
Artificial Intelligence

Augustin Cosse.

Fall 2020

October 16, 2020



So far

• Simple Reflex, Random agents, Utility based, Goal based

• Improvement through Search Methods (uninformed (DFS,
BFS), informed (BS, A∗)).

• Logical Reasoning, Propositional logic (including syntax and
semantics)

• Propositional inference (Part I)



Validity and Soundness

• An inference can be valid without being sound

All animals live on the moon.
All humans are animals.

Therefore, all humans live on the Moon.

• Another desirable property is Completeness.

• An inference algorithm is complete if it can derive any
sentence that is entailed



Completeness

• Example of incomplete language : Zermelo - Fraenkel set
theory with the axiom of choice (ZFC)

• The continuum hypothesis

There is no set whose cardinality is strictly between that of
the integers and the real numbers.

cannot be proved or disproved within ZFC

• Example of incomplete theorem prover : Prolog

• Incompleteness of Prolog arises because of its unbounded
depth-first search strategy



Resolution based Theorem Prover, CNF and completeness

• So far we have discussed soundness and validity of inference
rules but we have not discussed completeness

• We will now introduce a simple inference rule which always
yields a complete inference algorithm when coupled with a
complete search method

• The idea is known as resolution



Resolution based Theorem Prover, CNF and completeness

• Consider the following example from the WUMPUS world.
We denote the fact that there is a Breeze in (m, n) by Bm,n



Resolution based Theorem Prover, CNF and completeness

• We start with a simple version of the resolution rule. When
the agent comes back from (2,1) to (1,1) and then moves to
(1,2), it gets the percept R11 : ¬B1,2 (added to the KB)



Resolution based Theorem Prover, CNF and completeness

• We also have the equivalence R12 : B1,2 ⇔ (P1,1 ∨ P2,2 ∨ P1,3)



Resolution based Theorem Prover, CNF and completeness

• From the KB, we can also derive the absence of a pit on (2,2)
and (1,3). Hence we have R13 : ¬P2,2 and ¬P1,3



Resolution based Theorem Prover, CNF and completeness

• Let R3 denote the proposition B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)
which we had in the KB and R5 : B2,1.

• By using Modus Ponens (α⇒β,αβ ) and Biconditional
elimination α⇔ β ≡ ((α⇒ β) ∧ (β ⇒ α)), we can get
B2,1 ⇒ P1,1 ∨ P2,2 ∨ P3,1 and hence we can add
R1,5 : P1,1 ∨ P2,2 ∨ P3,1 (i.e True) to the knowledge base



Resolution based Theorem Prover, CNF and completeness

• Now comes the application of our resolution rule: the
proposition (single symbol = literal) ¬P2,2 stored in R1,3

resolves with the litteral P2,2 which appears in
R1,5 : P1,1 ∨ P2,2 ∨ P3,1 to give the resolvent R1,6 : P1,1 ∨ P3,1



Resolution based Theorem Prover, CNF and completeness

• In English, the reasoning we make is that if there is a pit in
one of [1, 1], [2, 2] or [3, 1] and the pit is not in [2, 2] then it
must be in either [1, 1] or [3, 1].



Resolution based Theorem Prover, CNF and completeness

• Another example is the combination of ¬P1,1 and P1,1 ∨ P3,1

to give P3,1

• In English, if there is a pit in [1, 1], or [3, 1], and it is not in
[1, 1] then it is in [3, 1]



Resolution based Theorem Prover, CNF and completeness

• The steps that we covered are examples of the so-called unit
resolution inference rule. If `i and m are complementary
literals,

`1 ∨ . . . ∨ `k , m

`1 ∨ . . . ∨ `i−1 ∨ `i+1 . . . ∨ `k



Resolution based Theorem Prover, CNF and completeness

• The general resolution rule reads as (Here `i and mj are
complementary litterals)

`1 ∨ . . . ∨ `k , m1 ∨ . . . ∨mn

`1 ∨ . . . ∨ `i−1 ∨ `i+1 . . . ∨ `k ∨m1 ∨ . . . ∨mj−1 ∨mj+1 ∨ . . . ∨mn



Resolution based Theorem Prover, CNF and completeness

• As an example, we have

P1,1 ∨ P3,1, ¬P1,1 ∨ ¬P2,2

P3,1 ∨ ¬P2,2



Resolution, technical aspects

• The resulting clause should contain only one copy of each
literal. As an example, resolving (A ∨ B) with A ∨ ¬B gives
A ∨ A which must be reduced to A.

• Removing multiple copies of literals is called factoring.

• The soundness of the resolution rule can be easily seen. if `i is
true then mj is false and m1 ∨ . . . ∨mj−1 ∨mj+1 ∨ . . .mn

must be true since m1 ∨ . . . ∨mn is among the premises.

• Similarly, if `i is false, then `1 ∨ . . . ∨ `i−1 ∨ `i+1 ∨ . . . ∨ `k is
true since `1 ∨ . . . ∨ `k is among the premises. Since `i or mj

is necessarily true, the resulting clause is necessarily true.



Resolution and Conjunctive rules

• The interesting aspect of Resolution rules is that they can be
used to generate complete inference procedures

• A resolution based theorem prover can, for any sentence α
and β from propositional logic decide whether α � β.



Resolution and Conjunctive rules

• The resolution rule only applies to clauses (that is disjunction
of literals) and so it would seem to be relevant only to
knowledge bases and queries consisting of clauses.

• One could then wonder how it can lead to a complete
inference procedure for all of propositional logic

• In fact every sentence of Propositional logic is logically
equivalent to a conjunction of clauses.

• A sentence expressed as a conjunction of clauses is said to be
in conjunctive normal form



Resolution and Conjunctive rules

• To convert a proposition to CNF, we rely on the following 4
steps

• Eliminate ⇔, replacing α⇔ β with (α⇒ β) ∧ (β ⇒ α)

• Eliminate ⇒, replacing α⇒ β with ¬α ∨ β
• CNF requires the negation to only appears within each literal,

so we move ¬ inwards by repeating the equivalences

¬(¬α) ≡ α double negation elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β), De Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β), De Morgan

• Once we have a sentence containing only conjunctions and
disjunctions, we apply the distributivity law, distributing ∨ over
∧ wherever possible.

(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ))



Resolution and Conjunctive rules

• Consider the proving of the proposition B11 ⇔ (P1,2 ∨ P2,1)
from the Wumpus World

• Turning this proposition to CNF can be done through the
following steps

• (⇔ elimination):
(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)

• (⇒ elimination): (¬B1,1 ∨P1,2 ∨P2,1)∧ (¬(P1,2 ∨P2,1)∨B1,2)

• (moving ¬ inwards):
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

• (∨ distribution over ∧):
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (6 P2,1 ∨ B1,1)



Resolution algorithm

• Inference procedures based on resolution work by using the
principle of contradiction. I.e. to show KB � α, we show
(KB ∧ ¬α) is unsatisfiable.

• The algorithm starts by converting the proposition KB ∧ ¬α
into a CNF

• Then the resolution rule is applied to the resulting clauses

• Each pair of clauses that contains complementary literals is
resolved to produce a new clause which is added to the set of
clauses

• The process continues until either

• There are no new clauses that can be added, in which case KB
does not entail α,

• or two clauses resolve to yield the empty clause, in which case
KB entails α



Resolution algorithm

input : knowledge base KB, propositional sentence α, the query
KN � α

clauses ← the set of clauses in the CNF representation of KB ∧¬α
new ← {};
while (1) do

for each pair of clauses Ci ,Cj in clauses do
resolvents ← PL-Resolve(Ci ,Cj)
if resovents contains the empty clause then

return true
end
new ← new ∪ resolvents

end
if new ⊆ clauses then

return false
end

end
Algorithm 1: Propositional resolution algorithm



Resolution algorithm

• As an example, let us go back to the Wumpus World.

• Let us assume that our knowledge base is given by

KB = (B1,1 ⇔ (P1,2 ∨ P1,2)) ∧ ¬B1,1

• The second row in the figure below shows clauses obtained by
resolving pairs of clauses from the first row

¬P2,1 ∨ B1,1 ¬B1,1 ∨ P1,2 ∨ P2,1 ¬P1,2 ∨ B1,1 ¬B1,1 P1,2

¬B1,1 ∨ P1,2 ∨ B1,1 P1,2 ∨ P2,1 ∨ ¬P2,1 ¬B1,1 ∨ P2,1 ∨ B1,1 P1,2 ∨ P2,1 ∨ ¬P1,2 ¬P2,1 ¬P1,2

{}

¬P1,2 is shown to follow from the four clauses on the top row.



Resolution algorithm: completeness

• For a set of clauses S , we introduce the resolution closure of
S : CL(S), as the set of all closes that can be derived by
repeated application of the resolution rule to clauses in S or
their derivatives.

• The resolution closure is exactly what PL-Resolve(Ci ,Cj)
computes. It is stored in the final state of the variable
′clause′

• Because of the factoring step which removes multiple copies of
a literal, there can only be finitely many distinct clauses that
can be generated from the symbols P1, . . .Pk that appear in S

• As a consequence PL-Resolution always terminates



Resolution algorithm: completeness

• We have the following completeness theorem (known as
Ground Resolution Theorem):

If a set of clauses is unsatisfiable, then the resolution closure
of those clauses contains the empty clause.



Horn clauses

• The completeness of resolution makes it a very important
inference method

• In many practical situations, however, the full power of
resolution is not needed

• Some real world knowledge bases satisfy certain restrictions on
the form of sentences they contain, which makes it possible to
use a more restricted and efficient inference algorithm

• One such restricted form is the definite clause which is a
disjunction of literals of which exactly one is positive.
(¬L1,1 ∨ ¬Breeze ∨ B1,1) is a definite clause whereas
(¬B1,1 ∨ P1,2 ∨ P2,1) is not.



Horn clauses

• Slightly more general is the Horn clause which is a disjunction
of literals of which at most one is positive.

• All definite clauses are Horn clauses, as are clauses with no
positive literals (called goal clauses)

• Horn clauses are closed under resolution (if you resolve two
Horn clauses you get back a Horn clause)



Horn clauses

• Knowledge bases containing only definite clauses are
interesting for 3 reasons:

• Every definite clause can be written as an implication whose
premise is a conjunction of positive literals and whose
conclusion is a single positive literal. For example the definite
clause (¬L1,1 ∨ ¬Breeze ∨ B1,1) can be written as the
implication (L1,1 ∧ Breeze)⇒ B1,1. In Horn form, the premise
is called the body and the conclusion is called the head.

• Inference with Horn clauses can be done through the forward
and backward chaining algorithms. Those algorithms form the
basis for logic programming

• Deciding entailment with Horn clauses can be done in time
that is linear in the size of the Knowledge base



Forward and Backward chaining

• The Forward chaining algorithm determines if a single
proposition symbol q (the query) is entailed by a given
knowledge base of definite clauses

• It begins from the known facts (positive literals) in the
knowledge base.

• If all the premises of an implication are known, then its
conclusion is added to the set of known facts

• For example if L1,1 and Breeze are known, and
(L1,1 ∧ Breeze)⇒ B1,1 is in the knowledge base, then B1,1

can be added



Function PL ForwardChaining(KB, query q):
input : KB (initial state of the env.)

q the query (propositional symbol)
count (count[c] = num. of symbols in c ’s premises)
inferred (inferred[s] is set to false for all symbols)
agenda (queue of symbols known to be true in KB)
while agenda is not empty do

p ← Pop(agenda)
if p = q then

return True

end
if inferred[p] is False then

inferred[p]← True
for each clause c in KB where p is in c.Premises do

decrement count[c]
if count[c] = 0 then

add c.Conclusion to agenda

end

end

end

end
return false

Algorithm 2: Propositional Forward Chaining



Forward and Backward chaining

• The agenda keeps track of the symbols known to be true but
not yet processed

• The count table keeps track of how many premises of each
implication are as yet unknown

• When a symbol p from the agenda is processed, the count is
reduced by 1 for each implication in whose premises p appears

• If a count reaches 0, all the premises of the implication are
known, so its conclusion can be added to the agenda



Forward and Backward chaining

• Consider the example below. The KB consists of a set of Horn
clauses with the literals A and B as known facts .

• The knowledge base can be represented as an AND-OR graph

P ⇒ Q

L ∧M ⇒ P

B ∧ L⇒ M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B A B

L

M

P

Q



Forward and Backward chaining

• In AND-OR graphs, multiple links joined by an arc indicate a
conjunction (every link must be proved)

• While multiple links without an arc indicate a disjunction (any
link can be proved)

P ⇒ Q

L ∧M ⇒ P

B ∧ L⇒ M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B A B

L

M

P

Q



Forward and Backward chaining

• Forward chaining works by starting from the known leaves
(here A and B)

• Inference then propagates up the graph as far as possible

• Whenever a conjunction appears, Forward Propagation waits
until all the conjuncts are known before proceeding

P ⇒ Q

L ∧M ⇒ P

B ∧ L⇒ M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B A B

L

M

P

Q



Forward and Backward chaining

• Forward chaining is an example of the general concept of
Data-driven reasoning (=reasoning in which the focus of
attention starts with the known data)

P ⇒ Q

L ∧M ⇒ P

B ∧ L⇒ M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B A B

L

M

P

Q



Forward and Backward chaining

• The Backward chaining, as its name indicates works backward
from the query.

• If the query is known to be true, then no work is needed

P ⇒ Q

L ∧M ⇒ P

B ∧ L⇒ M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B A B

L

M

P

Q



Forward and Backward chainging

• Otherwise, the algorithm finds those implications in the
knowledge base whose conclusion is q. If all the premises of
one of those implications can be proved true (by backward
chaining), then q is true

P ⇒ Q

L ∧M ⇒ P

B ∧ L⇒ M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B A B

L

M

P

Q



Forward and Backward chainging

• When applied to the query Q below, the algorithm works
downwards until it reaches a set of known literals, A and B
that form the basis for a proof.

• As for forward chaining, efficient implementations can run in
linear time

P ⇒ Q

L ∧M ⇒ P

B ∧ L⇒ M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B A B

L

M

P

Q



Forward and Backward chainging

• Backward chaining is an example of Goal-directed reasoning

P ⇒ Q

L ∧M ⇒ P

B ∧ L⇒ M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B A B

L

M

P

Q



Agents based on Propositional logic
• Note that so far, we have considered percepts only about

space. In fact a percept asserts something only for the current
time.

• This idea of associating proposition with time steps must
apply to any aspect of the world that changes through time

• We use the word fluent (from the latin fluens, flowing) to
refer to an aspect of the world that changes through time.

• Using this, we can connect the current stench and breeze
percepts directly to the properties of the squares where they
are experienced by relying on the location fluents, for any time
step t and location [x , y ], we assert

Ltx ,y ⇒ (Breezet ⇔ Bx ,y )

Ltx ,y ⇒ (Stencht ⇔ Sx ,y )



Agents based on Propositional logic

• Now we need additional axioms that allow the agent to keep
track of the fluents such as Ltx ,y

• In other words, we need to write down a transition model of
the Wumpus world as a set of logical sentences

• We can start by defining effect axioms that specify the
outcome of an action at the next time step

• As an example, if the agent is in square [1, 1] and facing East
at time 0 and goes Forward, the result is that the agent is in
square [2, 1] and no longer is in [1, 1],

L01,1 ∧ Facing East0 ∧ Forward0 ⇒ (L12,1 ∧ ¬L11,1)



Agents based on Propositional logic

• Now imagine that at step 1 we make the query Ask(KB,

HaveArrow1) to determine whether the agent still has the
arrow (note that we ask for the arrow at time t = 1).

• The answer to this query is false. The agent cannot prove
that it has the arrow at time t = 1.

• The information has been lost because the effect axiom fails
to state what remains unchanged as the result of an action

• The need to keep track of such facts is known as the frame
problem (the name comes from the relation to the frame of
reference in physics, the assumed stationary background)



Agents based on Propositional logic

• One solution to the frame problem would be to explicitely add
all the frame axioms , explicitely asserting all the proposition
that remain the same

• For each time t, we would then have

Forwardt ⇒ (HaveArrowt ⇔ HaveArrowt+1)

Forwardt ⇒ (WumpusAlivet ⇔WumpusAlivet+1)

• The proliferation of frame axioms seems remarkably inefficient

• In a world with m different actions and n fluents, the set of
frame axioms will be of size O(mn)



Agents based on Propositional logic

• This specific manifestation of the frame problem is sometimes
known as the representational frame problem.

• Historically, the problem was a significant one for AI
researchers

• The representational frame problem is important because the
real world has very many fluents

• Fortunately for us humans, each action only changes no more
than a small number k of those fluents. The world exhibits
locality

• Solving the representational frame problem involves defining
the transition model with a set of axioms of size O(mk)
rather than O(mn) (m actions being affected by the k fluents)



Agents based on Propositional logic

• There is also an inferential frame problem which consists in
projecting forward the result of a t steps plan of actions in
time O(kt) instead of O(nt).

• While the representational FP means finding a succinct way of
specifying all non-effects of actions, the inferential FP is the
problem of effectively computing these non-effects. The
inferential Frame Problem arises whenever the value of a
fluent in one situation has to be derived from its value in
previous situations.

• In the worst case scenario, every such fluent value needs to be
carried stepwise from one situation to the other resulting in
O(nt) values for t time steps

• The solution to the problem involves changing one’s focus
from writing axioms about actions (see Forwardt in the
above) to writing axioms about fluents



Agents based on Propositional logic
• For each Fluent, we have an axiom that defines the truth

value of F t+1 in terms of Fluents (including F ) at time t and
the actions that may have occured at time t.

• The truth value of F t+1 can be set in one of two ways:

• Either the action at time t causes F to be true at time t + 1

• or F was already true at time t and the action at time t does
not cause it to be false

F t+1 ⇔ ActionCausesF t ∨ (F t ∧ ¬ActionCausesNotF t)

• At each step, we thus only consider the k1 fluents that are
affected by the action and the k2 fluents which were true at
the previous step. An axiom of this form is called a
successor-state axiom

• We can now encode the ’HaveArrow’ fluent more simply as

HaveArrowt+1 ⇔ (HaveArrowt ∧ ¬Shoott)



Agents based on Propositional logic

• Solving the representational and inferential frame problems is
a big step forward but a pernicious problem remains: we need
to confirm that all the necessary preconditions of an action
holds for it to have its intended effect

• I.e. we say that the Forward action moves the agent ahead
unless there is a wall in the way, but there are many other
unsual exceptions that could cause the action to fail: the
agent might trip and fall, be stricken with a heart attack,...

• The need to specify all those exceptions is known as the
qualification problem

• There is no complete solution to this problem within logic.
System designers have to use good judgment in deciding how
detailed they want to be in specifying their model, and what
details they want to leave out.



Limitations of Propositional logic

• Recall Aristotle’s celebrated syllogism

All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.

• Given A true, B true, we cannot prove the implication
A ∧ B ⇒ C . Yet in plain English, this is clearly true



Combining the best of formal and natural languages

• We can adopt the foundations of Propositional logic, a
declarative, compositional (meaning of a sentence is a
function of the meaning of its parts) semantic and try to build
a more expressive logic borrowing representational ideas from
natural languages while avoiding its drawbacks.

• When you look at the syntax of natural language, the most
obvious elements are nouns and noun phrases that refer to
objects (squares, pits, Wumpuses,..), and verb and verb
phrases that refer to relations among objects (is breezy, is
adjacent to, shoots,..). Some of these relations are functions
(in which there is only one value for a given input)



Combining the best of formal and natural languages

• It is relatively easy to list examples of objects, relations and
functions:

• Objects: people, houses, numbers, theories, colors, baseball
games, table,...

• Relations: these can be unary relations or properties such as
red, round, bogus, prime,... or more general n-ary relations
such as ’brother of’, ’bigger than’, ’inside’, ’part of’,...

• Functions: ’one more than’, ’father of’,...

• The language of first order logic is built around objets and
relations



Combining the best of formal and natural languages

• Remember the difference between ontological (what each
language assumes about the nature of reality) commitment
and epistemological (possible states of knowledge allowed by
the language with respect to each fact) commitment?

• The principal difference between Propositional and First order
logic lies in their respective ontological commitment

• Propositional logic assumes that there are facts that either
hold or do not hold in the world. Each fact can be in either of
two states: True or False

• First order logic assumes more: the world consists of certain
objects with relations among them that do or do not hold.

• The epistemological commitment is however identical: a
sentence represents a fact and the agent either believes the
sentence to be true believes it to be false, or has no opinion



FOL Syntax (I)

• The basic syntactic elements of First Order Logic are the
symbols that stand for objects, relations and functions

• The symbols come in three kind: constant Symbols, which
stand for objects, predicate symbols which stand for relations,
and function symbols, which stand for functions.

• We will adopt the convention that those symbols begins with
uppercase letters, such as in ’Richard’ and ’John’, the
predicate symbol ’Brother’ and the function ’LeftLeg’

• Keep in mind that if Ω is the domain of the variables (set of
all constants), a function takes zero or more arguments of
that domain and returns another argument from that domain.
A predicate takes zero or more arguments of that domain and
returns a Boolean value.



FOL Syntax (II)

• A term is a logical expression that refers to an object.
Constant symbols are thus terms. It is not always convenient
to have a distinct symbol to refer to each object. We might
and will instead want to use function symbols.

• Just as in natural language we might use the sentence ’King
John’s left leg’ instead of giving an explicit name to the
considered leg. We will encode this through the (function)
symbol ’LeftLeg(John)’

• The formal semantics is clear: for a function f (t1, . . . , tn), the
function symbol f refers to some function of the model, the
argument terms refer to some objects in the domain (let us
call them d1, . . . , dn), and the term as a whole refers to the
object that is the value of the function F applied to those
objects d1, . . . , dn



FOL Syntax (III)

• Once we have introduce terms for referring to objects and
predicate symbols to refer to relations, we can put them
together to make atomic sentences that state facts.

• An atomic sentence is formed from a predicate symbol
optionally followed by a parenthesized list of terms such as

Brother(Richard, John)

(Richard the LionHeart is the brother of King John)

• Atomic sentences can have complex arguments such as below

Married(Father(Richard),Mother(John))

• An atomic sentence is true in a given model if the relation
referred to by the predicate symbol holds among the objects
referred to by the arguments



FOL Syntax (IV)

• We can then use logical connectives to build more complex
sentences.

• Some examples include

¬Brother(LeftLeg(Richard), John)

Brother(Richard, John) ∧ Brother(John, Richard)

King(Richard) ∨ King(John)

¬King(Richard)⇒ King(John)



FOL Syntax (V)

• Once we have a logic that allows objects, it seems natural to
want to express properties of entire collections of objects,
instead of enumerating the objects by name. Quantifiers let us
do this.

• First Order Logic contains two standard quantifiers called
universal and existential

• Recall the difficulty we had in propositional logic with the
expression of general rules, ’All men are mortal’

• The first sentence ’All men are mortal’ in Aristotle syllogism
can now be written as

∀ x Human(x)⇒ Mortal(x)

• The symbol x is called a variable



FOL Syntax (VI)

• Consider the sentence ∀x King(x)⇒ Person(x)

• Intuitively the sentence ∀x P where P is any logical
expression, says that P is true for every object x .

• More precisely, we say that ∀x P is true in a given model if P
is true in all possible extended interpretations constructed
from the interpretation given in the model. Possible
extensions are for example given by

x → Richard the LionHeart

x → King John

x → Richard’s left leg

x → john’s left leg

x → the crown



FOL Syntax (VII)

• In such a model the universal quantifier would then be
equivalent to asserting the following sentences

Richard the Lionheart is a king⇒ Richard LH is a person

King John is a king⇒ King John is a person

Richard’s Left Leg is a king⇒ Richard’s left leg is a person

. . .

• We know that the second implication is true because the
premise is true.

• What about the remaining 2 sentences?



FOL Syntax (IX)

• Universal quantification makes statements about every
objects, Similarly, we can make a statement about some
object in the universe without naming it, by using an
existential quantifier

• To say for example that King John has a crown on his head,
we can write

∃ x Crown(x) ∧ OnHead(x , John)



FOL Syntax (X)

• The sentence ∃x P says that P is true for at least 1 object x .

• More precisely, ∃x P is true in a given model if P is true in at
least one extended interpretation that assigns x to a domain
element. That is if we again consider the model containing
the objects

x → Richard the LionHeart

x → King John

x → Richard’s left leg

...

• At least one of the following sentences must be true

• R. the Lionheart is a crown ∧ R. the Lionheart is on John’s
head

• King J. is a crown ∧ King J. is on John’s head

• R.’s left leg is a crown ∧ R. left leg is on J’s head

• ...



FOL Syntax (XII)

• In FOL, we will often want to express more complex sentences
using multiple quantifiers.

• As an example, the statement ’Brothers are siblings’ can be
written as

∀x , ∀y Brother(x , y)⇒ Sibling(x , y)

• The order of the quantifiers is also very important. As an
example consider the two statements ’Everybody loves
somebody’ and ’There is someone that is loved by everyone’.
Those two statements would be respectively encoded as

∀x , ∃y Love(x , y), ∃y , ∀x Love(x , y)



FOL Syntax (XIII)

• The two quantifiers are actually intimately connected, through
negation.

• Asserting that everyone dislikes meat is the same as asserting
that there does not exist anyone who likes meat. I.e.

∀x , ¬Likes(x ,meat), is equivalent to ¬∃x , Likes(x ,meat)

• Similarly, the sentence ’everyone likes icecream’ can be
encoded as the fact that no one does not like ice cream:

∀x Likes(x , IceCream), is equivalent to ¬∃x ¬Likes(x , IceCream)



FOL Syntax (XIII)

• ∀ can be understood as a conjunction over the universe of
objects and ∃ can be understood similarly as a disjunction

• As a consequence, we can apply DeMorgan Law which for
example gives

∀x ,¬P ≡ ¬∃x P ¬(P ∨ Q) ≡ ¬P ∧ ¬Q
¬∀x , P ≡ ∃x ¬P ¬(P ∧ Q) ≡ (¬P ∨ ¬Q)
∀x , P ≡ ¬∃x ¬P P ∧ Q ≡ ¬(¬P ∨ ¬Q)
∃x P ≡ ¬∀x ¬P P ∨ Q ≡ ¬(¬P ∧ ¬Q)



FOL Syntax (XIII)

• First order logic also enables the use of the equal sign ’=’ to
indicate that two terms refer to the same object. For example

Father(John) = Henry

• The equal sign can be used to state facts about given
functions. it can also be used with the negation to insist on
the fact that two terms are not the same. For example, if we
wan to say that Richard has at least two brothers, we would
write

∃ x , y Brother(x ,Richard) ∧ Brother(y ,Richard) ∧ ¬(x = y)


