you don’t have
to study it for the exam

• See http://www.augustincosse.com/teaching for details
(Scroll down and select ”NYU Paris ML Summer School”)

Reference Books

My objective: give you the tools to start working on your
own ideas later

And connect you to the ML sphere in Paris

Class + programming sessions

• The objective is to provide you with all the theory/material
needed to tackle some practical problems

• Then you will be given the opportunity to deal with those
problems through Jupyter notebooks

• Many exercises rely on Scikit learn (free software machine
learning library for Python, see
https://scikit-learn.org/stable/) which features multiple
learning algorithms.

General material (theory), see webpage

• Reminders in Stats/Probability, Inference.

• Supervised learning

• Classification (Logistic regression, LDA)

• Regression (Linear regression, regularization)

• Neural Networks (+ implementation/Keras/TensorFlow)

• Support Vector Machines

• ...

• Unsupervised learning

• Clustering (K-means, K-medoid, EM)

• PCA, ICA

• Manifold Learning

• Advanced topics (Adversarial and Reinforcement Learning)

What type of data are we going to use

• Today data can be found everywhere

• Some major sources of data available online include

• Kaggle (https://www.kaggle.com/)

• UCI Machine Learning Repository
(https://archive.ics.uci.edu/ml/datasets.html)

• ENS Challenge Data (https://challengedata.ens.fr)

• Many possibilities to get data directly from python (e.g.
pandas, yahoo finance, scikit-learn...)

How do the programming sessions work?

• Two key components : Github and Jupyter notebooks

• Most efficient way to teach ML today = notebooks

• Part of the code is given, remaining part has to be provided by
the students

• Many online examples that can be used directly or modified to
generate new programming exercises

• When dealing with Neural nets (including GANs) so far I use
TensorFlow/Keras (high-level API to build and train deep
learning models)

• Exercises will be given through Github, see
https://github.com/acosse/Intro2ML Summer2021 (will be
updated soon, Please fork the repo)

A group project

• A key aspect of the course is the project

• The idea of the project is to give you the opportunity to
develop your own ideas (insofar as possible)

• A suggestion of possible topics can be found online. However
you are free to come up with new ideas

• View this as a first step towards a startup. If the project
works well, you can perhaps extend it later !

A group project

• You choose one subject in group and start working on it
throughout the semester

• The project has to (1) be related to at least one algorithm
studied in class and (2) has to exhibit some programming
aspects.

• You are free to come during OH with questions on the project

• You then get to present your work at the end of the semester

A group project

Some examples from last year:

• Training Tic Tac Toe

• Training a neural network to win at a pong game

• Using Natural Language processing to detect and remove
aggressive comments from Twitter

• Detecting health conditions from medical data

• Use generative adversarial networks to generate cartoons

• . . .

Table of contents

Machine learning today

Machine learning today

Perhaps as important as steam engines back in the days..

Erik Brynjolfsson, ICLR 2018

Back to the industrial revolution

from Erik Brynjolfsson, ICLR 2018

• What can history tell us?

• Steam engine was classified by Bresnahan et Trajtenberg
(1996) as belonging to the so-called General Purpose
Technologies

• Those technologies are characterized by 3 features:

• Pervasive

• Able to be improved over time

• Able to spawn complemetary innovations

• Does that remind you of something ?

Back to the industrial revolution

from Erik Brynjolfsson, ICLR 2018

• Technology is not neutral

• You can do a small pox vaccine...

Back to the industrial revolution

from Erik Brynjolfsson, ICLR 2018

• Technology is not neutral

• You can do a small pox vaccine...But you can also create a
nuclear weapon

• In fact let’s compare..

What Machine Learning can and cannot do

• We have seen many achievements (essentially in vision,
language)..

• In particular Supervised learning has been quite successful

• But there are still plenty of tasks that computers still cannot
handle (see Lex Friedman, MIT Sloan lecture)

• Awareness of self

• Emotion

• Imagination

• Morality

• Consciousness

• high level reasoning

Still many tasks that machines cannot do

from Erik Brynjolfsson, ICLR 2018 keynote.

Immediate Challenges

Immediate Challenges

(Lex Friedman, MIT Sloan)

• Occlusions

• Sensor spoofing (camera, Lidar)

• adversarial noise

• Risk quantification

• Data is costly ⇒ Ideally, we would like to move on to more
unsupervised learning.

Machine Learning is not new..

• General principle of machine learning is very simple

• One of the reason for the renewed excitement is Massive
parallelism through Graphical Processing Units ⇒ Essential
for neural network training on massive databases (think of
imageNet, GoogleNet,..)

Some new architectures are coming

The general picture: Supervised vs Unsupervised

• Supervised learning tries to understand the relation between
data D = {xi}Ni=1 and the associated labels (targets) {yi}
based on a subset of samples for which the labels are known.
The goal is thus to find a mapping between the points xj ∈ D
and their targets yj . During training all labels are known.

Ex: Handwriting recognition. Data = images from MNIST,
labels,knowledge = actual numbers displayed

• Unsupervised learning tries to find structure within a given
(unlabeled) dataset

Ex: customized advertising (cluster users in groups in order to
send specific advertising to each group)

The big picture: Supervised vs Unsupervised

• Semi-supervised Learning (SSL): small amount of labeled data
with large amount of unlabeled data. Other examples of
partial supervision can involve constraints on the prototypes xi
(such as requiring subgroups of prototypes to have the same
target)

• Reinforcement: The machine looks for suitable actions, in a
given situation, in order to maximize a ”reward” (e.g. Neural
Network backgammon playing : board position + dice value
⇒ move + reward)

Supervised learning

Supervised learning can be subdivided into two main classes of
problems:

• Regression problems (approx. a mapping f (xµ) from inputs xµ
to continuous output variables yµ)

Ex . β̂ = min
β

N∑
i=1

(yi − 〈xi , β〉)2 (residual SS)

• Classification problems (approx. a mapping f (xµ) from inputs
xµ to discrete output variables yµ)

Ex . p(Ck |x) =
p(x |Ck)p(Ck)

p(x)
=

Nδ,K
Nδ

, (Nearest Neighbors)

Examples of supervised learning algorithms

Many possible regression/classification models (some models can
be used in both frameworks)

• Linear Regression

• Neural networks

• Support vector machines (SVMs)

• K-nearest neighbors

• Tree based models

• . . .

Parametric vs non-parametric

• Fixed number of parameters = parametric
+: faster to use
−: stronger assumptions regarding data distribution.

Ex. linear regression

• Complexity of the model grows with size of training dataset =
non-parametric
+: more flexible regarding data.
−: often computationally intractable for large datasets

Ex. KNN

Parametric vs non-parametric

• From Hastie, Tibshirani, Friedman

Unsupervised learning

In unsupervised learning, we are only given prototypes xµ and we
want to extract pattern from the data.

Examples of unsupervised learning approaches include

• Clustering (K-means, K-medoid)

• Manifold learning/Latent variable models

• Factor Analysis, Principal and Independent Component
Analysis (PCA/ICA)

• Gaussian mixture models (GMM)

Image segmentation through clustering

Short reminder on Linear Algebra: motivation

Why are Linear algebra and Differential Calculus useful in Machine
Learning?

1. Linear algebra is useful in both supervised and supervised
learning to derive the expression of the model’s parameters
given the training data.

• Several models in unsupervised learning rely on matrix
factorization. Singular value decomposition, for example can
be used for dimensionality reduction (PCA, ICA)

• When looking for an optimal model, given a particular dataset
D, we will often have to find the solution to multivariate
systems of linear equations. Linear algebra will be useful to
understand how we can compute the solution efficiently when
those systems are overdetermined or even ill conditioned.

2. The tools from linear algebra will also be useful when will
need concepts from multivariate statistics

Short reminder on Linear Algebra

(also see the notes of Z. Kolter)

• Vector products. Given two vectors x and y one can define
the quantity xTy which is called the inner product or scalar
product of x and y

〈x , y〉 = xTy ∈ R = [x1, x2, . . . , xn]

y1

y2
...
yn

 =
n∑

i=1

xiyi .

• Norms. A norm is any function N : Rn 7→ R that satisfies
the following properties

1. For all x ∈ Rn, N(x) ≥ 0
2. N(x) = 0 if and only if x = 0
3. For all x ∈ Rn, α ∈ R, N(αx) = |α|N(x)
4. For all x , y ∈ Rn, N(x + y) ≤ N(x) + N(y)

Short reminder on Linear Algebra

(also see the notes of Z. Kolter)

• Common examples of norms include the `2 norm

‖x‖2 =
√∑n

i=1 x
2
i , the `1 norm ‖x‖1 =

∑n
i=1 |xi | and the `∞

norm ‖x‖∞ = maxi |xi |.

• More generally, the familly of `p norms is defined as

‖x‖p = (
∑n

i=1 |xi |p)1/p

Short reminder on Linear Algebra

(also see the notes of Z. Kolter)

• Similar ideas hold for matrices. For two matrices A and B,
one can define an inner product 〈A,B〉 as
〈A,B〉 =

∑n
i=1

∑n
j=1 AijBij .

• Just as we define the `p norms for vectors, we can define
spectral p-norms on matrices (which are jsut `p on the vector
of singular values)

‖A‖1 =
n∑

i=1

σi (A)

‖A‖2 =

√√√√ n∑
i=1

σ2
i (A)

‖A‖inf = sup
1≤i≤n

σi (A)

Short reminder on Linear Algebra

(also see the notes of Z. Kolter)

• Linear independence. A set of vectors is said to be linearly
independent if no vector can be represented as a linear
combination of the remaining set of vectors.

• The rank of a matrix A is the largest subset of linearly
independent columns of A.

• The inverse of a square matrix A ∈ Rn×n is the unique matrix
A−1 such that A−1A = I = AA−1

• Two vectors x , y ∈ Rd are orthogonal if 〈x , y〉 = 0. A vector
x is normalized if ‖x‖ = 1

• A square matrix U ∈ Rn×n is orthogonal if UTU = UUT = I .

Eigenvalues and eigenvectors

(also see the notes of Z. Kolter)

• Given a square matrix A ∈ Rn×n, we say that λ ∈ C is an
eigenvalue of A and x ∈ Cn is its corresponding eigenvector if

Ax = λx , x 6= 0

• Given a symmetric matrix A ∈ Sn×n, all the eigenvalues of A
are real. Moreover, the eigenvectors of A are orthonormal. If
we store the eigenvectors in U and the eigenvalues in the
diagonal matrix Λ, A can read as

A = UΛU∗

• From this, for any vector x ∈ Rn, we thus have
x =

∑
i tiui + x where 〈x , ui 〉 = 0 for all ui which gives

xTAx =
∑
i

λi

∑
j

tju
T
j

 uiu
T
i

∑
j

tjuj

 =
∑
i

|ti |2λi

Eigenvalues and eigenvectors

• In particular, when ‖x‖2 = 1 =
∑

i t
2
i ‖ui‖2 =

∑
i tiyou see

that the quantity

xTAx =
∑
i

λi

∑
j

tju
T
j

 uiu
T
i

∑
j

tjuj

 =
∑
i

|ti |2λi

is maximized when x = tjuj where uj is the eigenvector
corresponding to the largest eigenvalue λmax.

• The solution to the maximization problem

max
x∈Rn

xTAx subject to ‖x‖2
2 = 1

is thus the eigenvector corresponding to the largest eigenvalue

• We will use this later when discussing latent variable models
in unsupervised learning.

(Matrix) differential calculus

• Given a function f : Rm×n 7→ R, that takes as input the
matrix of unknowns X the gradient of f (X) with respect to
X is defined as fhte matrix

∇X f (X) ∈ Rm×n =

∂f (X)
∂X11

∂f (X)
∂X12

. . . ∂f (X)
∂X1n

∂f (X)
∂X21

∂f (X)
∂X22

. . . ∂f (X)
∂X2n

... . . .
. . .

...
∂f (X)
∂Xm1

∂f (X)
∂Xm2

. . . ∂f (X)
∂Xmn

• When X is a vector, we recover

∇x f (x) =

∂f (x)
∂x1

∂f (x)
∂x2

...
∂f (x)
∂xn

(Matrix) differential calculus

• When looking for the optimal model in terms of empirical risk
function, we will often have to find the value x that minimizes
the sum of squred residuals

min
x
‖Ax − b‖2

2 = xTATAx − 2bTAx + bTb

• The solution in this case can be computed in closed form by
first taking the derivative with respect to x ,

∇x(xTATAx − 2bTAx + bTb) = 2ATAx − 2ATb

• Setting the derivative to 0, we get

x = (ATA)−1ATb

provided that ATA is invertible.

(Matrix) differential calculus

• When deriving a closed form solution is not possible, the
model (A, b) can be learned through gradient descent

• For any given function f (x), the gradient gives a vector
pointing in the direction of greatest increase of the function.
Hence −∇f (x) is a vector pointing in the direction of greatest
decrease of f (x)

• Starting from an initial guess x (0) for the solution of
minx f (x), one can thus define an iterative procedure (known
as gradient descent) as

x (t+1) ← x (t) − α∇f (x (t))

α, which represents the step size, is also known as the
learning rate. When x ∈ Rn is a vector, recall that we have

∇f (x) =

[
∂f

∂x1
, . . . ,

∂f

∂xn

]

Gradient descent

Reminders on Statistics and probability

• Why using stats/proba?

• Machine Learning relies on complex distributions (cancerous
cells, possible moves in Go, Existing sign roads, possible
evolutions of stocks,...)

• Only a few samples are usually available

• ⇒ We need a way to measure how well those samples are
representing the underlying (unknown) distribution

Why is that important?

Reminders (I)

(Discrete sets of events)

• Sum rule p(X) =
∑

Y p(X |Y)

• Product rule p(X ,Y) = p(X |Y)p(Y)

• Bayes theorem

p(Y |X) =
p(X |Y)p(Y)

p(X)

(continuous sets of events)

• density p(x),

p(x ∈ [a, b]) =

∫ b

a
p(x)dx , p(x) =

∫
p(x , y)dy

Reminders (II)

• Cumulative distribution Function (CDF) F (z) =
∫ z
−∞ p(x) dx

• Expectation E[x] =
∫
xp(x)dx , E[x] =

∑
i xip(xi)

• Conditional expectation Ex f (x |y) =
∑

x f (x)p(x |y)

• Variance Var[x] ≡ E
{

(x − Ex)2
}

• Covariance Cov[x , y] ≡ E {(x − Ex)(y − Ey)}

Reminders (III) A few important distributions

• The gaussian distribution

N (x |µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x − µ)2

)

• Uniform distribution: P(y) = 1
|b−a| , y ∈ [a, b]

• χ2 distribution: χ2 ∼
∑N

i=1 Zi
2 with Zi independent standard

normal RV.

Reminders (IV) A few important distributions

• Binary variables: Bernoulli and Rademacher,

Bern(x |µ) = µx(1− µ)1−x , x =

{
1
0
, 0 ≤ µ ≤ 1

Rademacher: ε(x) =

(1/2), x = +1
(1/2), x = −1
0, otherwise

The exponential family

• Many of the distributions we have discussed are part of a
general family called The exponential family

• The exponential family has many interesting properties

• It is the only family of distribution with finite-sized sufficient
statistics (see next slides)

• It is the only family with known conjugate priors

• It is at the core of generalized linear models

• it is at the core of variational inference

• We will come back to these notions later

The exponential family

• A pdf p(x |θ) is said to be in the exponential family for
x = (x1, . . . , xm) and θ ⊆ Rd if

p(x |θ) =
1

Z (θ)
h(x) exp(θTφ(x)

= h(x) exp(θTφ(x)− A(θ))

• Z (θ) and A(θ) are defined as

Z (θ) =

∫
Xm

h(x) exp[θTφ(x)] dx

A(θ) = log(Z (θ))

• Z (θ) is called the partition function, θ are the mutual
parameters, φ(x) ∈ Rd is the vector of sufficient statistics,
A(θ) is the log partition function or cumulant function.

The exponential family

• Two examples

• Bernoulli

Ber(x |µ) = µx(1− µ)1−x = exp(x log(µ) + (1− x) log(1− µ))

= exp(φ(x)T θ)

• Univariate Gaussian

• The Uniform distribution does not belong to the exponential
family

Parameter inference: What does it mean?

(Unknown) Population Known sample

(Approximate) Distribution

Prediction

Background vector created by freepik - www.freepik.com

https://www.freepik.com/free-photos-vectors/background

Parameter/model inference: Bayesian vs frequentist

• Several models in ML are special instance of a more general
idea called model inference

• Inference can be used in both supervised (learn new labels
from training labels) and unsupervised (learn parameters from
distribution) frameworks

• Two main approaches: frequentist and Bayesian.

Parameter/model inference: Bayesian vs frequentist

• Bayesian statistics.

• Considers the (distribution) parameters as random

• Relies heavily on the posterior distribution p(θ|D)

• dominated statistical practice before 20th century

• Ex: MAP argmax
θ

P(D|θ)P(θ)

• Frequentist statistics (a.k.a classical stat.)

• Parameters θ viewed as fixed, sample D as random
(Randomness in the data affects the posterior)

• Relies on the likelihood or some other function of the data

• dominated statistical practice during 20th century

• Ex. MLE : argmax
θ

P(D|θ)

Bayesian statistics: Some vocabulary

• We saw Bayesian inference relies on the posterior p(θ|D)

• The posterior reads from the Bayes rule as

p(θ|D) =
p(D|θ)p(θ)

p(D)

=
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

• p(θ) is called the prior, p(D|θ) is called the likelihood function
and Z = p(D) is the normalizing constant (independent of θ)

• Given a set of patterns (xµ, yµ), probabilistic classifiers are
usually of two types:

• Generative (learn model for p(x , y |θ))
• Discriminative (learn model for p(y |x , θ))

Bayesian statistics: Some vocabulary

• An example of discriminative classifier : Logistic regression
• Here we take µ(x) = sigm(wTx) and define the classifier as a

Bernoulli distribution

p(y |x ,w) = Ber(y |µ(x))

• Good when the output is binary

• An example of generative classifier :
• relies on the assumption that the features (hidden variables)

are independent

p(x |y = c ,θ) =
D∏
j=1

p(xj |y = c , θjc)

• θj,c is the parameters of the distribution of class c for j th entry

in the D-dimensional pattern vector x ∈ {1, . . . ,K}D .

• We will study those models in further detail when discussing
classifiers.

Bayesian statistics

• In Bayesian statistics, randomness is most often used to
encode uncertainty

• The posterior p(θ|D) summarizes all we know on the
parameters

• Bayesian inference is not always the right choice because of
the following

• The Mode is not a typical point in the distribution

• MAP estimator depends on re-parametrization

Bayesian statistics: Drawbacks and solutions

• A solution to the first part is to use a more robust loss
function `(θ̂, θ)

• A solution to the second part is to replace the MAP with the
following estimator (when available)

θ̂ = argmax
θ

p(D|θ)p(θ)|I (θ)|−1/2 (1)

where I (θ) is the Fischer information matrix

Fischer information matrix

• For a generative model p(x |θ), we let g(θ, x) denote the
Fischer score

g(θ, x) = ∇θ log(p(x |θ))

• the Fischer Kernel is the defined as

k(x , x ′) = g(θ, x)TF−1g(θ, x ′)

• The matrix F is called the Fischer matrix and defined as

F = Ex

{
g(θ, x)g(θ, x)T

}
• Note that it is often computed empirically as

F ≈ 1

N

N∑
n=1

g(θ, x)g(θ, x)T

Occam’s razor and Model selection

• Only looking for the best model often leads to overfitting (we
will see that later in more details)

• Bayesian framework offers and alternative called Bayesian
model selection

• For a family of models, we can express the posterior

p(m|D) =
p(D|m)p(m)∑
m∈M p(m|D)

∝ p(D|m)p(m)

where p(D|m) =
∫
p(D|θ)p(θ|m)dθ is called the marginal

likelihood, integrated likelihood or evidence

Occam’s razor

• Integrating the parameters θ such as in

p(D|m) =

∫
p(D|θ)p(θ|m)dθ

acts as a natural regularization and prevents overfitting when
solving for maxm p(m|D). This idea is known as Bayesian
Occam’s razor

• The evidence p(D|m) can be understood as the probability to
generate a particular dataset from a family of model (all
values of the parameters included).

• When the family of models is too simple, or too complex, this
probability will be low.

Bayesian decision theory

• How do we resolve the lack of robustness of Bayesian
estimators vis a vis the distribution (recall the bimodal
distribution)?

• Statistical decision theory can be viewed as a game against
nature.

• Nature has a parameter value in mind and gives us a sample

• We then have to guess what the value of the parameter is by
choosing an action a

• As an additional piece of information, we also get a feedback
from a loss function L(y , a) which tells us how compatible our
action is w.r.t Nature’s hidden state.

Bayesian decision theory

• The goal of the game is to determine the optimal decision
procedure,

argmin
a∈A

E {L(y , a)}

• In economics L(y , a) = U(y , a) and leads to the Maximum
utility principle which is considered as rational behavior

δ(x) = argmax
a∈A

E {U(y , a)}

• In the Bayesian framework, we want to minimize the loss over
the models compatible with the observations {xµ}

δ(x) = argmin
a∈A

Ep(θ|{xµ}) {L(θ, a)} =
∑
θ∈Θ

L(θ, a)p(θ| {xµ}µ)

Bayesian decision theory (continued)

• The MAP is equivalent to minimizing a 0/1 loss

L(θ̂, θ) = 1θ 6=θ̂ =

{
0 if θ̂ 6= θ

1 if θ̂ = θ.

we then have

EL(θ̂, θ) = p(θ 6= θ̂| {xµ}µ) = 1− p(θ̂ = θ| {xµ}µ)

which is maximized for θ̂ = θ with θ taken as

θ∗({xµ}µ) = argmax
θ̂

p(θ| {xµ}µ)

• The 0/1 loss means that each time you have an outcome
different from your estimator, you are maximally penalized

What other losses can we choose?

• Is it possible to take more robust losses?

• `2 loss, L(θ̂, θ) = |θ̂ − θ|2 gives posterior mean

E
{

(θ̂ − θ)2|xµ
}

= E[θ2|xµ]− 2θ̂E[θ|xµ] + θ̂2

• setting derivative to 0, ∂θ̂E{θ̂|xµ} = 0, we get

−2E {θ|xµ}+ 2θ̂ = 0

θ̂ =

∫
θp(θ|xµ) dθ

What other losses can we choose? (continued)

• Is it possible to take more robust losses?

• `1 loss, L(θ̂, θ) = |θ̂ − θ| gives posterior median

• The value θ̂ such that

p(θ < θ̂|xµ) = p(θ ≥ θ̂|xµ) = 1/2

What other losses can we choose? (continued)

• Now assume θ̂ defines the value of some hidden variable y
(e.g. the class of a point xµ defined by a gaussian mixture θ̂).

• Finding the optimal parameters (or equivalently estimate the
hidden state) can be done by considering the error

Lg (θ, θ̂) = E(xµ,yµ)∼p(xµ,yµ|θ)

{
`(θ, fθ̂)

}
=
∑
xµ

∑
yµ

`(yµ, fθ̂(xµ))p(xµ, yµ|θ)

• The Bayesian approach then minimizes the posterior expected
loss

argmin
θ̂

∫
p(θ|D)Lg (θ, θ̂) dθ

• Note that here the model is fixed and we want to learn the
parameters (>< model selection)

How to pick up the priors?

• The controversial aspect of Bayesian statistics are the priors

• The main argument of Bayesians is that we most often know
something about the world

• When it is possible, it makes things easier to pick up a prior
from the same family as the likelihood function

Parameter/model inference: Biased vs Unbiased

• Imagine that we have access to a set of obervations xi ∈ Rn

and we can reasonably assume those samples are drawn
independently from gaussian distributions.

• Because the observations are i.i.d, we can write the expression
for the probability of oberving the xi given the common µ and
σ2,

p(x |µ, σ2) =
N∏

n=1

N (xn|µ, σ2) (2)

• A reasonably good idea to derive estimates for µ and σ is then
to maximize this likelihood

Parameter/model inference: Biased vs Unbiased

• Since the log is a monotonically increasing function,

argmax
µ,σ2

p(x |µ, σ2) =
N∏

n=1

N (xn|µ, σ2)

is equivalent to maximizing the log likelihood function

argmax
µ,σ2

log
(
p(x |µ, σ2)

)
= − 1

2σ2

N∑
n=1

(xn − µ)2

− N

2
log(σ2)− N

2
log(2π).

Parameter/model inference: Biased vs Unbiased

• Maximizing the log likelihood function with respect to µ first
and then σ2 gives the maximum likelihood estimators

µ̂ML =
1

N

N∑
n=1

xn

σ̂2
ML =

1

N

N∑
n=1

(xn − µ̂ML)2

• Those two estimates are functions of the data set x1, . . . , xN

Parameter/model inference: Biased vs Unbiased

• Remember the ML estimators

µ̂ML =
1

N

N∑
n=1

xn

σ̂ML =
1

N

N∑
n=1

(xn − µ̂ML)2

• Now take the expectation of those estimators with respect to
the known distribution,

Eµ̂ML = µ

Eσ̂2
ML =

(
N − 1

N

)
σ2

Parameter/model inference: Biased vs Unbiased

• On average, the MLE will get you the right mean, but will
underestimate the variance

Eµ̂ML = µ

Eσ̂2
ML =

(
N − 1

N

)
σ2

• This problem is called bias and is related to the problem of
overfitting

• In fact it turns out that a better estimator for σ2 is given by

σ̂2 =
1

N − 1

N∑
n=1

(xn − µ̂ML)2

