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So far

e Simple reflex, random agents, Utility based, Goal based

e Improvement through Search Methods (uninformed (DFS,
BFS), informed (BS, A*)).

e Logical Reasoning, Propositional logic + First Order Logic,
Inference

e Learning
e Decision trees, regression, classification

e Neural Networks

Parametric vs non parametric
e Kernels and SVMs
e Unsupervised and Clustering

e Reinforcement learning



Parametric vs Non Parametric

Linear regression, logistic regression and neural networks use
the training data to estimate a fixed set of parameters

e Those parameters define our hypothesis hg(x). Once we have
the hypothesis, we can just throw away the training data

e A learning model that summarizes data with a set of
parameters of fixed size is called a parametric model

e No matter how much data you throw at a parametric model,
it won't change its mind about how many parameters it needs

e A non parametric model is one that cannot be characterized
by a bounded set of parameters



Parametric vs Non Parametric

e A example of a non parametric model for classification is the
K nearest neighbor (KNN) classifier

e Given a query x4, KNN works by first finding the k examples
that are the nearest to x4

e In classification, we then simply take the majority vote across
the neighbors

e In regression, we can take the mean, or median of the

neighbors, or solve a regression problem on the neighbors



Parametric vs Non Parametric

e Another popular non parametric approach in classification are
Support Vector Machines (or Max Margin Classifiers).

e SVMs is currently the most popular approach for 'off the
shelf’ supervised learning. If you don't have any specialized
prior knowledge about a domain, the SVM is an excellent
method to try first



Parametric vs Non Parametric

e There are three properties that make SVM attractive:

e SVM constructs a maximum margin separator (decision
boundary with the largest possible distance to example points)

e SVM creates a linear separating plane but they have the ability
to embed the data into a higher dimensional space using the
so called kernel trick

e SVM are a nonparametric method (they retain training
examples and potentially need to store them all). However in
practice they often end up retaining only a small fraction of the
examples. Thus they combine the advantages of nonparametric
and parametric models: they have the flexibility to represent
complex functions but they are resistant to overfitting.



SVM

e The general form of an SVM is the following

h(x) = sign (Z it (x| x) — b)

i€eD

where the «; are non zero only for the support vectors
(examples lying on the margins)

e The model above is still a linear model (i.e. we have a linear
combination of the features x'” and we take the sign of this

J
combination)

e What if the data is not linearly separable?



Kernels

e In linear regression we have seen that we could generate
higher dimensional feature vectors ¢(x()) to replace x(/)

e We can then substitute those vectors to get the expression

h(x) = sign (Z ait D (p(x1), p(x)) — b)

i€D

e It turns out that the inner product (¢(x(), #(x)) can often be
computed without computing the feature vectors explicitely.

e Instead of thinking in terms of feature vectors, we can think in
terms of similarity and replace the inner product by a
similarity function whcih we call kernel

h(x) = sign (Z a;itDk(x() x) — b)

i€D



Kernels

e The most popular example of such function is the Gaussian
kernel
lx = X7

)

K(x, x") = exp( .
e Just as the inner product, you see that x(x, x’) will be larger
when x is similar to x’

e Learning a classifier with a Gaussian kernel corresponds to
centering a Gaussian with a particular width around each
sample, and weighting that Gaussian by the target



Kernel

The most popular example of such function is the Gaussian
kernel
lx = X7

)

K(x, x") = exp( .
Just as the inner product, you see that x(x, x) will be larger
when x is similar to x’

Learning a classifier with a Gaussian kernel corresponds to
centering a Gaussian with a particular width around each
sample, and weighting that Gaussian by the target



Unsupervised Learning

e The most popular family of unsupervised algorithms are the
clustering algorithms

e Among those algorithms, the most commonly used is
K-means.

e In K-means the algorithm iterates between the following two
steps:
e Compute the center of mass of each cluster and define the
centroids as those centers

e Update the assignment by associating each point to its nearest
centroid



Reinforcement learning

Reinforcement learning is learning what to do so as to
maximize a numerical reward signal

"The learner is not told which action to take but instead must
discover which action yield the most reward by trying them”

Ex.1.: " A chess player makes a move. The choice is informed
by planning (anticipation of possible replies and
counterreplies) and by immediate intuitive judgements of the
desirability of possible positions and moves”

Ex.2. " A mobile robot decides whether it should enter a room
in search of a target or start to find its way back to its battery
charging station”

source: R. Sutton, A.G. Barto, Reinforcement learning: An introduction
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Reinforcement learning: constitutive elements

e The policy defines the learning agent's way of behaving at any
given time

e On each time step, the evironment sends to the reinforcement
learning agent a single number called the reward which
specifies what are good and bad events in an immediate sense.

e To know what is good in the long run, we use a value function
which is the total amount of reward the agent can expect to
accumulate over the future, starting from that state.

e Finally, the last element is a model for the environment which
enables inferences to be made on how the environment will
react w.r.t a particular action. The role of the model is
essentially to predict the next state and next reward given the
current state and action.

source: R. Sutton, A.G. Barto, Reinforcement learning: An introduction



Reinforcement learning

e Action are usually taken to maximize the value, not the
reward, because high value actions are those that lead to the
highest level of reward in the long run. Finding such actions is
however hard as those have to be constantly re-estimated
based on the decisions of the agent.

e An important instance of reinforcement learning in which
there is a single state is the bandit problem

source: R. Sutton, A.G. Barto, Reinforcement learning: An introduction
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Reinforcement learning

e The multi-armed bandit is a simplified version of non
associative feedback problem

e In the k-armed bandit problem, you are faced repeatedly with
a choice among k different possible options or actions. After
each choice, you receive a numerical reward chosen from some
stationnary probability distribution that depends on the action
you selected.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning

e You can think of the k-armed bandit problem as the problem
of playing one of the k levers of a slot machine. You choose
which lever you play and the reward is the payoff for hitting
the jackpot

e The value of an arbitrary action, a, which we denote v(a) is
the expected reward given that you selected a

v(a) = E{RA: = a}

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning

e We don't know the exact value v*(a) (because we don't know
the distribution). So we would like an estimate vest ¢(a)
(estimated value at time t) that would be as close as possible
to v*(a)

e When you keep track of the estimated action values through
time, then at each time step, there is always at least one
action whose estimated value is best. We call this greedy
actions.

e When you select one of these actions, we say that you are
exploiting your current knowledge of the values of the actions

e When you select one of the non greedy actions, then we say
you are exploring. In particular, exploring enables you to
improve your estimates of the non greedy action’s values.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning

e Exploitation will maximize your expected reward on the one
step but exploration may lead to greater total reward in the
long run.

e Intuitively, if you have many time steps ahead, it may be
better to explore.

e How do we balance exploration and exploitation when dealing
with the k-armed bandit problem?

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Action value estimates

e The first thing we want to do is get an estimate of the value
of an action at time t.

e The natural approach is to average over the rewards received
in the past

sum of rewards when a taken Z,t;ll Rilla—,

Vest,t(a) = i -
est,t( ) number of times a taken Z,le ]IA,:a

Here predicate is used to denote the indicator function for the
predicate. 1, = 1 if the predicate is verified and 0 otherwise.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Action value estimates

e Then the simplest action selection procedure (known as
greedy action selection) is to select (one of) the action(s)
with the highest estimated value,

A* = argmax Vet (a)
a

e Greedy action selection always exploits current knowledge to
maximize immediate reward (i.e it does not spend time
investigating inferior actions to see if they might be better)

e A group of alternative methods known as e-greedy methods
consist in behaving greedily most of the time, but once in a
while (with probability €) select an action randonly (with
uniform probability) from the list of all possible actions.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Action value estimates

e c-greedy methods ensure that every action is sampled an
infinite number of times. Which in turns implies that the
estimator vest(a) converges to the v* (the true expected value)

e To avoid keeping each reward in memory independently,
typical implementations of greedy and e-greedy only update
the averaged reward (a.k.a value). If Q, is used to denote the
value of a given action after the n'” step,

R+ R+... Ry

@n P—

we compute Qpy1 as

n n—1
1 1 1
Qn+1 - E E_l Ri == ; <Rn + (n — 1)7,7 1 ._E 1 R,)

:Qn‘i‘l[Rn_Qn]
n

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: greedy vs c-greedy
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source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Simple Bandit algorithm

1. Initialize, for every action a=1, to k

1.1 v(a)« 0

1.2 n(A) < 0 (number of times A has been chosen)
2. Repeat

argmax v(a with probability 1 — ¢
21 A+ { (3)

a
a random action with probability €

2.2 R« bandit(a)
2.3 n(A) «+ n(A)+1

2.4 q(A) + v(A) + gig[R — v(A)]

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Simple Bandit algorithm

e So far we have focused on stationnary Bandit problems
(Problems for which the reward probabilities do not change
with time).

e When the problems are not stationnary, the choice of an
action will depend on the instant at which the action is taken.
In particular we will want to give more weight to the rewards
associated to more recent actions. One way to achieve this is
to add a weight in the update rule for the value V1,

Vntl = Vp + a(Ry — vp)

Developing, we get

n
Var1 = (1 —)"vy + Za(l —a)"'R;
i=1

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Simple Bandit algorithm

o Ifa=1,1—a=0 and all the weight goes to the very last
reward

e This idea of associating high initial values to every action in
order to force an initial decrease of the greedy search method
is known as optimistic initial values.
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source: Sutton & Barto, Reinforcement Learning: An Introduction.



Policy gradient/gradient Bandit algorithm

e Instead of taking the action that maximizes the value at each
step (as in the greedy approach), one can instead introduce
policies (i.e. probability that one action is optimal against the
others)

e In Gradient bandit algorithms, we define policies (and the
corresponding preferences H;) by means of a softmax
distribution (equiv. Gibbs or Boltzmann distribution),

th(a)
22:1 eH:(b)

here Pr{A; = a} really means "the probability that the
optimal action at time t is a".

me(a) = Pr{A; = a} =

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Policy gradient/gradient Bandit algorithm

e Policy gradient algorithms then increase the preference of an
action when the reward associated to this action is larger than

a baseline (R¢) which is the average of all previous rewards.

e All the other actions are updated in the opposite direction

Hei1(Ae) < He(Ae) + a(Re — Re)(1 — m(Ar))

Hev1(a) < He(a) — a(Re — Re)me(a),  for all a # A

e We compare the current reward for action a to the average
reward R:(a). If R; > R;, the agent interpret the action as
being suboptimal compared to previous ones and hence
reduces its weight more.

e The weighting by the policies m; has a similar interpretation.

sources: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Associative search (contextual
bandit)
Hev1(Ae) = He(Ae) + a(Re — Re)(1 — me(Ar))
H:i1(a) < He(a) — a(R: — R¢)me(a), for all a # A,

e When an action has a low probability of being selected, there
is no need to decrease the weight of this action anymore as it
cannot really be held responsible for the fact that the average
reward is lower than the current reward.

e On the opposite, if one action a has a relatively higher
probability of being selected but is different from the current
optimal action A, it probably contributed for most of the
(underoptimal) average R; and should be considered as
suboptimal.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Bandit/Policy gradient as stochastic gradient ascent

e The Bandit gradient method or policy gradient method has an
interpretation as stochastic gradient ascent

e To see this, note that to update the preferences, we will want
to follow the direction that maximizes the average reward,

IE[R:]
OH:(a)

H:y1(a) <+ He(a) + «

Here E {R;} is viewed as a multivariate function in the
preferences.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Bandit/Policy gradient as stochastic gradient ascent

e In practice, we do not know the population average
E[R:] = >, me(b)vi(b) but let us forget that for the moment
OE[R:] 0O

OH.(3) _ OH.(a) Z”f vi( ]
871'1_» b)
_ Z v* a
(971}( )
= Z vi(b Ht(a)

The last line follows from the definition of the policy and the
fact that ), gﬁ(a) =0

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Bandit/Policy gradient as stochastic gradient ascent

e Developing further, we get

OE[R] 0
OH:(a)  OH:(a)

> we(b)va(b)
b

B Ore(b)
— Zb: 7e(b) (v (b) — Xt)aHt(a) /(D)

o aﬂ't(At)
=54, { (040 - X) G (a0}
. — aTI’t(At)
— B { (R - R (a0}
The last line follows from the definition of the value v, (A;) of

an action A; as the average reward E[Ry].

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Bandit/Policy gradient as stochastic gradient ascent

e If we assume for now that

ore(At) B
9H:(a) [Te(Ar) = me(Ar)(Taza, — me(Ar))
we get
OE[R] B
OHy(a) E [(Re — Re)m — t(Ar)(Taza, — me(a))/me(Ae)]

=E [(R: — Re)(Taza, — me(a))]

e Stochastic gradient is used to maximize (resp. minimize) a
population average by replacing this population average with
a sample average (EV — > . V). In its most compressed
version, it actually defines the iterates by taking one sample at
a time.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Bandit/Policy gradient as stochastic gradient ascent

e In this framework, the gradient

IE[R:] =
OHe(a) — E [(R: = Re)(Ta=a, — 7t(a))]

is turned into the updates
Hei1(a) = He(a) + a(Re — Re) (M=, — m(a)), for all a

source: Sutton & Barto, Reinforcement Learning: An Introduction.



e To conclude, use the quotient rule on derivatives to show the
relation omy(b) _ me(b)
6Ht(a) t

ome(b) 0
OH:(a)  OH¢(a)

He(b)
Zﬁ:l th(C)]
i Zews €19 = e 2
(ZIC(:I th(C))
T,_pett(B) Sk oHel€) _ ghe(b)eh(®
(kg o)

]Ia:bth(b) th(b)th(a)

SEy et (25:1 th(C)>2
= Wopme(b) — 7 — t(b)me(a)
= m¢(b)(Lazp — me(a))

source: Sutton & Barto, Reinforcement Learning: An Introduction.
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Upper Confidence Bound Action Selection

e A downside of the £ greedy action selection approach is that
when exploring, it does not discriminate between the actions.

e One possible improvement consists in selecting among the
actions during the exploration step, according to their
potential for being optimal (and not completely randomly)

e One approach is to rely on the following upper confidence
bound (UCB)

In(t)
N¢(a)

As = argmax |ve(a) + ¢
a

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Upper

Confidence Bound Action Selection

The idea of the UCB selection approach is to add a term (the

\/log(t)/N; term) that accounts for the uncertainty in the
value of an action a

The objective that is maximized can be viewed as an upper
bound on the potential value of the action a

When the action a is visited, the number N;(a) increases. On
the opposite, when a is not selected, the numerator t
increases while the number N;(a) remain constant, thus
making this action more likely to get selected in future steps.

After an infinite number of iterations, as the function is
unbounded, every action will be selected at least once.

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning: Comparison of Bandit algorithms

15
UuCB _—— greedy with
- — optimistic
14 initialization
\N\a=0.1
Average 13l .greedy \\
reward ’ ) gradient \
over first ol \ bandit \x\
1000 steps \
1.1
1

1/128 1/64 1/32 116 1/8 1/4 12 1 2 4
g Q, C QO

source: Sutton & Barto, Reinforcement Learning: An Introduction.



Reinforcement learning

e So far in this chapter we have considered only nonassociative
tasks, in which there is no need to associate different actions
with different situation

e . In these tasks the learner either tries to find a single best
action when the task is stationary, or tries to track the best
action as it changes over time when the task is nonstationary

e The Multi-armed bandit problem is an instance of non
associative learning.

e However, in a general reinforcement learning task there is
more than one situation, and the goal is to learn a policy: a
mapping from situations to the actions that are best in those
situation

source: Barto, Sutton, and Brouwer, Biological Cybernetics, 1981.



Associative vs Non Associative

e As an example, suppose there are several different n-armed
bandit tasks, and that on each play you confront one of these
chosen at random.

e The bandit task thus changes randomly from play to play.

e This would appear to you as a single, nonstationary n-armed
bandit task whose true action values change randomly from
play to play.

e And you could try using the simple Bandit algorithm (possibly
non stationnary), but unless the true action values change
slowly, these methods will not work very well.

source: Barto, Sutton, and Brouwer, Biological Cybernetics, 1981.



Associative vs Non Associative

e Now suppose instead that when a bandit task is selected for
you, you are given some information about its identity

e For example, let us assume you are facing a slot machine that
changes the color of its display as it changes its action values.

e Now you can learn a policy associating each task, signaled by
the color you see, with the best action to take when facing
that task

e For instance, if red, play arm 1; if green, play arm 2.

e With the right policy you can usually do much better than
you could in the absence of any information distinguishing one
bandit task from another.

source: Barto, Sutton, and Brouwer, Biological Cybernetics, 1981.



Associative vs Non Associative

e This is an example of an associative search task, so called
because it involves both trial-and-error learning in the form of
search for the best actions and association of these actions
with the situations in which they are best

source: Barto, Sutton, and Brouwer, Biological Cybernetics, 1981.



Associative vs Non Associative

e The approach that we followed so far for the Bandit algorithm
gives a form of direct utility estimation (due to Widrow and
Hoff and first introduced in adaptive control theory on the
1960's)

e The idea is that the utility of state is the expected total
reward from that state onward. Each trial provides a sample
of this quantity for each state visited

e Such a direct utility estimation succeeds in reducing the RL
problem to an inductive learning problem but it misses a very
important source of information

e The utilities of states are not independent: The utility of each
state equals its own reward plus the expected utility of its
successors

source: Barto, Sutton, and Brouwer, Biological Cybernetics, 1981.



Associative vs Non Associative

e The utillity values obey the Bellman equation for a fixed policy
U™(s) = R(s) +7 ) _ P(s|s,m(s))U™(s)
sl

e When the agent has several possible actions, one can extend
this idea by learning an action utility function Q[s, a]. One
can then again write a constraint equation that must hold at
equilibrium when the Q values are correct

Q[s, a] = R[s] + WZ P(s'|s, a) max Q[s', ]

S/

source: Barto, Sutton, and Brouwer, Biological Cybernetics, 1981.



Associative vs Non Associative

e If we always choose to act according to the optimal action &',
we get the update rule

Q[s, a] < Q[s, a] + a(R[s] + v max Q[s',d] — QJs, a])

What this update rule is doing is correcting the utility so that
it matches the Bellman equation

source: Barto, Sutton, and Brouwer, Biological Cybernetics, 1981.



